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Current uses of artificial intelligence in the analysis of biofluid
markers involved in corneal and ocular surface diseases: a
systematic review
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Corneal and ocular surface diseases (OSDs) carry significant psychosocial and economic burden worldwide. We set out to review
the literature on the application of artificial intelligence (AI) and bioinformatics for analysis of biofluid biomarkers in corneal and
OSDs and evaluate their utility in clinical decision making. MEDLINE, EMBASE, Cochrane and Web of Science were systematically
queried for articles using AI or bioinformatics methodology in corneal and OSDs and examining biofluids from inception to August
2021. In total, 10,264 articles were screened, and 23 articles consisting of 1058 individuals were included. Using various AI/
bioinformatics tools, changes in certain tear film cytokines that are proinflammatory such as increased expression of apolipoprotein,
haptoglobin, annexin 1, S100A8, S100A9, Glutathione S-transferase, and decreased expression of supportive tear film components
such as lipocalin-1, prolactin inducible protein, lysozyme C, lactotransferrin, cystatin S, and mammaglobin-b, proline rich protein,
were found to be correlated with pathogenesis and/or treatment outcomes of dry eye, keratoconus, meibomian gland dysfunction,
and Sjögren’s. Overall, most AI/bioinformatics tools were used to classify biofluids into diseases subgroups, distinguish between
OSD, identify risk factors, or make predictions about treatment response, and/or prognosis. To conclude, AI models such as artificial
neural networks, hierarchical clustering, random forest, etc., in conjunction with proteomic or metabolomic profiling using
bioinformatics tools such as Gene Ontology or Kyoto Encylopedia of Genes and Genomes pathway analysis, were found to inform
biomarker discovery, distinguish between OSDs, help define subgroups with OSDs and make predictions about treatment response
in a clinical setting.
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INTRODUCTION
Ocular surface diseases (OSD) are conditions affecting corneal and
conjunctival structures, tear film characteristics and production,
and adnexal gland functions [1, 2]. OSDs are not only associated
with significant psychological burden and poor self-perceived
health status[3], but also poses a significant economic burden to
the individual and society, such as decreased work productivity,
absenteeism, and costs of physician visits, ocular lubricants,
punctual plugs, and more, reported in the United States [4],
Canada [5], and China [6].
Tear fluid homeostasis is central to providing lubrication and

nutrients to the ocular surface and is composed of various
enzymes, growth hormones, lipids, salts, neuropeptides, mucins
[7], which are produced by lacrimal glands, meibomian glands,
conjunctival goblet cells, corneal epithelial cells, and vascular
sources [8]. The complex protein and metabolite tear film content
facilitates a dynamic, wide ranging, individually tailored response
to infection and other abnormalities affecting the ocular surface.
Tears, which can easily and non-invasively be collected in clinic,
have been used to discover biomarkers for determining disease
aetiology and risk factor, conversion, severity, or prognosis, and

treatment strategy and outcomes, using proteomics [7–9] and
metabolomics [10, 11]. Several studies have made use of
differences in tear proteomes of various OSDs and corneal
diseases such as aqueous deficient dry eye and Meibomian gland
dysfunction (MGD) [12], or keratoconus, pterygium, graft-versus-
host-disease, and controls [7], to identify differentially expressed
proteins and evaluate them as potential biomarkers for diagnosis
and treatment.
Aqueous humour obtained in surgery (e.g. keratoplasty, phakic

intraocular lens implantation) has been found to correlate with
disease progression in keratoconus [13]. For example, abnormal
expression of proteome measured via liquid chromatography with
tandem mass spectrometry (LC-MS/MS) and analysed by hier-
archical clustering, principal component analysis, functional
interaction sub-networks, and Gene ontology (GO) analysis were
implicated in corneal proteolysis, regulation of hypoxia, of
fibrinolysis, response to calcium ions, platelet activation, etc.
(e.g., haemoglobin subunit beta, haptoglobin, Ig kappa chain V-I
region EU) [13].
Generally, artificial intelligence (AI) refers to the capability of

computing systems for pattern recognition, and for reproducing
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human cognitive characteristics (e.g., generalize, and learn from
experience) in large datasets [14]. Machine learning (ML), a type of
AI, can be used to extract generalized principles from data to
make predictions or classifications by applying algorithms and
mathematical modelling based on explicit rules and instructions
about the data [15].
With its impressive power to identify patterns, classify, cluster,

or make predictions from large datasets, AI is well suited to
analyse the massive data output produced by continually
advancing novel analytical technologies such as proteomics and
metabolomics. In proteomics, the data regarding proteins expres-
sion in ocular fluids is analysed using AI and compared against
databases containing large amounts of labelled protein sequence
information [16]. The end result is a proteomic signature or profile
of the fluid, which can not only elucidate molecular mechanisms
of ocular diseases, but also be used to diagnose disease or
monitor the outcome of therapeutics [17–19]. Metabolomics
involves the large-scale study of endogenous and exogenous
metabolites in various tissues as to provide an assessment of the
metabolic phenotype of a certain state of disease, and in
combination with AI/bioinformatics can be used to obtain putative
metabolic pathways and biomarkers associated with disease
mechanisms and treatment strategies at the level of the individual
patient [10, 11, 20]. The combination of these methods has driven
major advancements in precision medicine by allowing examina-
tion of individual variability in disease prognosis and individua-
lized treatment strategies [18, 21]. As such, a growing number of
ophthalmology studies have adopted these methods to analyse
biofluids as biomarkers.
Exploration of biofluids using AI and bioinformatics may offer

insight into pathophysiology, prognosis, and fuel the discovery of
new therapies of OSDs and corneal diseases. Therefore, the
current study aims to systematically review the literature
describing application of AI and bioinformatics-based analyses
using biofluids as biomarkers in OSDs and corneal diseases. The
methodology and findings of eligible studies are summarized and
appraised with a focus on assessing the potential of clinical
implementation of these approaches.

METHODS
Study design and registration
The findings from this systematic review are reported in
accordance with the Preferred Reporting Items for a systematic
Review and Meta-analysis (PRISMA) guidelines [22]. Study protocol
details were prospectively registered on PROSPERO (reg.
CRD42020196749). The current systematic review is focused on
OSDs and corneal diseases and is a part of a series of systematic
reviews on analysis of biofluids using AI for various specific eye
conditions in ophthalmology, which are reported elsewhere.

Search strategy
Systematic searches of the literature were conducted in five
databases including Embase, MEDLINE, Cochrane Central Register
of Controlled Trials, Cochrane Database of Systematic Reviews,
and Web of Science from the time of database inception through
August 11, 2020, with an update of the search strategy performed
on August 1, 2021. A comprehensive set of search terms capturing
three categories including ophthalmology, AI/bioinformatics, and
proteomics/metabolomics/lipidomics terms were used to con-
struct the search strategy (Appendix A). The search was not
restricted by language or study design. Hand-searching of the
reference list of included studies was also performed in order to
identify relevant articles.

Inclusion and exclusion criteria
Studies were included if they referred to intra-ocular or ocular
surface conditions using biofluid marker samples to make AI/

bioinformatic-based predictions about disease aetiology or risk
factors, treatment outcomes or treatment strategies, and diseases
conversion or progression. Samples of biofluids from vitreous,
aqueous, or tear fluid, as well as plasma or ophthalmic biopsies
were deemed eligible. Studies were excluded if they referred
exclusively to paediatric eye diseases, non-human subjects, or
included only post-mortem biofluid samples. Additionally, we
excluded cross-sectional studies that only used the simplest form
of AI (simple regression analysis). Abstracts, reviews, systematic
reviews, meta-analyses, single case reports, editorials (without
adequate study details and data presentation), and any type of
non-peer reviewed article were considered ineligible. Lastly, the
subset of studies that met the inclusion criteria, and referred to
OSDs or corneal diseases were selected for the current review.

Study selection
The titles and abstracts, and then the full texts were indepen-
dently screened by two review authors (DRP, AP) for relevant
articles. Title and abstract screening included any literature that
focused on any OSD and biofluid sampling. At this point, articles
were included even if it was not clear if an AI analysis was
performed. During full-text screening, any articles that did not
meet all our specified inclusion criteria were excluded. If a
consensus for conflicts could not be reached between the two
reviewers, a third reviewer (SK or TF) resolved the conflict.

Data collection and risk of bias assessment
Data extraction of included studies was undertaken by one
reviewer (DRP) using a standardized data abstraction form. To
ensure accuracy and consistency of the extraction process, 10% of
extractions were randomly double-abstracted by a second
independent reviewer (AP or SK). Risk of bias (ROB) and quality
assessment of retrieved studies were performed using the Joanna
Briggs Institute Critical Appraisal Tools (JBI) [23]. For each article,
JBI criteria questions were noted as “yes”, “no”, “unclear”, or “not
applicable.” The assessment was performed by one reviewer (DRP)
and none of the studies were excluded from the review. Studies
that reached up to 49% of questions as “yes” were classified as
high ROB; from 50 to 69% as moderate ROB; and more than 70%
as low ROB [24].

Data synthesis
There was substantial heterogeneity in biofluid types, AI
techniques, and study designs, and consequently a meta-
analysis was not undertaken. Means and standard deviations
(SD) were used to characterize the study sample(s) age(s). The
study characteristics tabulated included study design, location,
type of OSD, sample size, sex ratio, study aim, fluid collection
methods, and a list of biofluids reported. Articles were further
categorized according to OSDs or corneal disease type, statistical
model, AI, or bioinformatics analyses performed. Moreover, the AI/
Bioinformatics methodology purpose was noted.

RESULTS
Study characteristics
The search strategy resulted in 10,264 articles after removal of
duplicates (Fig. 1). Of the 23 articles that were found eligible for
inclusion, 7 were prospective (30%), 16 were cross-sectional (70%),
and one was a randomized controlled trial (Table 1). There was a
global distribution in the country of origin of the included studies
with China (4, 17%) and Spain (3, 13%) being the most common.
There were 1058 individuals included, with 350 individuals with
dry eye, 61 with keratoconus, 43 with pterygium, 179 with
meibomian gland dysfunction (MGD), 59 with graft-versus-host-
disease (GVHD), 51 with Sjogren, 2 with climatic droplet
keratopathy (CDK), 19 with bullous keratopathy, 2 with Fuchs’
endothelial dystrophy, 18 with vernal keratoconjunctivitis (VKC),
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12 with various indications for penetrating keratoplasty, and 237
healthy controls, as well as 5 myopic and 20 diabetic individuals as
comparator groups.
Majority of studies focused on biomarker discovery and

identification of pathophysiology of OSDs (15, 65%), while eight
(35%) assessed treatment outcomes or prognosis, and one
assessed risk factors related to OSD.
The risk of bias (ROB) assessment is presented in Appendix B.

Two studies were found to have a high ROB [9, 11], nine moderate
ROB [7, 13, 25–31], and twelve low ROB [12, 32–41]. The main
areas of bias identified among cross-sectional studies were: criteria
for inclusion in the sample were not clearly defined (n= 5, 31%),
the study subjects and setting was not described in detail (n= 9,
56%), confounding factors were not identified (n= 7, 44%), and
strategies to deal with confounding factors were not stated (n= 9,
56%). Among cohort studies, none of them had participants that
were free of the ocular disease at the start of the study. This
represents a source of bias because if the samples were taken
after an OSD had occurred, it is not possible to definitively
conclude if the biofluids identified are contributory to the OSD
and/or a reflection of the downstream consequences of the OSD.
Future studies involving long-term collection of samples prior to
and following disease onset may provide more definitive evidence
for the associations of biomarkers with OSD pathogenesis.

Biomarkers involved in pathogenesis of dry eye disease
Upregulation of apolipoprotein [26, 27], haptoglobin [26, 27],
annexin 1 [27, 34], Glutathione S-transferase [26, 27, 32, 34], and
downregulation of lipocalin-1 [7, 12, 26, 27, 31, 34], prolactin
inducible protein (PIP) [26, 27, 34], lysozyme C
[7, 26, 27, 31, 33, 34], lactotransferrin [7, 26, 27, 34], cystatin S
[7, 26, 27, 34], and mammaglobin-b [26, 34], proline rich protein
[27, 31] were associated with dry eye pathogenesis. AI analyses
using bioinformatics databases implicated the upregulated
proteins in biological pathways regulating lipid metabolic
processes, oxidation reduction, cytokine production, while the
downregulated proteins were associated with transportation, and

regulation of immune response [7, 12, 26, 27, 34]. A proteomic
study of contributing tear film proteins to the pathogenesis of
diabetic dry eye using weighted correlation network analysis, GO
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis found three differentially expressed proteins
(lysozyme C, zinc-alpha-2-glycoprotein, DNA J homolog subfamily
C member 3) in adults with diabetic dry eye compared to controls,
and one in children (phosphoglycerate kinase 1) with diabetic dry
eye compared to controls [33]. In both adults and children, these
proteins were involved in dysregulation of metabolic pathways
associated with inflammation and immunity such as glycolysis,
pentose phosphate pathway, and proteasomes [33]. In adults, the
expression levels of these proteins significantly correlated with
tear film break-up time, Schirmer I test, and corneal fluorescein
staining.
There were several overlapping biomarkers between MGD

[34, 40], Sjögren’s [30, 42], and dry eye [7, 26, 27, 31, 33, 34],
associated with pathogenesis (e.g., lipocalin-1, lysozyme C,
annexin A1, cystatin S). Additionally, Sjögren’s patients presented
increased expression of TNF-a signalling, B cell survival, proteins
involved in the Krebs cycle, and in oxidative stress in tear fluid
[30], as well as upregulation of elastase, calreticulin, and tripartite
motif-containing protein [42], proteins involved in inflammation
and complement coagulation cascade [42]. A prospective
randomized controlled trial investigating the efficacy of intense
pulsed light (IPL) for MGD using proteomic analysis found that tear
level of interleukin-1 receptor agonist was significantly lower at
3 months compared to baseline in both sham and IPL groups but
there were no differences between the groups [40].

Biomarkers involved in treatment response of dry eye disease
Two articles assessed the role of biofluids in predicting response
to treatments for dry eye, specifically punctual occlusion [32], and
diquafosol tetrasodium or topical cyclosporine A [8]. By using tear
proteomics and clustering analysis of identified proteins (i.e.,
measured at baseline and after 3 weeks), two distinct patient
profiles of treatment response emerged, and each group
presented differentially expressed tear proteins (one beneficial,
one inflammatory). Patients from the group with a beneficial
pattern of protein expression, a reduction in inflammatory
proteins (e.g., S100A9) and an increase in lacrimal proteins
protective of the ocular surface (e.g., lysozyme), also presented a
lower Schirmer score at baseline than the patients from the
inflammatory pattern group [32]. Thereby, allowing clinicians to
identify patients with low scores who may benefit from punctual
occlusion, and potentially change management in those patients
less likely to benefit from this treatment. Another proteomic study
found that that there were treatment specific differences in tear
proteome and associated biological pathways in patients treated
with diquafosol tetrasodium or topical cyclosporine A despite
similar clinical outcomes, with 49 proteins showing an inverse
expression pattern [8].

Biomarkers involved in pathogenesis of keratoconus
Several studies performed proteomic [7, 13, 35] and metabolomic
profiling [11] of biofluids to investigate their role in keratoconus
pathogenesis. However, there was little overlap in discovered
biomarkers. A cross-sectional study of various OSDs, found 8
potential tear biomarkers contributing to keratoconus pathophy-
siology, and which allowed differentiation between keratoconus,
pterygium, and graft-versus-host-disease related dry eye [7].
A proteomic study of aqueous fluid from keratoconus patients

obtained during keratoplasty, identified 16 out of 137 proteins
related to dysregulation of apoptosis, oxidative stress, response to
vitamin D, angiogenesis, as potential markers of pathological
changes in keratoconus [13]. A metabolomic analysis [11] of
contributing metabolites using gas chromatography and mass
spectrometry (GC/MS) and unsupervised hierarchical cluster

Fig. 1 PRISMA flowchart diagram for study identification and
selection. The PRISMA flow diagram for the systematic review
presenting the number of studies included and excluded at each
screening step, and reasons for exclusion.
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analysis identified downregulation of 13 out of 377 metabolites
related to aberrations in energy production, lipid metabolism, and
amino acid metabolism in the corneal buttons of keratoconus
patients compared to those of healthy donors [11].

Biomarkers involved in prognosis or treatment response of
keratoconus
The release of several key inflammatory (interferon gamma, IFN-y;
interleukin-13, IL-13; IL-17A, chemokine C-C motif ligand 5, CCL5;
matrix metalloproteinase, MMP-13; and plasminogen activator
inhibitor 1, PAI-12) factors at one year follow-up were found to
predict keratoconus progression in a group of 42 patients [35].
NGF and IL-13 were found to identify progression with 100%
specificity and 88% sensitivity.

Biomarkers involved in other corneal diseases
Other OSDs investigated were ocular graft-versus-host-disease
[7, 39], and pterygium [7, 29, 37]. Patients with chronic ocular
graft-versus-host-disease experience inflammation and fibrosis of
the ocular surface, in addition to severe ocular dryness [43]. A
proteomic study of 785 proteins using AI tools such as random forest
and penalized logistic regression, and bioinformatics tools such as
GO analysis, found that disease severity of ocular graft-versus-host-
disease in patients after allogenic hematopoietic cell transplantation
(AHCT) could be predicted based on the differential expression of 13
biofluids (i.e., Phosphoglycerate mutase 1, Keratin type I, cytoskeletal
9) [39]. Biochemical pathways highlighted in pathogenesis were
related to complement and coagulation cascades (i.e., Clusterin,
Complement factor B, Complement C3, plasminogen) [7].
A prospective cohort study of endothelial keratoplasty patients

examined the kinetics of their tear profiles over the course of
recovery after transplant using a clustering algorithm (i.e.,
principal component analysis) and found alterations in the level
of expression of eleven tear fluid proteins predictive for recovery
from corneal haze, with the group of patients with no corneal haze
within one month after surgery having significantly lower levels at
the pre-transplant baseline timepoint than the group that did
develop corneal haze [28]. Several inflammatory cytokines were
associated with corneal graft rejection following penetrating
keratoplasty in a group of 12 patients followed for 12 – 14 months
after surgery [36]. Proteomic tear profiling indicated that IL-6 and
IL-8 concentrations were increased in patients with rejection,
while IL-10, TNF-α, and IL-12p70 were decreased compared to
patients with uncomplicated corneal grafts [36].
Climatic droplet keratopathy, a degenerative disease associated

with progressive accumulation of droplets on the cornea, found to
be associated with 105 proteins, mainly related to cell junction
function, glycolysis, focal adhesion, regulation of cytoskeleton,
fibril formation and deposits (e.g., retinal dehydrogenase, alde-
hyde dehydrogenase, desmoplakin, etc.) when its proteome was
analysed with KEGG in a case series [9].

Biomarkers involved in pathogenesis, prognosis and
treatment response of VKC
In a small sample of six VKC patients responsive to treatment with
cyclosporine or corticosteroids proteomic analysis with isobaric
tags for relative and absolute quantification (iTRAQ) technology
showed downregulation of Hemopexin, transferrin, mammaglobin
B, and secretoglobin 1D [41]. These proteins were suggested to be
involved in oxidative stress regulation and inflammatory response
regulation [41]. Additionally, expression of tear albumin and
transferrin was found to be positively correlated with VKC disease
severity, and therefore may be potential biomarkers for disease
diagnosis and monitoring [41].

Applications of AI and bioinformatics
As presented in Table 2, there was prominent heterogeneity in the
use and reporting of AI methodology. Seventeen articles used AI

and/or bioinformatics with classification algorithms, five used
predictive models, and four used both classification algorithms
and predictive models.
Eight articles used a combination of at least two different AI

classes. Most commonly, articles analysed biofluids using conven-
tional AI ML techniques such as (1) clustering analyses, including
hierarchical clustering [11, 13, 32, 42], k-nearest neighbour [13, 34],
nonlinear iterative partial least squares [12], (2) discriminant
analyses [31] including partial least square discriminant analysis
[7], feature extraction by stepwise discriminant analysis [12], (3)
decision tree algorithms including random forest [34, 39], (4)
classification algorithms such as support vector machine, naive
bayes [34], and (5) dimensionality reduction algorithms such as
principal component analysis [11, 28, 38].
Two articles analysed biofluids using deep learning AI [12, 31]. A

prospective case-controlled study of 93 patients aimed at
elucidating differences between the tear proteome profile of
individuals with dry eye, MGD associated dry eye, and healthy
individuals, used a nonlinear iterative partial least squares
algorithm to cluster the proteomic data followed up a multilayer
perceptron neural network predictive model to distinguish
between the three distinct tear proteome profiles. Validation of
the model yielded a 89.3% correct assignment [12].
Similarly, a cross-sectional study of 88 individuals with dry eye

and 71 healthy individuals, used a combination of univariate
regression and multivariate discriminant analysis to identify a
seven-biomarker panel of potential tear biofluids that may
distinguish between the proteomic profile of individuals with
dry eye and healthy individuals. These biomarkers were used to
train a multiple-layer feed-forward network with back-propagation
training algorithm to classify individuals into one of the two
groups. Correct classification was quantified using a receiver
operating characteristic curve (ROC) and area under the ROC
(AUC), which was reported as 0.93, indicating high accuracy [31].
Bioinformatics methodology description largely consisted of the

standard analysis protocol of established software such as GO
analysis with database for annotation, visualization, and inte-
grated discovery (DAVID), KEGG pathway analysis, iTRAQ proteo-
mics with MASCOT engine, or STRING database searches. Overall,
bioinformatic tools were used to classify biofluids into diseases
subgroups [26, 33, 39], distinguish between OSD [7, 34], identify
risk factors[29], or make predictions about treatment response,
and/or prognosis [28, 32, 35, 36, 39].
As presented in Table 2, GO analysis was used by eleven articles,

and KEGG pathway analysis was utilized by five articles. One article
applied a weighted correlation network analysis (WGCNA), a data
mining method, in conjunction with GO analysis and KEGG
pathway analysis to identify key hub genes and proteins
associated with diabetes and dry eye in adults and children. The
GO and KEGG analyses pointed to differentially expressed proteins
involved in various metabolic pathways in the tear proteome of
adults and children with diabetes and dry eye [33]. MASCOT was
used to identify proteins by four articles [12, 13, 26, 41], and
STRING was used to build functional protein association networks
by three articles [8, 27, 30].

DISCUSSION
This is the first systematic review, to our knowledge, to describe
the applications of AI and bioinformatics-based analyses including
proteomics and metabolomics using biofluids as markers in
various types of corneal and ocular surface diseases. The potential
of these technologies to identify candidate biomarkers for
diagnosis or potential drug targets to halt disease progression
was explored. Risk factors were investigated by one cross-
sectional study on pterygium using proteomics in combination
with GO analysis with DAVID and KEGG pathway analysis [29].
However, most studies focused on biomarker discovery and
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identification of biofluids to elucidate aetiology and identify
candidate markers for diagnosis, discriminate between OSDs
[7, 12, 34], and even identify different subgroups within an OSD
[26, 33, 39, 44].
It is increasingly recognized that inflammation of the ocular

surface or cornea, specifically change in tear film cytokines, is
involved in multiple OSDs including dry eye (e.g. increased
expression of apolipoprotein [26, 27], haptoglobin[26, 27], annexin
1 [27, 34], S100A8, S100A9 [32], Glutathione S-transferase
[26, 27, 32, 34], and decreased expression of lipocalin-1
[7, 12, 26, 27, 31, 34], prolactin inducible protein [26, 27, 34],
lysozyme C [7, 26, 27, 31, 33, 34], lactotransferrin [7, 26, 27, 34],
cystatin S [7, 26, 27, 34], and mammaglobin-b [26, 34], proline rich
protein [27, 31], IFN-y [28, 36, 45], TNF-a [28, 36, 45]). Several of
these are differentially expressed in MGD [34, 40], and Sjögren’s
[30, 42] (e.g. lipocalin-1, lysozyme C, annexin A1, cystatin S), as well
as keratoconus (e.g. proline rich protein). The biological function
of these proteins explains the overlapping pathophysiology, as
lactotransferrin and lysozyme have antibacterial properties and
support the epithelium [1], while S100A8 and S100A9 are
proinflammatory [32], and proline rich protein may be involved
in androgen mediated lipolysis [45].
There is a clear need for advancements to the stage of direct

clinical applications such as treatment response prediction or
monitoring. Several studies have emphasized that tear protein
profiling has the potential to provide a diagnostic signature for
various OSDs and corneal diseases, specifically the tear film can
differentiate between OSDs [7, 12, 46], and also provide measures
of disease severity, as well as treatment effectiveness, and thereby
be useful for longitudinal monitoring [28, 35, 39].
For example, in a longitudinal study of dry eye patients,

hierarchical clustering revealed distinct patient profiles based on
clusters of tear protein expression after 3 weeks of punctual
occlusion [32]. In cluster 1 (i.e., beneficial response) patients
(n= 10) showed increased expression of proteins protective of the
ocular surface (e.g., prolactin-inducible protein, lactoferrin) and
decreased expression of pro-inflammatory proteins (e.g., alpha
enolase 1), while in cluster 2 (nonresponse), patients (n= 13), the
opposite trends were observed [32]. These patient profiles
correlated with baseline Schirmer scores and may be used in
clinic by ophthalmologists to identify patients most at benefit
from punctal plugs (i.e., low Schirmer score).
Proteomic analyses in combination with AI, may provide

objective tests for evaluating treatment effectiveness for OSDs.
For example, a pilot study on dry eye patients used proteomics
with GO with DAVID, KEGG and functional annotation clustering,
and protein-network analysis to identify 54 and 106 differential
expressed biomarkers indicative of disease severity and treatment
effectiveness of CsA or DQS, respectively, at 4 weeks [8]. While
both treatments were found to be equally effective, tear protein
expression profiles indicated distinct regulatory patterns with CsA
treated tears showing upregulation of wound healing, endopepti-
dase activity, and protein metabolism pathways, and DQs showing
upregulation of proteins involved in regulation of stress response,
tissue homeostasis, and defence response [8]. Following validation
in larger samples, expression levels of proteins such as phospho-
lipase A2 group IIA, which was upregulated 2.1-fold pre-treatment
in dry eye compared to control and downregulated to 0.58- and
0.78-fold after treatment with CsA and DQS, may be used as
metrics indicative of treatment effectiveness with topical agents
[8].
This systematic review highlighted several limitations and

challenges associated with the included studies. Importantly, the
quality and robustness of the AI and bioinformatics-based biofluid
analyses is highly dependent on the selection of ML algorithm and
the preprocessing of the data. Clustering algorithms, such as
hierarchical clustering, an unsupervised ML technique, and
k-nearest neighbour, a supervised technique, are useful for

identifying subgroups on the basis of similarities between
proteomic profiles [11, 13, 32, 34, 42]. Major disadvantages are
related to data preprocessing, as clustering algorithms are
sensitive to missing values, outliers, data transformation (i.e., to
logarithmic scale), and selection of cluster size[47]. Although these
parameters directly affect clustering results, we found that they
were not consistently described, and consequently may introduce
error, reduce reproducibility, and limit validation. These clustering
algorithms are less accurate at datasets with more than 400
features (i.e., input variables)[47]. However, this disadvantage can
be mitigated by projecting a large number of proteins or
metabolites onto a smaller number of features, a procedure
known as dimensionality reduction [47]. The main advantage of
classifiers such as principal component analysis, random forest
algorithm, partial least squares, and support vector machine in
biofluid analyses with large datasets of biomarkers is that
dimensionality reduction can remove irrelevant features, reduce
noise or extraneous variables, and can account for highly
correlated variables [47]. The major disadvantage of dimension-
ality reduction is that it generally requires the selection of a subset
of guiding features, a step with a variable level of subjectivity.
Relevant data can erroneously be labelled as noise, and this can
lead to the loss of important data [47]. The deep learning
algorithm, multi-layer perceptron neural network, was implemen-
ted as a “black-box model” by two articles in this review, meaning
that its different layers and complex architecture was not
described in sufficient detail to allow the reader to map the
process from variable input to prediction [12, 31]. Therefore,
despite advantages such as better handling of highly dimensional
data, complex (non-linear) associations, noise, and incomplete or
missing values, the interpretation and generalizability of the
results are limited [48].
Small sample sizes and large datasets of proteins increase the

likelihood of finding spurious associations due to the inter-day
and inter-individual variability of normal tears [49]. Moreover, the
reporting of large proteomic data, up to 2,733 proteins, is
challenging considering reporting limits set by various scientific
journals, four articles in the current review only reported them in
figure format, one only reported significant proteins, and two did
not report the full list of measured proteins at all. Online
repositories (e.g. The Global Proteome Machine Database,
PeptideAtlas, etc.) could be used for data mining in future studies
[50]. Other limitations of bioinformatics-based analyses of biofluid
data relate to the annotation databases (e.g., GO and KEGG) used
to perform the ontological analysis necessary to map the function
of input proteins and construct protein-protein interaction
networks using clustering, classification, and significance analyses.
These databases are manually curated by researchers and may be
incomplete, imprecise, variability in the identifiers used by various
research groups, and be impacted by annotation bias (i.e., well-
studied biological processes are more represented) [51].
The multifactorial pathogenesis of OSDs and corneal diseases,

the overlap of symptoms, and lack of concordance between
clinical parameters and symptoms reported by patients [34],
present a challenge to the identification of unique biomarkers for
discriminating between pathologies, or monitoring treatment
response. The challenge is not only compounded by small sample
sizes, but also lack of healthy controls, and technical variability
associated with proteomic and metabolomic studies (e.g., tear
collection methods, sample preparation, pre-processing steps for
mass spectrometry, lack of reporting of all investigated proteins).
We found that most studies used Schirmer strips (n= 12, 52%) or
micropipette/glass capillaries (n= 5, 22%) as collection methods.
Generally, both collection methods, Schirmer test and capillary,
are reported to produced similar results [31, 52]. However,
Schirmer test was found to allow for better discrimination
between dry eye and healthy samples [31, 34]. Only a handful
of studies implemented a statistical validation process of the
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discovered proteins, with the goal of using the area under the
curve (AUC) from multivariate receiver operating characteristic
(ROC) analyses to calculate specificity and sensitivity, and estimate
the clinical applicability of candidate biofluids [12, 42, 53].
Validation on large samples is crucial particularly considering the
lack of a priori hypotheses or pre-selection of a panel of
biomarkers characteristic of many proteomic and metabolomic
studies, as well as the physiologic heterogeneity of OSD. Without
this step, both the generalizability and the predictive specificity of
candidate biomarkers remains limited. For example, dysregulation
of several candidate biomarkers for pathogenesis in dry eye were
also found in MGD (e.g., lipoprotein-1, lysozyme C, lactotransferrin)
[7, 26, 31, 34], VKC (e.g. lactotransferrin) [41] or in pterygium and
climatic droplet keratopathy (e.g., alcohol dehydrogenase)
[9, 26, 37].
The combination of biofluids and imaging metrics obtained

from optical coherence tomography (OCT), and analysed using AI,
may compound the clinical predictive value of these techniques
[54]. For example, wide corneal epithelial mapping using OCT in
dry eye analysed with random forest AI, showed that superior
intermediate epithelial thickness in dry eye compared to controls,
was a promising marker for diagnosing dry eye (sensitivity 86.4%,
specificity 91.7%) [54]. Introducing biofluids as covariates in these
types of analyses would increase the robustness and validity of
these analyses and bring them to clinical standards.
This systematic review appraised the use of AI or bioinformatics

tools to analyse biofluid markers in OSDs and corneal disease.
These tools implicated various tear film proteins in biological
pathways regulating lipid metabolomic processes, oxidative stress
regulation, cytokine production, vesicular transportation, and
regulation of the immune response. Several studies have
suggested that tear protein profiling has the potential of
providing a diagnostic signature for various OSDs, may be used
to identify patients most at benefit from treatments, or provide
indications for treatment effectiveness and be useful for long-
itudinal monitoring.
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