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BACKGROUND: Body image scanners are used in industry and research to reliably provide a wealth of anthropometric
measurements within seconds. The demonstrated utility of the scanners drives the current proliferation of more commercially
available devices that rely on their own reference body sites and proprietary algorithms to output anthropometric measurements.
Since each scanner relies on its own algorithms, measurements obtained from different scanners cannot directly be combined or
compared.
OBJECTIVES: To develop mathematical models that translate anthropometric measurements between the three popular
commercially available scanners.
METHODS: A unique database that contained 3D scanner measurements in the same individuals from three different scanners
(Styku, Human Solutions, and Fit3D) was used to develop linear regression models that translate anthropometric measurements
between each scanner. A limits of agreement analysis was performed between Fit3D and Styku against Human Solutions
measurements and the coefficient of determination, bias, and 95% confidence interval were calculated. The models were then
applied to normalized scanner data from four different studies to compare the results of a k-means cluster analysis between
studies. A scree plot was used to determine the optimal number of clusters derived from each study.
RESULTS: Correlations ranged between R2= 0.63 (Styku and Human Solutions mid-thigh circumference) to R2= 0.97 (Human
Solutions and Fit3D neck circumference). In general, Fit3D had better agreement with Human Solutions compared to Styku. The
widest disagreement was found in chest circumference (Fit3D (bias= 2.30, 95% CI= [−3.83, 8.43]) and Styku (bias=−5.60, 95%
CI= [−10.98, −0.22]). The optimal number of body shape clusters in each of the four studies was consistently 5.
CONCLUSIONS: The newly developed models that translate measurements between the scanners Styku and Fit3D to predict
Human Solutions measurements make it possible to standardize data between scanners allowing for data pooling and comparison.
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INTRODUCTION
Digital anthropometry obtained from 3D body scanners has
revolutionized clothing sizing [1] and body shape tracking in
the fitness industry [2]. Within seconds, the scanners obtain
hundreds of anthropometric measurements, reducing the
burden entailed during manual collections of measurements
and providing new scientific insights. Recently, 3D body image
scanners were used to predict injuries in Army basic training [3],
classify body shape with body composition [4, 5], and estimate
risk for metabolic disease [6].
In response to the utility of 3D body image scanners, several

different scanner brands offer themselves commercially [7],
however, the measurements by scanner can differ. For example,
each individual scanner uses different proprietary algorithms with
reference points on the body that define where and how to obtain

measurements. For this reason, scanners of different brands may
output multiple different measurements for the same individual’s
body site.
Unfortunately, institutions using different scanners can

prohibit pooling data or comparing across datasets when
required. For example, recently, the US Army used the Fit3D
scanner evaluate body composition and physical fitness [8]. A
similar study was conducted at the United States Military
Academy in 2020, but using the Styku scanner [9]. In addition,
two other US military sites, Fort Jackson, and Lackland Air Force
Base, obtained measurements for uniform sizing using the
Human Solutions scanner [9]. The study at the United States
Military Academy identified five archetype body shapes through
a cluster analysis and linked these shapes to performance.
However, the sample size was small and the population at the
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United States Military Academy is not representative of the
larger Army. Addressing this question with a larger more diverse
military population by pooling the data from the Fit3D study or
the latent data from Fort Jackson and Lackland Air Force Base
was not possible since the scanners used were different.
Here, we build upon initial work [7] that used an earlier

version of a unique dataset that contains digital anthropometry
measurements from 109 participants captured with three
commercially available 3D scanners to develop models that
convert measurements from one scanner to another. The
original dataset in [7] has increased since publication from
N= 35 to N= 109 and the larger dataset provides additional
data to develop the models required to translate measurements
from one scanner to another.

METHODS
Study design
This study evaluated whether circumference measurements
obtained at similar sites (for example the neck) but from different
3D body scanners are correlated. We achieved this methodologi-
cally through two steps.

Step 1. We first used a dataset that contained measurements of
the same participants using three of the most popular commer-
cially available scanners to develop models that convert anthro-
pometric measurements from one scanner’s scale to another. For
example, all three scanners output a neck circumference
measurement, however, the three measurements between
scanners did not provide the same values for the measurement.
Each scanner used proprietary algorithms to identify reference
locations that define how and where to measure the neck
circumference. In this example, we developed a model that
translates all three neck circumferences to one standardized neck
circumference measurement.

Step 2. The standardized measurements allowed us to compare
findings across datasets. To illustrate the utility of body scanner
standardization, we first tested it on several smaller and larger
sized datasets. In an earlier study (N= 239) (13), researchers
used 13 anthropometric measurements obtained with the Styku
device in a k-means clustering algorithm to identify five distinct
clusters within the data. However, the literature (16) suggests
that a larger sample size would yield even more clusters. To test
whether larger sample sized data will result in additional
clusters, we leveraged two larger datasets of anthropometric
measurements obtained using Human Solutions. We standar-
dized the smaller Styku datasets to Human Solutions measure-
ment and then quantified the number of body shapes that
resulted from applying a clustering algorithm to the data as
sample size increased.

3D scanning devices
Common to all 3D scanners mentioned below, participants must
wear form fitting clothing, so the scanner does not confuse the
body’s reference points with loose clothing folds. This standard
practice negates operator impact on measurements.

Styku. The Styku scanner (Model S100) serves as a portable 3D
body scanner designed for use in a variety of industries including
fitness, sport, medicine, and physical therapy. The device
consists of a circular pedestal (60 cm diameter) and a cylindrical
post (25.4 cm diameter), which contains several cameras that
perform the 3D body scan. Before scanning, the pedestal rests
63.5 cm away from the 117 cm tall post. Participants stand on the
pedestal with their feet shoulder-width apart, arms extended
away from the body, and hands balled into fists. When the scan
begins, the pedestal rotates and the cameras in the post start

creating the 3D image. Styku scans take 35 seconds to complete
with a measurement precision of 5 mm. The Styku scanner
advertises as lightweight and portable.

Human solutions. The Human Solutions scanner (Vitus smart
XXL) proceeds from the German company Vitronic. Vitronic
markets 3D scanners for clothing, 3D figure creation, and
performance diagnostics. The Smart XXL scanner consists of four
pods, each containing a separate scanner. Human Solutions
scans take 12 s to complete. Both the U.S. Army and the U.S. Air
Force utilize the Vitus smart XXL for uniform sizing at initial entry
training [3, 9].

Fit3D. Fit3D, Inc., an American company, produces the Fit3D
ProScanner [10]. The company markets the scanner for the fitness
industry. The ProScanner consists of a camera tower (180.34 cm
height), turntable, and handles. An interactive touchscreen
integrates on the camera tower assembly providing an interface
for users to interact with the system. The first measurement
captures a user’s weight using the turntable’s built-in scale. After
recording weight, users grab both handles and make an “A-frame
pose” with straight arms and legs. The turntable spins 360-degrees
to generate a 3D avatar, adding it to the user’s profile. The entire
scan, including weight measurement, takes less than 3min to
complete. Users can disassemble and move the ProScanner as
desired.

Study data
Data used to standardize 3D body shape measurements
Pennington Biomedical Research Center Study: The reference
data used for this study originated from the Pennington
Biomedical Research Center (PBRC) with collection occurring
between January 2014 and December 2015 (Clinical Trial:
NCT02118675) to compare body composition measured by
bioelectrical impedance analysis (BIA), dual-energy x-ray absorp-
tiometry (DXA), air displacement plethysmography, manual and
3D scanner measured body circumferences, as well as percent
body fat derived from ultrasound measured tissue thickness.
Details of the original study are published elsewhere [11]. The
PBRC study compiled anthropometry measured using four
different commercially available 3D scanners along with manually
measurements. We restricted our analysis to three of the 3D body
scanner measurements: Styku, Human Solutions, and Fit3D. We
chose these scanners due to their similar marketing, wide
availability, and our access to additional datasets with measure-
ments from each. One hundred and fifty participants received
scans from the three devices, specifically the Human Solutions,
Styku and Fit3D devices. The PBRC study existed as the only
known dataset that provides body circumference measurements
from all three 3D scanners in the same participants. All
participants provided informed consent and the study protocol
received review and approval from the PBRC Institutional Review
Board (#12021).

Data used to classify body shapes
University of Hawai’i: The University of Hawaii Cancer Center
(UHCC) in Honolulu, HI formed this dataset as part of the Shape
Up! study conducted in conjunction with PBRC, University of
California at San Francisco, and the University of Washington
[12]. Shape Up! enrolled a diverse population with equal
numbers in BMI classification groups, age, and gender. The
original study focused on using 2D and 3D images to predict
body composition. The Shape Up! study used a Styku device to
scan a total of 527 participants. We used the Styku measured
circumferences in our analysis after transferring the data to a
standard scale to classify total number of distinct body shapes
identified through clustering.
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Approval for this study’s protocol authorized from three
separate IRBs (PBRC, IRB study no. 2017–10, FWA no. 00006218;
UH ORC, CHS no. 24282; and UCSF, IRB no. 16-20,197).

Lackland Air Force Base: Lackland Air Force Base just outside of
San Antonio, TX, is the only site for the U.S. Air Force’s initial
recruit entry training. Between February 2011 and November
2016, 64,000 Air Force recruits were scanned for uniform sizing
at Lackland using the Human Solutions’ Vitus smart XXL scanner.
Trained cadre supervised participants during the scan, correct-
ing any protocol violations (i.e., incorrect pose, not removing
loose clothing, etc.) before the scan executed. This element of
control greatly reduced the number of measurement errors and
allowed the Lackland dataset to serve as a baseline of
comparison for other Human Solutions datasets [3, 9, 13]. The
large sized Lackland dataset was used to determine the ceiling
for the number of identifiable body shapes. The United States
Military Academy Institutional Review Board (#18-020) deter-
mined this study’s protocol as not constituting human subjects’
research.

West point: The United States Military Academy at West Point,
NY used Styku scanner measurements in a study designed to
determine the relationship between body shape and performance
on the new Army Combat Fitness Test (ACFT) [9]. A total of 239
cadets were scanned between February and March 2021 using the
Styku S100 scanner. The anthropometric measurements repre-
sented a small cohort of relatively homogeneous individuals (ages
17–27 and determined physically fit for admission and retention at
the United States Military Academy). The original study received
approval from the USMA Institutional Review Board (Number
CA20-009) with written informed consent obtained from all study
participants.

Fort Jackson: Fort Jackson, SC serves as the largest of the four
U.S. Army posts that conduct basic combat training (BCT). The
Human Solutions Vitus smart XXL scanner measurements supplied
for this study originally were used to determine uniform sizing.
Between February and October 2017, 17,680 recruits were
scanned using Human Solutions [3]. The United States Military

Academy Institutional Review Board (#18-020) determined that
accessing this data for analysis did not constitute human subjects
research.
Table 1 summarizes by sex, the age, height, and BMI of the

participants across all studies used for the different analyses in this
study.

Data pre-processing
Data pre-processing involved several key steps. The detailed
workflow is demonstrated below in steps and summarized with a
flowchart in Fig. 1.

Step 1: Synthesized observations scanned by all three scanners.
Since we sought to develop a model that translates similar
measurements across the three scanners, each observation
needed corresponding measurements from the two other
scanners. The Styku dataset contained 109 complete observations,
while the Human Solutions and Fit3D datasets contained 107 and
108 complete observations, respectively. Therefore, retaining
observations of complete shared measurements resulted in a
synthesized dataset of 107 records.

Step 2: Identified the visually closest body site measurements across
all three scanners. Two of the scanners, Human Solutions and
Fit3D, offered multiple measurements that could visually repre-
sent a single measurement on Styku. Thus, to compile a dataset of
similar measurements across the three scanners, we first
determined which measurements all three scanners share. Since
the Styku S100 returned the fewest number of measurements, it
limited us to 13 common body circumferences sites (see Fig. 2).
Using these 13 sites, we visually compared potential analogous
body sites on Human Solutions and Fit3D avatars that offer
corresponding measurements.
Forearm, narrowest part of the waist, and mid-thigh circum-

ferences were available in the Fort Jackson dataset, however, the
Lackland Human Solutions machine was an earlier version and
did not include these measurements. To estimate the forearm
circumference in the Lackland dataset, we used Fort Jackson
data to calculate a “forearm factor” by first averaging the lower
and upper bicep circumference (which exists in both datasets) to
arrive at a bicep circumference and then calculate the ratio of
the average of bicep circumference and the forearm circumfer-
ence resulting in 1.15. The Fort Jackson calculated forearm factor
times the Lackland average of lower and upper bicep
circumference was used to arrive at a forearm estimate for the
Lackland dataset. Similarly, the narrowest part of the waist
circumference factor was developed by using the ratio of the
average of the waist circumference at the abdomen (available in
both datasets) and the average of the circumference at the
narrowest part of the waist, which came out to 1.06. The
narrowest part of the waist circumference was estimated in the
Lackland data by multiplying 1.06 to the abdominal waist
circumference. Finally, a mid-thigh factor was calculated from
the Fort Jackson data by first calculating the average of the
upper and lower thigh circumference (available in both datasets)
and then taking the ratio of this average over the entire Fort
Jackson dataset with the average of the mid-thigh circumfer-
ence. This came out to 0.96. The Lackland mid-thigh circumfer-
ence for each observation was then estimated as 0.96 times the
average of the upper and lower thigh circumference.
We next regressed the Human Solutions measurements

against Fit3D and Styku measurements. We recorded as best
match the measurements from the Human Solutions and Fit3D
that yielded the highest R2 when regressed against the Styku
measurements.

Step 3: Removed outliers. Scanner measurements are sensitive to
participant positioning [3, 9]. Any slight movement or poor

Table 1. Participant characteristics by study.

Study Name Lackland AFB Hawaii West Point

N Male (%) 23,998 (98.0%) 230 (43.6%) 156 (65.3%)

Female (%) 484 (2.0%) 297 (56.4%) 83 (34.7%)

Height (M) 175.03 ± 6.56 175.57 ± 7.89 179.44 ± 7.86

(cm) (F) 163.30 ± 6.77 161.54 ± 6.61 166.32 ± 6.68

BMI (M) N/A 27.86 ± 6.14 25.32 ± 2.99

(kg/m2) (F) 27.27 ± 7.77 22.36 ± 2.22

Age (M) N/A 45.03 ± 16.62 N/A

(F) 47.23 ± 16.35

Study Name Fort Jackson PBRC

N Male (%) 14,080 (74.4%) 42 (38.5%)

Female (%) 4832 (25.6%) 67 (61.5%)

Height (M) 175.88 ± 6.97 177.97 ± 6.76

(cm) (F) 163.63 ± 6.63 163.40 ± 5.56

BMI (M) N/A 26.70 ± 5.83

(kg/m2) (F) 23.28 ± 4.32

Age (M) N/A 36.79 ± 13.51

(F) 38.27 ± 11.87

Summaries are presented in mean ± SD.
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positioning by a participant can render an implausible measure-
ment which visually appears as an outlier. We quantified an
outlier as any measurement at a body site two standard
deviations away from the scanner measurements mean. Other
studies have found such deviations were associated with invalid
scans due to incorrect positioning by participants in the scanner
[3, 9]. For all 13 anthropometric circumference sites, any data
point outside this range resulted in removing the data point
from the set. Before this step, the dataset contained 107
complete observations (13 measurements, 3 scanners, 107
observations). Using the method described above, we elimi-
nated site specific values identified as outliers, with the
remaining measurements detailed in Table 2.

Statistical methods
Regression models. Using Microsoft Excel, we developed a linear
regression equation using explanatory variables from Fit3D or
Styku measurements to the corresponding measurement in
Human Solutions (Microsoft Excel O365, Seattle WA). Additionally,
limits of agreement (Bland Altman [14]) analysis was performed
and the bias and the 95% confidence interval were calculated.

Cluster analysis
Databases consisting of Styku measurements (West Point and
Hawai’i) were converted to Human Solutions measurements using
the developed regression models. We used these transformed
datasets to compare variability through a k-means cluster analysis.

Fig. 1 Data preprocessing flowchart: symmetric body parts such as left and right bicep circumferences averaged. In pairwise midline
comparisons, records with missing scanner data from an individual machine were eliminated. Outliers defined as measurements outside of 2
standard deviations from the mean.

N. Ashby et al.

875

European Journal of Clinical Nutrition (2023) 77:872 – 880



The k-means clustering algorithm [15] was performed with cluster
numbers ranging from 2 to 19. A scree plot [15] was generated for
each cluster analysis with the sum squared distance plotted on the y-
axis and the number of clusters, k, plotted on the x-axis. The number
of optimal clusters that describe the variance in the data was
calculated as the number of clusters at the elbow of the scree plot.
The four datasets were pooled, and the cluster centroids

(average value for each body scanner measurement) were
calculated. A heat map was generated to visually display the
degree of how much measurements in each clusters differ.

RESULTS
Linear regression conversion models
The number of complete observations applied for each
regression model varied by body site and ranged from 94
observations to 100. Using each of the 13 anthropometric
measurements as independent variables for each scanner
yielded 39 regression equations. The equations appear in
Table 2 along with the limits of agreement analysis (bias and
95% confidence interval). The weakest correlation between the
Human Solutions and Styku occurred at the mid-thigh
circumference site with an R2 of 0.63. The strongest correlation
between the Human Solutions and Fit3D occurred at the neck
circumference site with an R2 of 0.97. In general, Fit3D had
better agreement with Human Solutions compared to Styku.
The widest disagreement for both Fit3D and Styku occurred at
the chest circumference measurement site. Compared to
Human Solutions, Fit3D underestimated chest circumference
(bias= 2.30, 95% CI= [−3.83, 8.43]) and Styku overestimated
chest circumference (bias=−5.60, 95% CI= [−10.98, −0.22]).

Variability in body shapes detected through clustering
Figure 3 are scree plots describing the variability (y-axis) as cluster
numbers increase (x-axis). The top left inset revealed the scree plot
for the Hawai’i data, the top right showed the scree plot for the
West Point data. The bottom left inset is the scree plot for the
Lackland dataset and the bottom right is the scree plot for the Fort

Jackson data. The “elbow” for all scree plots occurred at
approximately k= 5.
Although Fig. 1 in the Supplementary Materials shows that

the elbow of the scree plot for the pooled data occurs around 5
clusters, we retained 6 clusters for inspection. Table 3 depicts
the centroids of each measurement by cluster. The cluster
labeled “D” consisted of individuals with substantially higher
circumference measurements. For example, chest circumfer-
ence was nearly double of all other clusters and mid-thigh
circumference was approximately three times higher than the
mid-thigh circumference means in the other clusters. Therefore,
we did not include Cluster Number 4 in the heat map. Figure 4
depicts a heat map demonstrating how many standard
deviations away each measurement value was from the mean
of the remaining 5 clusters.
From the heat map (Fig. 4), Cluster 1 included taller males that

had circumference measurements close to the overall averages.
Cluster 2 consisted of tall males that had circumference
measurements that were larger than average. Cluster 3 was 50%
female and had smaller circumference measurements compared
to the overall means. Cluster 5 were males that had measurements
close to the mean.

DISCUSSION
In this study, we address the problem of combining and
comparing data from popular commercially available 3D body
scanners. There is a need to combine data to generate larger
datasets or to compare across datasets that used different
scanners. We demonstrate one example where 5 different clusters
of body shapes were identified in a smaller restricted population
of military cadets at the United States Military Academy at West
Point. We needed to know if our findings generalize to a larger
military population, however, in this smaller dataset, we are
unable to extrapolate whether all US military personnel can be
classified by 5 body shapes. Body scanner data existed, but
unfortunately these measurements were not obtained using the
same scanner. After developing regression models that translate

Fig. 2 An image of a Styku scanned avatar (on right) and circumferences that are output from the Styku scan device software. Once left
and right circumference measurements were averaged a total of 13 measurements are available for analysis.

N. Ashby et al.

876

European Journal of Clinical Nutrition (2023) 77:872 – 880



measurements from one scanner to another, we were able to re-
run the analysis and answer this question in a larger database. The
models presented here generalize to other applications that used
different scanners and can be used to pool or compare across
other datasets. The set of models presented in our study allows,
for the first time, the combination of three scanner measurements
after translating Fit3D and Styku measurements to Human
Solutions standards.
Our study has several strengths. We maintain access to the only

known dataset that contains simultaneous measurements with all
three scanners in the same participants. Due to scanner expense
and participant burden required for scanning and measuring
multiple times, such a dataset proves rare and possibly unique. We
also utilize to two smaller datasets of measurements obtained
with Styku and two large datasets of Human Solutions scans
obtained by the US Army at Fort Jackson and the US Air Force at
Lackland. After standardizing all scanner data using the developed
models, we compare findings across the datasets to classify
archetype body shapes as a function of sample size.
Our study also has several limitations. First, including Styku

distilled the feasible set of shared measurement sites to only 13,
despite the wealth of numerous measurements output from
Human Solutions and Fit3D. Second, the dataset used to translate
measurements across the scanners arose from the PBRC study and
had a small sample size. Despite these current limitations, our
developed models offer the ability to extend into pooled data
from other studies that do not suffer from the body composition
restriction.

Why were only five clusters detected?
We expected to observe more clusters as the sample size
increased. Löffler-Wirth et al. [16] found that increasing sample
size resulted in approximately 15 clusters detected. The authors
demonstrated the number of clusters increased with sample
size and stabilized around 8000 participants. Our findings did
not match those of Löffler-Wirth et al. [16] as we detected only
5 clusters even in the Lackland dataset which had over 24,482
observations. This mismatch possibly occurred since the larger
datasets we applied consisted of a relatively homogenous
population (i.e., military service members who must meet the
body composition restrictions). Additionally, in the pooled
cluster analysis, all the clusters except one were predominately
male. While the Hawai’i dataset did not suffer from the same
homogenous composition, the sample size consisted of only
527 participants. Of these participants, 131 formed a cluster
that had substantially larger body circumferences in compar-
ison to the others. The Hawai’i dataset matched the number of
clusters detected by Löffler-Wirth et al. [16] at similar sample
size. This observation suggests that with a more variable
population, we would have had identified more archetype body
shapes.

Pre-existing archetype body shapes from routinely collected
anthropometry
Based on routinely collected circumferences (e.g. waist circum-
ference and hip circumference), geometrical body shape
characterizations have been classified. For example, when waist
to hip ratio is 0.75 females are classified as pear shaped versus
0.82 where they are classified as apple shaped [17]. It has been
well documented that apple shaped body types are at
increased risk for metabolic and cardiovascular disease com-
pared to pear shaped body types [18]. Combinations of these
routinely collected anthropometric measurements have been
developed into new indices to help classify shape and assess
health and mortality risk [19]. However, these historical shape
indices and classifications are restricted by the limited number
of anthropometric measurements that are feasible to collect in
a large sample.
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Three-dimensional body shape scanners eliminate this restric-
tion and reduce manual labor by capturing anywhere from
dozens to hundreds of body site measurements within seconds.
As we have demonstrated here, the high number of site
measurements and the volume of scanned participants permits
unsupervised machine learning through a cluster analysis. As
opposed to defining thresholds that classify archetype shapes a
priori, such as apple and pear shapes, clustering algorithms
generate archetype body shapes derived from the data. For
example, our study found 5 archetype body shapes that arose
organically from the data. The newly identified archetype body
shapes can then be used to predict outcomes of specific interest

such as pairing two datasets that used the same scanner [20],
predicting debilitating injuries [3], and tracking body shape
changes over the lifespan [21]. Such diverse and important
applications that rely on 3D body shape anthropometry advance
the original work that link lower numbers of archetype body
shapes to metabolic and cardiovascular health outcomes [18].

CONCLUSIONS
Data obtained from different 3D body image scanners can be
combined and compared after applying translating models that
convert measurements between scanners. The ability to

Fig. 3 Scree plots describing how much variability in body shapes were identified from the k-means cluster analysis. The top left inset is
the scree plot representing the number of clusters for each dataset.

Table 3. Table depicting cluster centroids for the 6 clusters.

Cluster N %Males Height Neck Chest Biceps Lower Bicep Forearm

A 8576 0.99 181.56 14.74 38.56 11.79 10.53 10.32

B 6670 0.99 181.36 15.74 42.95 13.17 11.36 11.21

C 5636 0.48 161.21 13.57 36.44 11.01 9.63 9.39

D 131 0.65 174.74 13.94 93.82 29.27 25.75 25.41

E 9308 0.94 172.41 14.19 36.49 11.07 9.96 9.71

F 10,611 0.90 171.23 15.09 40.52 12.46 10.75 10.61

Cluster Number Narrowest Waist Abd. Waist Lower Waist High Hip Upper Thigh Mid Thigh Lower Thigh Calf

A 31.10 32.72 33.13 38.65 22.09 19.40 14.78 14.62

B 36.51 38.45 38.70 42.55 24.87 21.12 15.89 15.83

C 29.45 31.49 32.12 37.33 21.38 18.67 14.08 13.74

D 74.70 76.79 85.36 94.53 61.29 57.26 43.54 36.02

E 28.95 30.42 30.85 36.53 20.66 18.33 14.07 13.87

F 33.77 35.61 35.85 40.24 23.32 20.06 15.08 15.05

Cluster centroids are the cluster-specific mean values for each measurement.
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standardize measurements across scanners allows for sharing
data across research sites and comparing and deriving mean-
ingful conclusions.

DATA AVAILABILITY
Data will be made available by request after review by the United States Military
Academy Chief Data Officer, Paul Evangelista. The review will determine the risks to
personnel for data sharing and is dependent on the type of request. Requests can be
made at paul.evangelista@westpoint.edu.
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