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Abstract
How life-history strategies influence the evolution of populations is not well understood. Most existing models stem from the
Wright–Fisher model which considers discrete generations and a fixed population size, thus not taking into account any
potential consequences of overlapping generations and demographic stochasticity on allelic frequencies. We introduce an
individual-based model in which both population size and genotypic frequencies at a single bi-allelic locus are emergent
properties of the model. Demographic parameters can be defined so as to represent a large range of r and K life-history
strategies in a stable environment, and appropriate fixed effective population sizes are calculated so as to compare our model
to the Wright–Fisher diffusion. Our results indicate that models with fixed population size that stem from the Wright–Fisher
diffusion cannot fully capture the consequences of demographic stochasticity on allele fixation in long-lived species with
low reproductive rates. This discrepancy is accentuated in the presence of demo-genetic feedback. Furthermore, we predict
that populations with K life-histories should maintain lower genetic diversity than those with r life-histories.

Introduction

Adaptive and non adaptive evolution is characterized by the
dynamics of allele frequencies and their eventual loss or
fixation. Recently, comparative population genomics have
suggested that life-history strategies are good predictors of
the genetic diversity maintained in populations. Indeed,
species with high investment in survival and lower invest-
ment in reproduction (K strategy) show lower levels of
genetic diversity than those with a high investment in
reproduction and low investment in survival (r strategy)
(Romiguier et al. 2014; Chen et al. 2017). Currently, we

have no theoretical predictions as to why and how life-
history strategies affect genetic diversity. For more than half
a century, the diffusion limit of the Wright–Fisher model
(Fisher 1930; Wright 1931), introduced by Kimura (1957,
1962), has provided one of the key tools in population
genetics for predicting the dynamics of allelic frequencies.
Due to simple and strong analytical results obtained for this
general model (Kimura 1970), it has been extended to take
into account populations with more general and compli-
cated behaviors such as non-random mating and structured
populations (see for example Caballero and Hill 1992;
Bataillon and Kirkpatrick 2000; Roze and Rousset 2004).
However, the Wright–Fisher model does not provide an
appropriate theoretical framework for exploring differences
in life-history strategies on allele frequency dynamics
(Parsons et al. 2010). This is because it makes two sim-
plifying assumptions: (1) all individuals reproduce and die
at the same time (discrete non-overlapping generations), and
(2) population size is fixed, which has led to the concept of
“effective population size”, denoted Ne (and discussed
below). These two assumptions are violated in most natural
populations: births and deaths can be independent events
(reproduction by an individual is not necessarily immedi-
ately followed by its death, see for instance Champagnat
et al. 2006), the speeds at which reproduction and death
occur representing different life-history strategies (i.e., r/K
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strategies), population size tends to vary stochastically and
there can be skewed reproductive values, with few indivi-
duals effectively contributing to the next generation. New
theoretical approaches must therefore be developed in
which the consequences of these strategies can be accoun-
ted for. As can be seen in Wahl (2011), extensions of the
Wright–Fisher model and diffusion to a variable population
size framework have been defined and studied, in, for
example, Waxman (2011), but this approach does not allow
for a real interaction between demography and the genetic
composition of the population, since population size is
imposed as an external parameter.

Individual-based models, that simulate populations as
being composed of discrete individual organisms (De
Angelis and Grimm 2014), provide the ideal theoretical
approach to studying the interaction between population
size dynamics on the microscopic scale (demographic
changes due to independent births and deaths) and prob-
abilities of fixation (Champagnat et al. 2006; Champagnat
and Lambert 2007; Parsons et al. 2010; Uecker and Her-
misson 2011). Demographic parameters can be defined so
as to represent different rates of reproduction and survival,
the ensuing demographic behavior of the population and the
linked allelic dynamics arising naturally. The importance of
macroscopic demographic events can also be considered in
such models (i.e. bottlenecks or expansions), as Romiguier
et al. (2014) have suggested that the consequences of life-
history strategies on genetic diversity may overwhelm any
traces of strong demographic perturbations on a macro-
scopic scale, a hypothesis that has yet to be tested. Fur-
thermore, individual-based models can also account for the
feedback between genetics and demography, a central
aspect in models of evolutionary rescue (Orr and Unckless
2008; Glemin and Ronfort 2013), as it can have a major
impact on population viability, notably when selection is
relatively strong. Previously, life-history strategies have
been studied using deterministic analysis (hence ignoring
the effects of stochasticity), in Lin et al. (2012); and in
Parsons et al. (2010), the authors explored the consequences
of different life-history strategies and proposed an
individual-based model with “quasi-neutral” selection so
that the impact of population genetics on population
demography can be neglected, thus neglecting any con-
sequences of demo-genetic feedback.

In existing theoretical models studying allele dynamics,
Ne is a central notion which aims at bringing any population
as “close” as possible (the definition of closeness being
dependent on the indicators of interest) to a classical
Wright–Fisher diffusion. Many theoretical approaches rely
on this concept, notably to quantify the genetic diversity of
populations. It therefore seems important to find a way to
link this quantity to the behavior of individuals, possibly
presenting different life-history strategies. Previous works

have found that the harmonic mean of the population size
could provide a good proxy for Ne when taking demo-
graphic behavior into account (Wright 1938; Kimura and
Ohta 1969; Otto and Whitlock 1997). The harmonic mean
of the population size is also used in coalescent models to
represent the Ne when population size varies stochastically
as long as the fluctuations occur at a faster scale than coa-
lesence events (see cited works within Sjödin et al. 2005).
On the other hand, Iizuka et al. (2002); Iizuka (2010)
showed that the harmonic mean size is sometimes an
inadequate definition and the authors proposed a new
definition for Ne (the heterozygosity effective size). Indeed,
depending on the speed of the demographic fluctuations in
relation with coalescence events, an effective population
size as such, may not be definable. When fluctuations occur
at a similar time-scale as coalescence events, they have a
non-linear stochastic effect on the timescale of the coales-
cent (see Sjödin et al. 2005). In this case, the coalescent
effective population size is a stochastic variable that needs
to be re-calculated at every time step in order to account for
the effects of changes in population size. In Parsons et al.
(2010), the authors found that they could not define an
appropriate Ne for which a classical neutral Wright–Fisher
diffusion would give the same mean time to absorption and
fixation probability as their model. Mean times to fixation of
neutral alleles, and eventually the distribution of these
times, in the Wright–Fisher diffusion depend on the popu-
lation’s Ne (Kimura and Ohta 1969) and are thus expected
to be affected by a population’s demographic dynamics
(notably due to macroscopic events such as bottlenecks,
expansions and extinctions, as can be deduced from works
on coalescent theory, Greenbaum 2014). On the contrary,
the fixation probability of a neutral allele is always expected
to be equal to its initial frequency. That Parsons et al.’s
(2010) results for quasi-neutrality are better described by a
Wright–Fisher diffusion with selection (Fig. 4 in their
paper) thus raises three questions: (i) What role do life-
history strategies play in the probabilities and times to
fixation? (ii) If genotypes under selection present different
demographic behaviors (i.e., growth rate), how is the
ensuing change in population size likely to influence the
probabilities and times to fixation? (iii) How should Ne and
fitness be defined in individual-based models in order to
render them, if possible, comparable to a Wright–Fisher
framework?

Here we propose an individual-based model, in that the
behavior of the population depends on parameters affecting
the demographic behavior of the individuals it is composed
of and not on parameters at the population level (i.e., a
general population growth rate), in order to study the
absorption times and fixation probabilities in a demo-
genetic context. Contrary to previous models, where indi-
viduals were haploid (Champagnat et al. 2006; Champagnat
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and Lambert 2007; Parsons et al. 2010), we consider a
sexually reproducing diploid population, with general
dominance relationships between alleles, the possibility of
self-fertilization and allow for extinction in finite time. In
this probabilistic model (which is properly defined with a
more general form of selection but without the possibility of
fertilization in Coron (2016, 2015)) both the demography
and genetics of a given population are defined through the
stochastic dynamics of each individual within the popula-
tion, which themselves are dependent on demographic
parameters that can be estimated (Moran 1953). As popu-
lation size is directly determined by frequent birth and death
events, it changes stochastically with time, and can also
depend on the population’s genetic composition. We pro-
vide a measure of the effective population size that renders
the diffusion of this model comparable to a Wright–Fisher
diffusion, which assumes a fixed population size, in order to
asses whether the Wright–Fisher diffusion is able to capture
allele frequency dynamics due to differences in life-history
strategies. The differences in life-history strategies are due
to a natural behavior of the model and depend directly on
the demographic parameters (as in, e.g., Parsons et al.
2010), being in no way forced. Due to the bi-dimensional
nature of this model (both genetic frequencies and popula-
tion size are stochastic), there are no simple analytical
results to predict times and probabilities of fixation; all
results were therefore obtained using simulations of the
stochastic trajectories of the diffusion process.

Our main findings are that:

(i) Despite the individual-based behavior of our model,
we show that it can be seen as a generalization of the
Wright–Fisher diffusion model, as letting some
parameters of the model go to +∞ (namely the
growth and competition rates), we obtain the
Wright–Fisher diffusion. This implies that, as shown
in our results, the behavior of populations with r life-
history strategies can be well captured by the
Wright–Fisher diffusion when using the appropriate
effective size (which in some cases is equivalent to the
mean inbreeding effective population size).

(ii) We find that when population turnover is low due to
high survival and low reproductive rates (K life-
history strategies), times to fixation of a rare allele
(even one under negative selection) are generally
over-estimated in the Wright–Fisher diffusion model.
This discrepancy is further accentuated when taking
into account external sources of population size
variability, notably following rapid expansions or
bottlenecks. We would therefore expect weaker
purifying selection in species with K life-history
strategies, and that predictions concerning the
expected rates of the decay of genetic diversity in

natural populations may be overly optimistic when
using methods based on the Wright–Fisher model.

(iii) Any demographic consequences of an allele under
selection can greatly influence allele frequency
dynamics, especially in the case of populations with
K strategies. This impacts the probabilities and times
to fixation in a way that cannot be fully captured by
the proposed effective population size.

Materials and methods

Model and the limiting diffusion process

We consider a population of diploid individuals, char-
acterized by their genotype at a single bi-allelic locus with
alleles A and a. The population is modeled by a 3-
dimensional stochastic birth-and-death process (detailed in
Appendix A) giving the respective numbers of individuals
with genotype AA, Aa and aa. Contrary to previous models
where population size is a parameter, here it is a random
variable, emerging from the behavior of each individual.
The dynamics of population size is stochastic, and popu-
lation extinction occurs with probability 1. As we will be
focusing on the diffusion limit of an individual-based model
(detailed in Appendix A), throughout this article we will be
preferentially using the term “population mass”, as popu-
lation size will be considered as being effectively infinite.
Population mass therefore represents a comparative of
populations with very large/infinite sizes.

Limiting diffusion process

Let us focus on the two following variables: the population
mass N K

t at time t and the proportion XK
t of allele a at time

t. As explained in Appendix A and shown in Coron (2016),
under a large population assumption and after an appro-
priate re-scaling of birth and death rates, the process
N K

t ;X
K
t

� �
t�0

converges toward a bi-dimensional diffusion
process N t;Xtð Þt�0 whose equation can be written as:

dN t ¼
ffiffiffiffiffiffiffiffiffiffiffi
2γN t

p
dB1

t þN t ρ� ξN t þ σXt 2hð½
þXtð1� 2hÞ þ Fð1� XtÞð1� 2hÞÞ�dt; ð1aÞ

dXt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γXtð1�XtÞ

2 N t
1þF

r
dB2

t þ σXtð1� XtÞ

� hþ Xtð1� 2hÞ þ Fð1� Xt � hþ 2XthÞ½ �dt:
ð1bÞ

where B1
t ;B

2
t

� �
t�0 is a bi-dimensional standard Brownian

motion (stochastic component of the equation). This
diffusion model can be generalized without difficulty to
any finite number of alleles, as presented in Coron et al.
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(2017). Equations (1a) and (1b) with F= 0 can seem
different than the one given in Remark 2 of Coron (2016).
This is due to the fact that we consider here (for an easy
comparison with population genetics models) the propor-
tion of allele a, whereas the proportion of allele A was
considered in Coron (2016). Without loss of generality, we
can assume that the time scaling parameter γ is equal to 1/2,
thus simplifying the above equations. In this case, if the
stochastic quantity N t

1þF is artificially replaced by a fixed
parameter Ne, then the model given in (2a) and (2b) is the
Wright–Fisher diffusion with selection and self-fertilization
presented in Caballero and Hill (1992), where the parameter
σ in our model is equal to the coefficient of selection s of
Caballero and Hill (1992) and Ne is the effective population
mass. Increasing γ increases the speed at which individuals
reproduce and die, meaning that at each time step there are
more reproductive or death events. A possible interpretation
of this phenomenon is that some individuals produce more
offspring. This does seem to mimic sweepstakes reproduc-
tion phenomena observed in many natural populations
(Hedgecock and Pudovkin 2011), but because of the
binomial nature of the sampling process, this does not
quite correspond to the aforementioned multiple merger
coalescents (Schweinsberg 2003), as the variance of
reproductive success remains close to the mean number of
descendants produced. Intuitively, considering a parameter
γ greater that 1/2 would thus result in dividing Ne by a factor
2γ (see Figure A.2 in the Appendix).

More interestingly, the Wright–Fisher diffusion with
selection and self-fertilization can also be directly retrieved
from our model, by setting ρ/ξ= Ne and letting ρ got to +∞.
In order to determine whether a constant effective popula-
tion mass can summarize the effects of a stochastic popu-
lation mass as proposed in earlier models (Kimura 1970;
Otto and Whitlock 1997), we define a fixed effective
population mass Ne in such a way that the model in
Caballero and Hill (1992) is adequately calibrated.

Simulating the diffusion process

In Caballero and Hill (1992), the authors provide explicit
formulas for the probabilities of fixation as well as
approximations for the times to loss or fixation of an allele.
Due to the bi-dimensionality of our model which largely
increases the difficulty of mathematical calculations, fixa-
tion probabilities as well as laws of times to fixation, loss
and absorption (either loss or fixation) of allele a are
determined using simulations of Eqs. (1a) and (1b). These
simulations are run using a script written in C++ (which is
available from Dryad). The stochastic elements of the
equations, B1

t and B2
t are obtained by successive samplings

from a normal distribution with mean 0 and variance dt. dt
is the size of the time step and is a parameter fixed at the

beginning of the simulation, which we have set to 10−4 for a
carrying capacity K ¼ 100 and and 10−5 for K ¼ 10 and 1.
Each simulation is run until the allele a is either lost or fixed
and 100 thousand replicas are run for each parameter set
from which the probability of fixation, as well as the means
and laws of times to fixation, loss and absorption are
obtained.

In order to test whether deviations in times to loss or
fixation from the approximations provided in Caballero and
Hill (1992) are due to demographic stochasticity or due to
the approximations made, we run simulations of the
Wright–Fisher Diffusion (using a fixed population mass Ne,
defined below in Eq. (6)). We also run simulations to assess
the effects of the feed-back between selection and demo-
graphy by artificially setting σ= 0 in Eq. (1a) only. In order
to evaluate the effect of the change in population mass due
to the fixation of an allele under selection with an effect σ,
we also consider the case where the carrying capacity is
equal to (ρ+ σ)/ξ.

Results

Demography

The change in population mass given in Eq. (1a) is made up
of a stochastic term (dependent on dB1

t ) and a deterministic
one (dependent on dt). In this diffusion model with selec-
tion and self-fertilization, the probability of extinction is
equal to 1. The law of the time to extinction depends on the
ecological and genetic parameters. In the neutral case where
σ= 0, Eqs. (1a) and (1b) can be simplified the following
way:

dN t ¼
ffiffiffiffiffiffiffiffiffiffiffi
2γN t

p
dB1

t þN t ρ� ξN t½ �dt; ð2aÞ

dXt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γXtð1� XtÞ

2N t
1þF

s
dB2

t : ð2bÞ

Here population mass is independent of its genetic
composition and the deterministic term of Eq. (2a) cancels
out when N t ¼ K where

K ¼ ρ

ξ
ð3Þ

is defined as the population’s carrying capacity. Note that K
does not represent the number of individuals that can be
sustained in the population (since N t is scaled by K which
goes to infinity) but is an indicator of the amplitude of
demographic stochasticity, as will be shown below. In order
to model and compare different life-history strategies, we
change the values of ρ and ξ, while maintaining their ratio
K constant. Increasing ρ represents an increased investment

Effects of demographic stochasticity and life-history strategies on times and probabilities to fixation 377



in reproduction, and for a fixed K, a decreased competitive
ability, hence lower survival rate (r strategy, high turnover
rate), whereas decreasing ρ would have the opposite effect
(K strategy, low turnover rate).

When population mass is smaller (resp. larger) than K, it
will tend to increase (resp. decrease). For a fixed value of K,
if ρ is large, then the population mass will remain close to
K, whereas for small values of ρ the mass will tend to
deviate further from K (see Fig. 1). The smaller ρ the slower
the population mass will come back to its pseudo equili-
brium K; therefore a small value of ρ can have an important
impact on extinction, as can be seen in Fig. 1 (black lines).
The role of K on the demographic dynamics is not as
straightforward since N t is implicated in both the stochastic
and deterministic terms (therefore both terms are increased
when K increases). In Fig. 1 we also see that the effect of ρ
on demographic stochasticity is weaker when K is smaller.

Effective population mass

In the neutral case (Eqs. (2a) and (2b)), variations in
population mass are modeled by a logistic diffusion process
(and thus are independent from the genetic composition of
the population) and changes in allele frequency by a
Wright–Fisher diffusion with population mass N t at any
time t. Hence, it is natural to compare this model to the
neutral Wright–Fisher diffusion model of population
genetics, for which the proportion XWF

t of a neutral allele at

all time satisfies

dXWF
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XWF
t 1� XWF

t

� �
2Ne

s
dBt: ð4Þ

Here Ne represents the effective population mass of a self-
fertilizing population (as described in Caballero and Hill
1992) and is a parameter of the Wright–Fisher diffusion
model.

One definition for Ne classically used is that of the
inbreeding effective population size Ne(f) (Kimura 1970,
Chapter 7.6). This parameter is defined as being, at time t,
equal to 1/Pt, where Pt is the probability that two individuals
descend from the same parent from generation t− 1. In the
Wright–Fisher model with random mating and reproduction
follows a Poisson distribution Pt= 1/(Nt− 1) ≈ 1/Nt when
Nt � 1, hence giving Ne(f)= Nt. In our model, the number
of offspring per individual follows a geometric law whose
mean and variance converge to 2 under the scaling we
consider. Following the method provided in (Kimura 1970,
Chapter 7.6), we find that, as for the Wright–Fisher model,
Pt ≈ 1/Nt. In order to provide a general Ne(f) for a given
parameter set, we assume that the mean 1/Pt from time t= 0
until the time to loss or fixation of the allele (the time to
absorption) Tabs, is the inbreeding effective population size
for a single simulation, and, using the definitions provided
above, that the mean of this random variable over all

Fig. 1 Top: Trajectories of the
population mass (Nt, t ≥ 0), for
N0 ¼ K and K ¼ ρ=ξ ¼ 1 (left),
K ¼ ρ=ξ ¼ 100 (right), for ρ=
0.1 (black) and ρ= 10 (gray).
Bottom: Trajectories of the
population mass (Nt, t ≥ 0), for
K ¼ ρ=ξ ¼ 1 and N0= 100
(left), and K ¼ ρ=ξ ¼ 100 and
N0= 1 (right), for ρ= 0.1
(black) and ρ= 10 (gray). For
N0= 1, ρ= 0.1 and K ¼ 100
(bottom-right figure), we plot 3
trajectories
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simulations gives

Neðf Þ ¼ E
2γTabsR Tabs
0

1
N t

dt

 !
; ð5Þ

where E(V) is the expectation of the stochastic variable V.
When γ= 1/2, Eq. (5) gives the expected harmonic mean
population size. As shown in Figure A.1 in the Appendix,
though this definition given by Eq. (5) does well for large
birth rates ρ, it is not appropriate for parameters resulting in
highly fluctuating population mass, and we need to provide
another definition of Ne.

The parameters ρ, ξ and the inbreeding coefficient F
being fixed in our model, we provide another definition for
a fixed effective population mass Ne that allows us to
compare our model with variable population mass to a
Wright–Fisher diffusion. In order to calibrate Ne, it is not
enough for the probability of fixation to be the same in both
models, as in the neutral case the fixation probability of an
allele a is simply equal to its initial proportion. Therefore,
we have chosen to calibrate Ne such that the mean
absorption time (time to either loss or fixation) is the same
in both models. From Appendix B, Ne is defined as:

Ne ¼ E Tabsð Þ
ð1þ FÞE R Tabs

0
2γ
N t

dt
h i : ð6Þ

This definition is close to the one provided in the
appendix of Sjödin et al. (2005) for a coalescent Ne in
populations where size varies at the same time-scale as
coalescent events. Differences between the expression they
provide and ours are due to the approach they present
applying to a single population’s demographic history

(making their Ne a stochastic variable), us considering times
to absorption (hence coalescence), whereas they take non-
coalescence as an indicator, and our modeling a bi-allelic,
and not multi-allelic, locus. With these definitions (Eq. (6)
and the appendix of Sjödin et al. (2005)), Ne depends on the
initial frequency X0 of allele a; this dependence is illustrated
in Figure A.1 in the Appendix. We obtain numerical esti-
mations of the quantity Ne from the simulation runs of Eqs.
(1a) and (1b) with varying population mass, calculating
E Tabsð Þ and E

R Tabs
0

1
N t

dt
h i

using all repetitions run for each
parameter set. In Fig. 2 (left) we plot the mean times to
absorption as a function of the initial proportion of allele a,
and for different values of ρ. This mean time to absorption
is given for our model with varying population mass, for the
Wright–Fisher diffusion (4) using the effective population
mass Ne given in Eq. (6), as well the theoretical result
provided in Eqs. (12) and (13) from Caballero and Hill
(1992). Figure 2 therefore shows that the models are indeed
correctly calibrated for different values of parameters ρ, ξ
and X0 (for different population densities and the effect of
the inbreeding coefficient F see Figure A.3 in the
Appendix).

In the results shown above and throughout the rest of the
paper, we have concentrated only on the time scaling
parameter γ= 1/2 so as to be as close as possible to the
Wright–Fisher model. In Figure A.2 of the Appendix we
show that increasing γ will generally decrease the effective
population size. We also find that as γ increases, the dif-
ferences between the Ne we have proposed and the
inbreeding effect size Ne(f) more conventionally used,
decreases. This is probably mainly due to the fact that, as
fewer individuals contribute to the population, the sto-
chastic noise generated decreases proportionally.

Fig. 2 Mean times to absorption (left) and fixation (right) of a neutral
allele (σ= 0) as a function of the initial frequency X0 of allele a, for
three cases: (1) Simulations of the stochastic diffusion process Eqs.
(1a) and (1b) (triangles), (2) Simulations of the Wright–Fisher diffu-
sion using Ne defined in Eq. (6) (circles) and 3) Theoretical

approximations provided by Caballero and Hill (1992) using Ne

(lines). Here we considered pure random mating (α= 0), γ= 1/2, the
carrying capacity K ¼ 1 and the growth rate ρ equals 0.1 (black) or 10
(gray)
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Neutral case: absorption and fixation times laws

Despite equal mean absorption times, the distributions of
the times to absorption differ between our model with sto-
chastically varying population mass and the simulation runs
of the Wright–Fisher diffusion, notably when the para-
meters ρ and K are small. This is illustrated by Fig. 3 in
which we compare the variance of the time to absorption for
our model and for the Wright–Fisher diffusion (see also
Supplementary Fig. 1, in which the laws of these times to
absorption are given for different initial allelic proportions),
and this can be understood by decomposing the absorption
time into the time to loss or time to fixation of an allele at
initial frequency X0. Indeed we find that mean fixation times
of minority alleles are lower for the model with stochasti-
cally varying population mass (Fig. 2 (right) and Supple-
mentary Fig. 2). This discrepancy between the results with
varying and fixed population masses can be explained by
the incidence of bottlenecks and extinction events, which is
further accentuated by a small value of ρ. This is because a
low growth rate results in a weaker impact of the determi-
nistic forces regulating population mass (Eqs. (2a) and
(2b)), further increasing demographic stochasticity. Indeed,
large demographic fluctuations eventually lead to reduced
population mass harmonic means, for which absorption is
more rapid and fixation of minority alleles is favored.
Indeed, this can be seen in Fig. 4, where despite the prob-
ability of fixation for each parameter set being equal to the
initial frequency X0 of the allele a, there is a higher fre-
quency of fixations occurring in populations with extreme
demographic behaviors.

We can also consider that population mass changes
drastically with time, allowing us to model founder effects,
or drastic changes in the environment for instance. As
previously, we compare the laws of the absorption time in
populations with rapidly decreasing or increasing mass. The
trajectories of population mass changing with time are
shown in Fig. 1 (bottom), and we start with a proportion X
= 0.01 of a neutral allele a. We obtain that the laws of the

absorption and fixation times are very different when
comparing our to the Wright–Fisher diffusion model,
despite the same mean absorption times (Fig. 5). In parti-
cular, when population mass is kept constant, the frequency
of small (and relatively large) absorption times is under-
estimated when the population mass increases, whereas the
opposite is true when the population mass decreases.

Selection, demography and genetic feedback

In this section we introduce selection through the parameter
σ in Eqs. (1a) and (1b). As mentioned above, when com-
paring Eq. (1b), which describes the dynamics of allelic
frequencies, to the Wright–Fisher diffusion, we find that σ
has the same effect on allelic frequencies as the con-
ventionally used coefficient of selection s. However, σ is
also present in Eq. (1a) and can therefore influence popu-
lation mass, linking the changes in frequency of the allele a
under selection to the dynamics of population mass. Despite
the fact that selection is in fact weak and has a negligible
impact on individual birth rates (whatever value of the
selection parameter σ 2 R, see Eq. (4) in the Appendix), the
proportion of an allele under selection can have an impor-
tant impact on the population mass dynamics. The con-
sequences of this interaction can be quantified by the ratio
σ/ξ, which is the change in the carrying capacity K when the
allele under selection a is fixed. Therefore, for a same K
before fixation but different values of ρ, similar values of σ
can lead to very different population mass dynamics (see
Fig. 6 with selection for a beneficial allele).

Due to the differences in population dynamics, prob-
abilities and times to fixation can be affected by the growth
rate, even for small values of σ (Fig. 7). Lower ρ (K strat-
egy) results in higher probabilities of fixation of deleterious
alleles, and lower relative probabilities of fixing beneficial
alleles. Furthermore, times to fixation are generally lower
for populations with low growth rates, independently of the
coefficient of selection.

Fig. 3 Ratio of the variance of
the absorption time in our model
to that of the absorption time in
simulations for the
Wright–Fisher model using the
appropriate Ne from Eq. (6), as a
function of growth parameter ρ
(left), and carrying capacity K
(right). On the left K ¼ 1 while
on the right ρ= 0.1
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In order to understand and quantify the consequences of
the feedback of genetics on demography, it is natural to
artificially remove all terms dependent on σ in Eq. (1a),
hence removing any impact of changes in proportion of
allele a on the dynamics of population mass. More pre-
cisely, let us for simplicity assume that F= 0, h= 1/2, and
let us consider the following diffusion process
N ðNFÞ

t ;XðNFÞ
t

� �
t�0

(“NF” standing for “No Feed-back”):

dN ðNFÞ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γN ðNFÞ

t

q
dB1

t þN ðNFÞ
t ρ� ξN ðNFÞ

t

h i
dt; ð7Þ

dXðNFÞ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γXðNFÞ

t 1�XðNFÞ
tð Þ

2
NðNFÞ
t
1þF

s
dB2

t

þ σ
2X

ðNFÞ
t 1� XðNFÞ

t

� �
dt:

ð8Þ

For this model without feedback, we can calibrate a
Wright–Fisher diffusion with selection, using Eq. (6) with
N t ¼ N ðNFÞ

t , so that the mean time to absorption and the
probability of fixation are the same in both models (Fig. 8).
In the presence of feed-back (Eqs. (1a) and (1b)), though we
generally find that for large K, large ρ (r strategy) and/or
weak selection, the proposed Ne (Eq. (4)) provides a good
approximation for the demographic effects on the times and
probabilities of fixation, this is not the case for small values
of ρ and/or K. Indeed, when K life-histories are considered
(small ρ) there can be some discrepancies between the

probability of fixation predicted by our model with feed-
back and a population with constant mass Ne when selection
is intermediate. This can be seen in Fig. 8 for s= 0.1 where
our model with feed-back predicts a probability of up to
10% lower than the population with constant mass Ne for
low initial frequencies of the allele a. This difference is even
greater for deleterious alleles with s=−0.1 (but for inter-
mediate initial frequencies), simultaneously due to the sto-
chastic nature of population mass and to feed-back which
further contributes to decreasing the population mass in this
case (Fig. 8). Times to fixation however are well predicted,
with generally the model with feed-back being either closer
to the model without feed-back and K ¼ ρþ σ=ξ and K ¼
ρ=ξ depending on the initial frequency of the allele X0. We
can see from the densities of times to absorption, fixation
and loss (Supplementary Fig. 3), that the laws of the times
to fixation are very well captured using the constant mass
model, though the times to loss are slightly underestimated.
Times to fixation of a mildly deleterious allele are however
slightly underestimated by the simulations run with constant
mass and are closer to the times to fixation of the simula-
tions run without feed-back and K ¼ ρ=ξ.

Concerning the effect of the self-fertilization rate (which
are summarized in Supplementary Fig. 4) we find that as
expected from the Wright Fisher diffusion, probabilities of
fixation of beneficial (respectively deleterious) alleles
increase (respectively decrease) with the rate of self-
fertilization α. We also find as previously predicted that

Fig. 4 Fixation probability of a
rare neutral allele, as a function
of effective population mass for
each simulation run for a given
parameter set (100 thousand
simulations per parameter set).
We set X0= 0.01 and ρ= 0.1.
On the left, K ¼ 1 (ξ= 0.1),
while on the right K ¼ 100 (ξ=
0.001)
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the times to fixation decrease with increasing α. In all other
aspects we find the same patterns as for the case without
self-fertilization (α= 0).

Discussion

An interesting feature of our model is that it is individual-
based, in the sense that the model is characterized by simple
demographic parameters that define the behavior of indi-
viduals within the population. Using these demographic
parameters we are able to model different life-history stra-
tegies and calculate an effective population mass Ne that
allows us to predict the probabilities of fixation, as well as
the times to absorption, using a Wright–Fisher diffusion and
specify for which parameter sets this Ne is appropriate. We
generally find that the proposed Ne does not fully capture
the laws of times to fixation of populations with K strategy
life-histories (low population turnover). This is mainly due
to long-term fluctuations induced by their intrinsic demo-
graphic parameters that cannot be summarized and lead to
the more rapid fixation of rare neutral alleles than expected.
We also show that, contrary to expectations, despite a
probability of fixation of a neutral allele being equal to its
initial frequency, when examining each simulation run for a
given parameter set separately, there is a higher frequency
of fixation of rare neutral alleles for populations that
maintain low harmonic mean masses. This result further

highlights the importance of integrating demographic
parameters into population genetics models.

Interpreting demographic parameters

In our model the term ρ defines the speed at which indivi-
duals reproduce (hence population growth) and ξ represents
the competition for resources that in turn regulates popu-
lation mass (due to increased mortality). Thus, for a given
expected population mass K ¼ ρ=ξ a low ρ describes long-
lived individuals with low death rates, whereas a high ρ
describes short-lived individuals with high death rates
(rapid turnover). When comparing the demographic fluc-
tuations of two populations with different values of ρ, the
short-term and long-term fluctuations observed for low ρ
and very rapid short-term fluctuations for high ρ (Fig. 1)
agree with the patterns observed for long- and short-lived
species respectively (Figure 1.1 in Lande et al. 2003). For a
same K we estimate a lower Ne for long-lived species
simultaneously due to larger population fluctuations and to
the differences in population turnover speeds (since for low
K both high ρ and low ρ populations have similar fluctua-
tions and yet we observe lower expected Ne), which implies
that on the long run a population with a K life-history
strategy (low ρ) would be expected to maintain lower
diversity. This prediction is supported by the lower than
expected times to fixation of both neutral alleles and those
under selection, as well as higher fixation probabilities of

Fig. 5 Absorption (top) and
fixation (bottom) time densities
of a neutral allele with initial
frequency X0= 0.01 for our
model and for simulations run
for the Wright–Fisher model
with the appropriate Ne (dotted
line). On the left (decreasing
population mass), we fix N0=
100 and K ¼ ρ=ξ ¼ 1, while on
the right (increasing population
mass), we fix N0= 1 and
K ¼ ρ=ξ ¼ 100, with ρ= 0.1
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deleterious alleles (see Fig. 7), which agrees with the
observation of less efficient purifying selection in long-lived
species with low reproductive rates compared to that of
short-lived ones with high reproductive rates (Romiguier
et al. 2014; Chen et al. 2017). Indeed, our results indicate
that in a stable environment, the stochastic demographic
fluctuations and the differences in the turnover speeds of
species with differing r/K life strategies may suffice in
explaining these observations. This could explain why
Romiguier et al. (2014); Chen et al. (2017) found that past
historical demographic disturbances were less explicative
than life-history strategies concerning contemporary genetic
diversity.

Defining selection and fitness

One of the difficulties brought on by individual-based
models is how to define fitness so that it remains compatible
with existing population genetics models. Indeed, several
definitions of fitness do exist in literature (reviewed in Day
and Otto 1; Orr 2009). Fitness is generally defined as a
measure of the contribution of a given entity (allele, group
of alleles, individual, …) to the next generation, but the
notion of generation in an individual-based model is not
obvious. A first way to define fitness is to focus on the
Wrightian fitness (see Wu et al. 2013), which is defined as
the mean number of progeny per individual. In the logistic
birth-and-death model introduced here, the expected num-
ber of offspring for an individual with reproduction rate b,
natural death rate d and competition death rate c in a
population with (let us say fixed for simplicity) size N is
equal to b/(d+ cN). Obviously, when a population is at its
demographic equilibrium N= (b− d)/c where births and
deaths compensate, the fitness of each individual is equal to

1. In this framework the effect of a non-neutral allele or
genotype (i.e. its coefficient of selection) can be defined as b
′/(d′+ c′N)− b/(d+ cN)= 0 if b′/b= c′/c= d′/d (where b′,
c′ and d′ respectively represent the new genotype’s birth
competition and death rate). However, as shown by the
results obtained for “quasi-neutral” selection in Parsons
et al. (2010), where genotypes with the same Wrightian
fitness but different values of b were considered, this defi-
nition is not sufficient in a continuous time-frame. Hence a
second way to consider fitness is to focus on the Malthusian
fitness, which is defined as the growth rate of the population
size. With this definition, fitness for our logistic birth-and-
death model can be defined by the quantity [b/(d+ cN)] ×
(b+ d+ cN)=W × V where W is the Wrightian fitness and
V measures the speed of reproduction and death of indivi-
duals. This second definition of fitness is more appropriate
when studying differences in life-history strategies, as done
in Parsons et al. (2010). For both of these definitions, fitness
is a quantity that is not inherent to the individual but
depends on one side on demographic parameters and on the
other side on both the population size and, in a non neutral
framework, its genetic composition. This releases the
exponential growth hypothesis naturally emerging from a
concept of constant individual absolute fitness (Orr and
Unckless 2008).

In this present work, we have chosen to take into account
only the Wrightian fitness so as to first explore the con-
sequences of demographic stochasticity in a model with the
same genetic properties as the Wright–Fisher diffusion. Our
main conclusion is that, depending on the life-history
strategy of a population, the Wright–Fisher diffusion is not
always able to capture the trajectories of allelic frequencies.
Future work on defining an expression for the coefficient of
selection in which the speed of reproduction and death V is

Fig. 6 The dynamics of the
synonymous changes in
population mass and the
proportion of allele a in the
presence of selection. The
coefficient of selection σ= 0.1,
K ¼ 100, with ρ= 0.1 (black,
ξ ¼ ρ=K ¼ 0:001) and ρ= 10
(gray, ξ ¼ ρ=K ¼ 0:1)
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also included may provide a better bridge between
individual-centered models and the more mathematically
manipulable Wright–Fisher diffusion.

Implications for empirical works

Various methods have been developed to estimate the
effective size of populations (see Sjödin et al. 2005 and
references therein) with the aim of understanding their past
and, in some cases, predicting their future evolution.
However, contemporary genetic data can be greatly affected
by historical events and so Ne is a parameter that is very
population dependent (Wang 2005). Furthermore, from an
experimental point of view, the intricacy of population
dynamics and population genetics requires the definition of
theoretical models whose parameters can be estimated using
laboratory experiments for a better understanding of their
respective behaviors (reviewed in Chapter 9 of Mueller
2009). Here we provide another definition for Ne that is a
result of both the demographic parameters of a population
and, in the case of selection, its genetic properties. We find,
that contrary to previous works, the effects of demographic
fluctuations cannot always be summarized using the mean
harmonic population size (here represented as a mass) as
proposed in Ewens (1967); Kimura (1970); Otto and
Whitlock (1997). Using the harmonic mean size is valid
only when population fluctuations are sufficiently fast
compared to the coalescent times (Sjödin et al. 2005), hence
for populations with a large growth rate ρ and high death
rates due to competition (parameter ξ), which represent
short-lived species with high reproductive rates. This
remains true even for strong fluctuations in population mass
when the carrying capacity K is low. However, for long
lived species times to fixation cannot be summarized by Ne,
this being in part due to near extinction events, often
ignored in deterministic models (see Chapter 1 in Lande
et al. 2003), that can contribute to lower times to fixation.
Thus depending on life-history and population size, the
Wright–Fisher diffusion is more or less appropriate in

predicting population evolution. Though maintained genetic
polymorphism is often used as a proxy for adaptive
potential, one can also argue that the speed at which an
advantageous allele goes to fixation is also important,
especially in the face of environmental change (Glemin and
Ronfort 2013). According to our model, long lived species
will have a tendency to have lower probabilities of fixation
of advantageous alleles, but this may be compensated by the
speed at which this fixation occurs compared to that
observed in short-lived species.

Previous works on integrating stochasticity into demo-
graphic models have done so by introducing a demographic
variance, meant to reflect the differences between indivi-
duals in their survival and reproduction, into deterministic
models (see for example Lande et al. 2003). However, as
Lande et al. (2003) point out, empirical measures of
demographic variance may be difficult to obtain, all the
more so in the ubiquitous presence of environmental sto-
chasticity. One of the properties of our proposed model is
that inter-individual variance occurs naturally, depending
on the death and birth rates, and very few parameters are
required in order for this variance to be ensured. Indeed,
statistical methods using time series have been developed so
as to estimate parameters compatible with our model
(Campillo and Gland 1989; Campillo et al. 2017). Because
of the hypotheses we have made concerning birth, death and
competition, our model represents a logistic population
growth model with extinction. In such a setting, Campillo
et al. (2017) have shown that death and birth rates can be
estimated separately and so be used as parameters for our
model and compare it to empirical data, either from natural
or experimental populations. A natural next step would be
to extend this model so as to consider multiple loci, either
neutral or under selection, with possible mutation, so as to
provide predictions in a more general genetic setting all the
while incorporating intrinsic demographic behaviors which
we may be of a great importance in shaping species
diversity and evolvability.

Fig. 7 Ratios of the probabilities
of fixation (left) and of times to
fixation (right) for low growth
rate (ρ= 0.1) to those obtained
for high growth rate (ρ= 10) as
a function of the initial
frequency X0 of allele a with
K ¼ 100, γ= 0.5, h= 0.25 and
α= 0 for σ= 0.01 and −0.01
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