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Lung cancer is a major cause accounting for cancer-related mortalities, with lung adenocarcinoma (LUAD) being the most prevalent
subtype. Given the high clinical and cellular heterogeneities of LUAD, accurate diagnosis and prognosis are crucial to avoid
overdiagnosis and overtreatment. Taking full advantage of scRNA-Seq data to resolve the tumor heterogeneities, we explored the
overall landscape of LUAD microenvironment. Utilizing the stage-specific tumor cell markers, we have developed highly accurate
diagnostic and prognostic models with elevated sensitivity and specificity. The diagnostic model, developed through random forest
algorithms with a thirteen-gene signature, achieved an accuracy of 96.4% and an AUC of 0.993. These metrics were further
demonstrated by benchmarking with available models and scoring systems in independent cohorts. Concurrently, the prognostic
model, formulated via Cox regression with a six-gene signature, effectively predicted overall survival, with elevated risk scores
associated with increased fractions of cancer-associated fibroblasts, and higher likelihood of immune escape and T-cell exclusion.
Subsequently, two nomograms were developed to predict survival and drug responses, facilitating their integration into clinical
practice. Overall, this study underscores the potential of our models for efficient, rapid, and cost-effective diagnosis and prognosis
of LUAD, adaptable to multiple expression profiling platforms and quantification methods.
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INTRODUCTION
Cancer is a pervasive health challenge with increasing incidence and
mortality rates worldwide [1]. Lung cancer stands as the second most
diagnosed cancer and remains the major cause of cancer mortality
[1]. Lung adenocarcinoma (LUAD), a main subtype of non-small cell
lung cancer (NSCLC, a main subtype of lung cancer), is frequently
diagnosed with high malignany and low survival probabilities [2, 3].
This complexity is partially exacerbated by its tumor heterogeneity,
manifesting both within and between tumors [4]. Tumor hetero-
geneity, including clonal architecture, mutational burden, and TME
(tumor microenvironment), contributes to diagnostic inaccuracies,
treatment inefficacies, and unfavorable prognoses [3, 5].
Given the resulting poor diagnosis and prognosis of LUAD, early

and precise detection is imperative for improving patient
outcomes [3, 6]. The traditional histopathological assessment,
however, faces several limitations due to the high intratumor and
intertumor heterogeneity of LUAD, such as sampling bias from the
heterogeneous tissue, the integrity of biopsy, the formation of
artifacts, antibody specificity, and the subjective nature of
diagnosis based on experience caused by the inter pathologist
variability about the histopathology interpretations [7–9]. In

addition to histopathology, existing models usually exhibit limited
diagnostic performance or lack practical clinical applicability. For
instance, in lung cancer diagnosis, a model based on circRNA and
mRNA profiles achieved AUC values ranging from 0.81 to 0.92 [10],
a model based on immune-related genes achieved AUC values
ranging from 0.86 to 0.92 [11]. Furthermore, additional diagnostic
performance leveraging various liquid biopsies were discussed,
achieving AUC values ranging from 0.5 to 0.97 [12].
During cancer treatment, accurately evaluating cancer stages

and the outcome of treatment strategies is critical, yet often
challenging. Available prognostic models have demonstrated
varying degrees of performance. A model based on alternative
splicing signature achieved an AUC of approximately 0.82 [13],
while another based on methylation-driven lncRNA achieved an
AUC of 0.68 [14]. Additionally, a prognostic model incorporating
immune gene expression profiles reported an AUC of 0.72 [15]. In
addition to the limited performance, these existing models
accepted input profiles from single quantification method
respectively and usually lack practical applicability. These gaps
underscore the need for more robust, accurate, and clinically
applicable models to address the challenges.
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Over the past several years, researchers have increasingly turned
to scRNA-Seq to investigate tumor heterogeneity at a finer resolution
[16–19]. By profiling the single-cell transcriptomes, researchers can
capture the intricate TME landscape, further demonstrate the cellular
reprogramming patterns of metastatic LUAD [16], and illustrate the
early immune changes during multiple myeloma progression [18].
Unlike conventional bulk RNA-Seq, which provides average gene
expression profiles of a sample, scRNA-Seq provides transcriptome
profiles of individual cells [20]. This makes scRNA-Seq particularly
adept at characterizing specific tumor cells and evaluating
corresponding markers of certain subsets within the TME.
In the current study, we identified stage-specific markers of

tumor cells in LUAD using scRNA-Seq. By integrating scRNA-Seq
and bulk RNA-Seq data, we developed and validated both a
diagnostic model and a prognostic model for LUAD, achieving
high accuracy. We further evaluated their potential clinical
applicability in different independent cohorts, offering a promis-
ing avenue for the efficient, rapid, and cost-effective diagnosis and
prognosis of LUAD.

MATERIALS AND METHODS
scRNA-Seq data processing
The LUAD single-cell transcriptome data GSE131907 [16] was obtained from
GEO, including fifty-eight samples. Due to the clinical information, we
divided the eleven distant normal lung tissues, eleven early-stage tumor
lung tissues, and four advanced-stage tumor lung tissues for subsequent
analyses. The raw UMI count matrix, representing the absolute transcript
counts, was imported into the Seurat [21] package in R [22], encompassing
a total of 100,217 cells. The mitochondrial percentage was quantified using
the PercentageFeatureSet function. Four low-quality samples exhibiting
potential doublet contamination were excluded, resulting in a refined
dataset of 83,429 cells, comprising 34,669 normal tissue cells, 41,869 early-
stage tissue cells, and 6891 advanced-stage tissue cells. Normalization,
highly variable feature selection, and scaling were performed with the
NormalizeData, FindVariableFeatures, and ScaleData function within the
Seurat [21]. Subsequent dimensionality reductions were performed with
the RunPCA and RunUMAP function, and cell clustering was performed with
the FindClusters function. Cells were then visualized in a low-dimensional
UMAP (Uniform Manifold Approximation and Projection) space.
Focusing on stage-specific markers of LUAD, we isolated epithelial

components from the tumor microenvironment (TME). This subset
comprised 9348 epithelial cells, with 2895 from normal tissues, 4658 from
early-stage tissues, and 1795 from advanced-stage tissues. Using the
FindAllMarkers function, we identified specific markers of normal, early-
stage, and advanced-stage tissues. Differential expression percentages
were computed for each gene across cell populations, and the top 200
markers, ranked by descending differential expression percentages, were
selected and deduplicated for subsequent analyses.

Diagnostic model construction
To construct the diagnostic model, we commenced by selecting the
deduplicated stage-specific epithelial markers. Normalization in reference
to GAPDH, a housekeeping gene, was subsequently conducted, adaptable
to expression profiles across diverse platforms and methods. The formula is
Normalized expression of GeneA ¼ ExpressionGeneA=ExpressionGAPDH . A pre-
liminary random forest model was then constructed using the random-
Forest package [23], incorporating the 9348 epithelial cells and the 502
deduplicated markers. Hyperparameter tuning was performed with the
tuneRF function, resulting in the optimization of the preliminary model
with 500 trees and 22 variables sampled at each split (Fig. S6A, B).
Subsequently, the thirteen features exhibiting a Gini index decrease
greater than 50 were identified and used to construct the final random
forest model. The Gini index, obtained from the randomForest package
[23], quantifies feature importance, with a greater decrease indicating a
more significant feature. Following further hyperparameter tuning with the
tuneRF function, the final hyperparameters for the final model were set to
350 trees and 3 variables sampled at each split (Fig. S6C, D). During the
training of random forests, approximately one-third of the cases were
withheld internally according to the bootstrap sampling, serving as out-of-
bag data, which were employed to obtain an unbiased estimation of the
model accuracy and the classification error. To validate the model’s

robustness, expression profiles from multiple independent cohorts were
included: TCGA-LUAD with 585 samples, GSE30219 [24] with 99 samples,
GSE102287 [25] with 66 samples, GSE10072 [26] with 107 samples,
GSE7670 [27] with 66 samples, and GSE19804 [28] with 120 samples.
To assess the performance and comparative effectiveness of our

diagnostic model, we conducted a comprehensive benchmarking analysis
against other available models and scoring systems. These included the
scoring system from Evolutionary Bioinformatics 2019 [29] and models from
Cancers 2022 [30], Translational Cancer Research 2021 [31], and Journal of
Translational Medicine 2021 [32]. The AUC and confusion matrix were
compared to determine the sensitivity, specificity, and overall accuracy.
The diagnostic risk score was calculated using the formula:

risk score ¼ Pðcoefficient ´ normalized expression valueÞ, where the coeffi-
cient represented the weighted percentage of the decreasing Gini index
for each feature. Features upregulated in tumor tissues were assigned
positive coefficients, while features upregulated in normal tissues were
assigned negative coefficients. The specific coefficients for each feature
were as follows: −0.138 for SCGB1A1, 0.128 for IGKC, −0.086 for ADIRF,
−0.083 for SFTPC, −0.081 for FABP5, 0.073 for CD24, −0.069 for SLPI,
−0.066 for CYB5A, −0.066 for TPPP3, −0.065 for FABP4, 0.05 for IGHG4,
−0.048 for FOLR1, and −0.045 for CLDN18, respectively.

Prognostic model construction
To establish a prognostic model, we initially identified the 355 common
features between LUAD markers (both early-stage and advanced-stage
markers in scRNA-Seq data) and the significant features (P-value < 0.01)
derived from survival analyses with the TCGA-LUAD data. The CoxPH
regression model was then employed to ascertain the effects of individual
genes, obtaining corresponding HR (Hazard Ratio) and coefficients. The six
features with HR greater than 1.1 or less than 0.8 were selected to
construct the prognostic model.
The prognostic risk score was assessed as follows:

risk score ¼ Pðcoefficient ´ normalized expression valueÞ, where the coeffi-
cients were derived from the CoxPH regression model, and the expression
values were normalized by dividing them by the mean of the six features.
The specific coefficients were as follows: 0.098 for MRPS11, 0.181 for CD3EAP,
0.123 for EMC6, 0.114 for SIX5, −0.257 for DMD, and −0.288 for STK33.
In TCGA-LUAD data, each sample was assigned a prognostic risk score,

which was subsequently used to evaluate associations with clinical traits,
including differential risk comparisons between different tumor stages and
the pearson correlations related to new tumor events. The prognostic
model’s validity was further evaluated using additional independent
datasets: GSE31210 [33], GSE13213 [34], and GSE72094 [35], which
collectively contain 226, 117, and 442 paired transcriptome profiles and
clinical information of tumor lung tissues, respectively.

Survival analysis
Survival analyses were conducted with the survival [36] package, version
3.2. To categorize samples, cutoff thresholds were established due to the
0.25 and 0.75 quartiles. Accordingly, samples with gene expressions
ranking in the top 25% were designated as the high expression group,
whereas those in the bottom 25% were designated as the low expression
group. This quartile-based approach was similarly applied to risk scores,
where samples falling into the highest 25% were classified as high-risk, and
those in the lowest 25% were classified as low-risk. Survival plots were
generated with the survminer [37] package version 0.4.9.

Cell type identification and TIDE (tumor immune dysfunction
and exclusion)
The immunedeconv [38] package was used to deconvolute cell types and
estimate cellular fractions within bulk RNA-Seq samples. The ESTIMATE [39] was
employed to estimate the total immune and stromal compositions. TIDE
framework was employed to asses the potential for tumor immune escape and
predict responses to immunotherapies. The T cell dysfunction scores and MDSC
(myeloid-derived suppressor cell) scores were obtained from TIDE [40, 41].

Statistical analysis
All statistical analyses were conducted within R [22], version 4.1.0. Mann‒
Whitney test or Student’s t-test was employed for the differential
comparisons between distinct groups. Variance estimation was conducted
with var.test function. Fisher’s exact test was used to compare the
differential IHC staining results. Statistical significance was indicated by a
P-value < 0.05 (***P-value < 0.001, **P-value < 0.01, *P-value < 0.05).
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RESULTS
The landscape of the LUAD tumor microenvironment and
stage-specific marker identification
Using the LUAD (lung adenocarcinoma) scRNA-Seq dataset
GSE131907 [16], we obtained the raw UMI matrix of normal lung
tissues, early-stage and advanced-stage tumor lung tissues. After
filtration, the expression profiles of 83,429 cells were processed using
Seurat [21]. Through clustering and annotation, distinct cell types
were clearly separated on the two-dimensional UMAP space,
including epithelial cells, T lymphocytes, myeloid cells, B lymphocytes,
and others (Fig. 1A). These cell types were distinguished through the
expression of canonical specific markers, as exemplified by the
specific expression of CD3D and CD3E in T lymphocytes (Fig. 1B).

Focusing on the epithelial components, we isolated and
reprocessed the epithelial cells. By performing highly variable
feature selection, scaling, and clustering, cells originating from
samples at different stages could be roughly separated (Fig. 1C).
Using the FindAllMarkers function, we identified the stage-specific
markers of epithelial cells, as exemplified by the top five markers
expressed at each stage (Fig. 1D, Figure S1; Table S1).

Construction of the diagnostic model and evaluations
To construct the diagnostic model, we commenced by ranking the
stage-specific epithelial markers according to the decreasing
differential expression percentages across distinct groups. The top
200 significant markers for each stage were selected and

Fig. 1 The landscape of the LUAD tumor microenvironment. A The UMAP plot demonstrates the major cell types in the LUAD tumor
microenvironment. Different cell types are labeled by different colors. B The expression levels of canonical markers in specific cell types. C The
compositions of the epithelial part in the tumor microenvironment, including normal epithelial cells and early-stage and advanced-stage tumor
epithelial cells. D The stage-specific marker expression in epithelial cells. The color spectrum represents the expression levels of the markers.
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deduplicated, resulting in a curated list of 502 features. Using the
epithelial components in the scRNA-Seq dataset, we normalized
these features in reference to GAPDH and loaded them to train a
preliminary random forest model to distinguish normal and tumor
tissues, achieving an accuracy of 96.7% and an AUC of 0.994. The
top thirty features, defined by the decreasing Gini index that

indicates variable importance, were depicted (Fig. 2A). The
thirteen features with a Gini index decrease greater than 50 were
selected to reconstruct a final diagnostic model. These thirteen
features exhibited distinct expression profiles across samples (Fig.
2B, C, Fig. S2). The final diagnostic model achieved an accuracy of
96.4% and an impressive AUC of 0.993 (Fig. 2D). When applied to
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additional independent cohorts, the model consistently achieved
impressive AUCs, as exemplified by an AUC of 0.988 in the TCGA-
LUAD with 585 samples (Fig. 2E), 0.996 in the GSE30219 [24] with
99 samples (Fig. 2F), 0.990 in the GSE102287 [25] with 66 samples
(Fig. 2G), and three more datasets (Fig. S3A–C). Further bench-
marking with other available models and scoring systems [29–32]
was subsequently conducted. Our final diagnostic model achieved
higher AUCs and accuracies than others across different
independent cohorts (Fig. 2H–K, Fig. S3D). This finding under-
scored the potential of our diagnostic model to efficiently
differentiate between normal and tumor tissues.
The diagnostic risks were further evaluated for samples from

different independent cohorts, revealing that tumor tissues
consistently exhibited significantly higher risk scores compared
to normal adjacent tissues (Fig. 2L–N, Figure S3E–G). To further
investigate this difference, we evaluated the corresponding
cellular compositions and fractions in high- and low-risk samples
using the immunedeconv [38] package. Intriguingly, high-risk
tissues exhibited significantly larger fractions of cancer-associated
fibroblasts (CAFs) (Fig. 2O), which play pivotal roles in carcinogen-
esis [42], promoting immunosuppression [43], and enhancing the
metastatic potential of lung cancer cells [44].

Construction of the prognostic model and validations
With the TCGA-LUAD transcriptome profiles and clinical data,
survival analyses revealed that 3272 features, encompassing both
coding genes and non-coding RNAs, significantly impacted
patients’ overall survival (P-value < 0.05). Among these features,
1427 exhibited even greater significance with P-value < 0.01 (Fig.
3A). The common parts between these 1427 more significant
features and two stage-specific markers of LUAD were identified
as candidates (Fig. 3B, C), which were subsequently combined and
deduplicated, resulting in a refined list of 355 genes. Univariate
Cox regression was employed to evaluate the HR (Hazard Ratio)
values and coefficients of these candidates. Ultimately, six
candidates with an average HR greater than 1.1 or less than 0.8
were selected to construct a prognostic model (Fig. 3D).
The prognostic model’s output variable, the risk score, was

identified as a significant risk factor, with higher risk scores
indicating a worse prognosis and a reduced survival probability in
the TCGA-LUAD data (Fig. 3E, F). Furthermore, we verified the
validity of this model in three additional independent datasets,
including GSE13213 [34], GSE31210 [33], and GSE72094 [35] (Fig.
3G, Fig. S4A–C). Through evaluations of tumor cell types and
compositions using the immunedeconv [38], tumors with high
risks were significantly associated with higher CAF fractions (Fig.
3H), lower endothelial cell fractions (Fig. 3I), and lower CD4+ T cell
fractions (Fig. 3J). Consistently, samples with higher risks exhibited
lower stromal fractions and higher tumor purities (Fig. S4D, E).
These findings collectively underscored the prognostic value of
our model and its potential association with the tumor
microenvironment compositions.

Associations between the prognostic risk and clinical traits
To further evaluate the prognostic model, we explored the
associations between clinical traits and prognostic risks. Consistent

with survival analysis, patients with high risks exhibited signifi-
cantly shorter survival time (Fig. S5A). Additionally, significant
differences in risk scores were observed across different tumor
stages (Fig. 4A). Specifically, tumors at higher stages exhibited
higher risk scores, which are typically associated with metastasis to
nearby tissues or organs. Given the widespread use of the TNM
staging system, with higher stages representing more deteriorat-
ing cancers, we also evaluated its association with prognostic risks.
Our analysis revealed that risk scores differed significantly among
distinct T stages, with higher risk scores associated with larger
tumors or metastasis to nearby tissues (Fig. 4B). Similarly, we found
differential risk scores among N stages, indicating more regional
lymph nodes affected by cancer in high-risk patients (Fig. 4C).
Beyond tumor stages, we also investigated the occurrence of the

prognosis-related new tumor events. Subsequent analysis revealed
the negative correlation between risk scores and time to experience
new tumor events, encompassing recurrent metastasis and new
primary tumors (Fig. 4D). Similarly, we also observed a higher
frequency of relapsed events in high-risk patients in independent
cohorts GSE13213 [34] and GSE31210 [33] (Fig. 4E, F, Fig. S5B).
Intriguingly, higher risk scores were observed in samples with KRAS
or TP53 mutations, with samples harboring double mutations
exhibiting even higher risk scores (Fig. S5C). Considering the report
that STK33, a gene in our prognostic model, functioned in a mutant
KRAS-dependent manner [45], the prognostic model genes may be
potentially regulated by these factors. These findings underscored
the prognostic model’s clinical relevance in LUAD.

Associations between the prognostic risk and therapy
response
We conducted further analysis to evaluate the predictive potential
of the prognostic model for therapy responses. For paclitaxel,
lower risk scores were associated with more favorable responses,
including complete response, partial response, and stable disease
(Fig. 4G). Similarly, for pemetrexed, lower risk scores were
associated with complete response and stable disease (Fig. 4H).
In the context of immunotherapy, through evaluating responses
with TIDE, the non-responders exhibited significantly higher
prognostic risks (Fig. 4I). Consistently, immunotherapy response
scores were positively correlated with prognostic risk scores (Fig.
4J), where higher immunotherapy scores demonstrate a higher
likelihood of immune escape and less potential to benefit from
immunotherapy. Furthermore, both MDSC (myeloid-derived sup-
pressor cell) scores and T cell exclusion scores showed positive
correlations with prognostic risk scores (Fig. 4K, L), where
increasing MDSC and T cell exclusion scores indicate an immune
suppressive status. These analyses collectively underscored the
prognostic model’s utility in predicting therapy responses and its
potential to guide personalized treatment strategies.

Expression validation of the prognostic model genes
To elucidate the protein profiles of the prognostic model genes, we
quantified the immunohistochemistry (IHC) staining results from the
Human Protein Atlas (HPA) database [46–48]. The IHC staining were
categorized into four levels: high, medium, low, and not detected.
Our analysis demonstrated that the MRPS11 protein was

Fig. 2 Diagnostic model construction and corresponding evaluations. A The top thirty features ranked by the decreasing Gini index,
representing variable importance. B, C Expression profiles of the potential candidates with the decreased Gini index greater than 50, as
exemplified by SCGB1A1 (B) and CD24 (C). D ROC curve of the diagnostic model in the training dataset. E–G ROC curve of the diagnostic model
in independent cohorts, including TCGA-LUAD (E), GSE30219 (F), and GSE102287 (G). H−K Benchmarking with other available models and
scoring systems in dataset GSE102287 (H), GSE10072 (I), GSE30219 (J), and GSE7670 (K). The RFmodel stands for our diagnostic model,
EvoBio2019 stands for the scoring system in Evolutionary Bioinformatics 2019 [29], Cancers2022 stands for the model in Cancers 2022 [30],
TCR2021 stands for the model in Translational Cancer Research 2021 [31], and JTM2021 stands for the model in Journal of Translational Medicine
2021 [32]. L–N The risk scores of tumor tissues were significantly higher than those of normal adjacent tissues, as illustrated in independent
cohorts, including TCGA-LUAD (L), GSE102287 (M), and GSE30219 (N). O Tumors from high-risk patients exhibited larger fractions of CAFs
(cancer-associated fibroblasts) than those from low-risk patients. ***P-value < 0.001, by Mann-Whitney test.
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Fig. 3 Prognostic model construction and corresponding evaluations. A Survival analysis illustrated the features significantly affecting
patient survival status. Dots in red represent features with P-value less than 0.01, while dots in blue represent features with P-value less than
0.05. B, C Advanced-stage (B) and early-stage (C) tumor-specific epithelial cell markers were mapped to the features with P-value less than 0.01
derived from survival analysis, indicated by red. D Cox regression analysis illustrated the ranked factors selected for constructing the
prognostic model. E Cox regression analysis illustrated the risk score as a significant risk factor. F Survival analysis illustrated the significantly
lower survival probabilities of the high-risk patients compared to the low-risk patients. G Validations in independent cohorts of the prognostic
model using Cox regression analysis. H–J Tumors from the high-risk patients exhibited larger fractions of CAFs (H), lower fractions of
endothelial cells (I) and CD4+ T cells (J) than those from the low-risk patients. ***P-value < 0.001, *P-value < 0.05, by Mann-Whitney test.
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predominantly detected at high and medium levels in lung cancer
samples, whereas it was not detected in normal alveolar or
endothelial cells (Fig. 5A). Similarly, the CD3EAP protein was primarily
detected in lung cancer samples but not in normal alveolar cells (Fig.
5B). Representative IHC staining results for both MRPS11 and CD3EAP
are presented (Fig. 5C–F). Consistently, both MRPS11 and CD3EAP

exhibited significantly higher expression in lung cancer samples at
the transcriptomic level (Fig. 5G, H), and elevated levels of both
genes were significantly associated with reduced survival probabil-
ities (Fig. 5I, J). These findings provided a molecular basis for the
prognostic value of the model genes and underscored the
importance of these genes in the pathobiology of lung cancer.
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Predictions of the outcome and drug response based on the
prognostic risk model
To illustrate the practical applications of the prognostic risk model,
we assessed its potential to reflect patients’ survival probabilities

and drug responses. By combining the tumor stage information,
the risk score were able to predict patients’ overall survival
probabilities (Fig. 6A). Correspondingly, the calibration curves
confirmed the model’s accuracy in predicting patient outcomes in

Fig. 4 Significant correlations between the prognostic model and clinical traits, therapy responses, as well as immune infiltration.
A Differential prognosis risk score comparisons among different LUAD stages. Higher risk scores indicated larger tumor size and more
metastasis. B, C Differential prognosis risk score comparisons among different pathologic T stages (B) and N stages (C). ***P-value < 0.001, **P-
value < 0.01, *P-value < 0.05, by Mann-Whitney test. D Negative correlations between the prognosis risk scores and time to new tumor events.
E Relapsed tumors were characterized by significantly higher prognosis risk scores in the independent dataset GSE31210. F Negative
correlations between the prognosis risk scores and time to tumor relapse events. G, H Differential prognosis risk score comparisons between
different responses to paclitaxel (G) and pemetrexed (H) treatments. For the treatment responses, complete response, partial response, and
stable disease were classified as “Responses/Controlled”, while clinical progressive disease was classified as “No responses”. **P-value < 0.01,
*P-value < 0.05, by Student’s t-test. I Differential prognosis risk score comparisons between predicted different responses to immunotherapy.
***P-value < 0.001, by Mann-Whitney test. J–L Positive correlations between prognosis risk scores and immunotherapy response (J), MDSC
scores (K), and T-cell exclusion (L).

Fig. 5 Validations of prognosis-related genes. A, B Statistical analysis of MRPS11 (A) and CD3EAP (B) protein IHC staining results.
C, D Representative figures illustrating MRPS11 protein IHC staining in normal lung tissue (C) and tumor lung tissue (D). E, F Representative
figures illustrating CD3EAP protein IHC staining in normal lung tissue (E) and tumor lung tissue (F). G, H Differential expression levels of
MRPS11 (G) and CD3EAP (H) between normal adjacent tissues and LUAD at the transcriptomic level. ***P-value < 0.001, by Mann-Whitney test.
I, J Survival analysis indicated that high expression levels of MRPS11 (I) and CD3EAP (J) significantly affected patient survival probabilities.
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Fig. 6 Practical clinical applications of the prognostic model. A The nomogram to predict patient outcomes according to the prognostic
model. Individual points derived from the risk score and tumor stage were added to predict the outcomes. B–D Calibration curves of 1-year
(B), 3-year (C), and 5-year (D) survival demonstrated the high accuracy of the nomogram. E Cox regression analysis illustrated the HR values of
the risk score and tumor stage. The risk score remained the most significant factor with the highest HR value. F The nomogram to predict
patient responses to paclitaxel or pemetrexed treatments according to the prognostic model. G ROC curve of the nomogram to predict
responses to paclitaxel or pemetrexed treatments.
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comparison to their actual overall survival (Fig. 6B–D). Despite the
inclusion of both risk score and tumor stage to predict survival
probabilities, the risk score remained the most significant factor
with the highest HR values (Fig. 6E), while the tumor stage aided
in the predictions. Furthermore, we presented an additional
nomogram to predict drug responses to pemetrexed or paclitaxel
based on risk scores from the prognostic model (Fig. 6F),
achieving an AUC of 0.881 (Fig. 6G). These results underscored
the prognostic model’s potential as a valuable tool for persona-
lized medicine and predicting outcomes.

DISCUSSION
Lung cancer, particularly lung adenocarcinoma (LUAD), is the
leading cause of cancer-related deaths. Traditional diagnostic
methods for LUAD, including auxiliary imaging and pathological
examinations, are usually accompanied by several limitations, such
as sampling bias, integrity of biopsy, the formation of artifacts,
antibody specificity, and subjective diagnosis based on experience
caused by the inter pathologist variability [7–9]. Considering the
tumor heterogeneity, these limitations could lead to inaccurate
diagnosis. Existing models suffer from limited performance or lack
practical applicability, due to their limited sensitivity or specificity,
validation within the same cohort of samples, and reliance on the
same quantification method.
To address these challenges, we aimed to develop transcrip-

tomic profiling-based diagnostic and prognostic models using
scRNA-Seq data of LUAD, as scRNA-Seq provides deeper insights
into tumor microenvironments at single-cell resolution. By
leveraging scRNA-Seq data, we trained and constructed a
diagnostic model and a prognostic model with high accuracy.
We also evaluated the potential applications of both models,
facilitating their translation to practical applications in clinical
guidance.
During the construction of the diagnostic model with high

sensitivity and specificity, we delineated a stage-specific thirteen-
gene signature. The final diagnostic model achieved an accuracy
of 96.4% and an impressive AUC of 0.993, which was further
validated across additional datasets from different platforms.
Subsequent benchmarking with available models and scoring
systems in independent cohorts further underscored our model’s
exceptional performance. Despite the dependence on lung tissue
biopsies, our model could to some extent aid in the accurate
diagnosis of LUAD, mitigating several limitations in traditional
diagnostic methodologies. While more peripheral blood samples
are available, we would promote the accurate non-invasive and
early detection of lung cancer through the integration of multi-
omics data, including TCR/BCR-Seq.
During the construction of the prognostic model, we identified

the combination of six genes: MRPS11, CD3EAP, EMC6, SIX5, DMD,
and STK33. The functions and potential roles of these genes in
LUAD have not been extensively investigated. MRPS11, as a DNA
damage response gene, was potentially regulated by miR-211 in
ovarian cancer [49], and its high expression level was significantly
correlated with low survival probabilities in uveal melanoma [50].
Knocking down CD3EAP reduced colony formation and inhibited
cell proliferation, sphere formation, and sizes in prostate cancer
[51]. DMD, as a tumor suppressor, played important roles in
myogenic cancers, including inhibiting myogenic sarcoma cell
migration, invasion, and invadopodia formation [52]. Additionally,
knocking down STK33 impaired colony formation in a mutant
KRAS-dependent manner across cancers [45]. These researches
provide support for the potential roles of these prognostic model
genes in evaluating the outcomes of LUAD.
Given that the differential levels of the prognostic model genes

were quantified and confirmed by IHC staining results in normal
and tumor lung tissues, it remains unclear what exact roles they

play in the development of different LUAD stages. Further study
and verification of these critical genes and their functions may
lead to the discovery of novel drug targets for cancer treatment,
which would be a great follow-up study.
For the input of both the diagnostic and the prognostic models,

we incorporated data from both high-throughput sequencing and
microarray platforms. However, for the diagnostic model, the
input could be expression matrices normalized in reference to
GAPDH from various platforms and quantification methods. For
the prognostic model, the input could be expression matrices
normalized in reference to the mean expression of the six genes
from multiple platforms and quantification methods. By standar-
dizing the input in this manner, both models were able to
maintain high accuracy while enabling efficient, rapid, and cost-
effective diagnosis and prognosis.
Overall, we presented a diagnostic model and a prognostic

model with high sensitivity and specificity, and evaluated the
potential clinical applications of both models. Benchmarking in
independent cohorts demonstrated their exceptional perfor-
mance, underscoring their reliability and generalizability. We
believe that this study could contribute to the auxiliary diagnosis
and prognosis of lung adenocarcinoma, including ancillary clinical
guidance, and provide deeper insights for future studies regarding
the functions of pivotal factors involved in the early diagnosis,
prognosis, and therapy responses of lung cancer.

DATA AVAILABILITY
The LUAD scRNA-Seq profiles GSE131907 [16] was obtained from GEO. Expression
profiles and clinical traits of TCGA-LUAD were obtained from the UCSC Xena browser
(https://xenabrowser.net/datapages/). Additionally, microarray datasets GSE7670 [27],
GSE102287 [25], GSE30219 [24], GSE19804 [28], GSE10072 [26], GSE31210 [33],
GSE13213 [34], and GSE72094 [35] were obtained from GEO. The drug responses and
corresponding clinical data were obtained from a previous study [53]. The final
diagnostic model is available from the Github repository (https://github.com/
univerchen/LUAD).
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