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Abstract
Carotenoids are naturally occurring pigments of autotroph organisms that have been related to many health benefits and this
is not only because some of them are precursors of vitamin A. Individual or whole carotenoid consumption has been
associated with a lower risk of developing cancer, cardiovascular and metabolic diseases among others. However, the blood
levels of carotenoids vary largely from person to person due to different factors. Diet is the most important one because of
the dietary patterns that different populations follow, the time of the year of consumption or the personal preferences.
Nevertheless, the intrinsic host factors such as the absorption, distribution, metabolism and excretion genetic
polymorphisms, the volume of distribution and the person’s microbiota and others such as carotenoid interactions are
also inducing this so called inter-individual variability. Besides, culinary methods and processing produce changes in the
foods that directly affect carotenoid content and hence their blood profile. Different types of studies have been performed to
understand the between-subject variation of the carotenoid profile in human plasma. This research is focused on this matter
as levels of carotenoids in human plasma could be useful for the prediction of some diseases. The Mediterranean diet is
probably the most carotenoid rich diet stemming from its high proportion of fruits and vegetables. Its differences with other
diets and the effect on the carotenoid blood profile of the consumers are currently a very interesting topic of study.

Introduction

Carotenoids are a numerous class of naturally occurring
pigments synthesized by autotrophs (plants, algae and
photosynthetic bacteria) that are associated with the yellow,
orange and red colors of many plants [1]. They are mainly

present in vegetable products but might be also found in
animal origin foods depending on the livestock diet [2].
There are more than 700 carotenoids in nature; however,
only a few, from fruits and vegetables, are ingested in
sufficient quantity to be detected in human plasma; the most
abundant being lycopene, β-carotene, lutein, α-carotene, β-
cryptoxanthin, and zeaxanthin, along with their more
common cis-isomers and some degradation products. Fig. 1
shows the chemical structures of the major carotenoids that
are present in human plasma (see Fig. 1). Approximately
10% of them can be converted by the body to retinol,
provitamin A, mainly α-carotene and β-carotene and some
xanthophylls such as β-cryptoxanthin; and some apo-
carotenoids are provitamin A, having β-carotene the great-
est vitamin A activity [2]. Other carotenoids cannot produce
retinoids (i.e., zeaxanthin and lycopene). However, they all
have in common a long carbon chain terminated at each end
by an ionone ring, with the exception of lycopene, that has
not the terminal rings [3].

Consumption of carotenoid-rich foods is important since
vitamin A deficiency is associated with blindness, reduced
immune function [4] and increased risk of mortality [5].
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Through other mechanisms, zeaxanthin and lutein also
contribute to maintain eye health and they can prevent age-
related macular degeneration [6]. Besides the provitamin
classification, carotenoids can be also divided into two
groups: carotenes and xanthophylls. Xanthophylls, but not
carotenes, have oxygen atoms in their molecular structure
and so, they are more polar [7]. Most carotenoids are found
in food in all-trans form; however, processing and cooking
can result in the formation of other isomers. Due to their
association with proteins in the plant matrix, their bioa-
vailability is relatively low. It can be increased, though, by
common culinary methods such as chopping, homogenizing
and cooking [8–10]. Their lipophilic profile is also a

determinant on the bioavailability, which is why using oil
when cooking is also very positive.

Carotenoids are absorbed intestinally after their incor-
poration into mixed micelles that are composed by bile salts
secreted by the liver and several types of lipids coming from
the meal. The rate and extent of the absorption appear to be
influenced not only by the type and amount of carotenoids
but also by the type of fat (medium-chain vs. long-chain
triglycerides) and the presence of soluble fiber [11]. The
absorption takes place by passive diffusion and also by
active uptake by the Scavenger Receptor-class B type I (SR-
BI), Niemann-Pick C1-Like 1 (NPC1L1) and the Cluster
Determinant 36 (CD36), the three of them being fat trans-
porters [12].

Within the enterocytes, carotenoids can be cleaved by
oxygenase enzymes: β-carotene 15,15′-oxygenase 1
(BCO1), which shows a higher affinity for provitamin A
carotenoids, and β-carotene 9′,10′-oxygenase 2 (BCO2),
whose affinity is higher toward non provitamin A car-
otenoids [1]. The products of the cleavage and the
remaining uncleaved carotenoids are incorporated in the
chylomicrons, the lipoproteins that distribute dietary fat and
lipophilic vitamins to the different tissues. All of them reach
the liver in the chylomicron remnants but more hydrophilic
molecules such as apocarotenal can travel directly through
the portal blood system. In the liver, they can undergo

Fig. 1 Chemical structures of the
major carotenoids present in
human plasma

Fig. 2 Proteins involved in carotenoid transport across the human
enterocyte
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further or new cleavage and then are distributed to extra-
hepatic tissues [3]. Figure 2 shows a very schematic
representation of these mechanisms (see Fig. 2).

Provitamin A carotenoid uptake and conversion to retinol
—the active form of vitamin A—is, in part, controlled by
the intestine-specific homeobox (ISX) transcription factor,
which is under the control of retinoic acid receptor (RAR)-
dependent mechanisms [1]. Thus, when vitamin A stores
are high, ISX is activated and represses the expression of
SR-BI and BCO1, and the contrary occurs when the stores
are low.

Genetic differences among individuals are supposed to
be the cause of the inter-individual variations in con-
centrations of carotenoids in blood and tissues. Three
chromatograms demonstrating great differences among
carotenoid peak areas between the individuals are repre-
sented in Fig. 3 (see Fig. 3). These chromatograms were
obtained from the carotenoid plasma extraction of healthy
volunteers (non-published results), the carotenoids were
separated by HPLC and detected at 450 nm, using the
validated method developed by our research group [13]. A
number of single nucleotide polymorphisms (SNPs) have
been identified in genes that code for proteins that are
involved in carotenoid intestinal uptake, transport and
metabolism [14, 15]. The lipophilic profile of the car-
otenoids makes their volume of distribution in the body
quite high and so, only to some extent will plasma con-
centrations reflect tissue levels [14].

In the last few years, several studies and systematic
reviews have been focused on the effect that carotenoids
have on human health. Antioxidant activity and capacity of
carotenoids have been described and related with reduced

risk of some types of cancer and enhancement of the
immune system [16, 17]. But also evidences indicate that
carotenoids are inhibitors of pro-inflammatory and pro-
thrombotic factors and can reduce the risk of cardiovascular
and other chronic diseases [18–20]. Because of their anti-
oxidant and anti-inflammatory activities, carotenoids could
also reduce the risk of metabolic syndrome [21]. Carotenoid
consumption has been associated with the prevention and
treatment of Type 2 Diabetes Mellitus and some of its
complications such as nephropathy, retinopathy and neu-
ropathy [22]. This effect is thought to be achieved by the
antioxidant capacity of these compounds, that reduces the
oxidative stress and inflammation involved in the triggering
and progression of the complications [22]. This reduction in
reactive oxygen species (ROS) and reactive nitrogen species
(RNS), and probably the modulation of inflammation might,
as well, be the explanation for the carotenoid ability of
reducing the risk for cardiovascular diseases [18, 19].
Carotenoids and carotenoid conversion products inhibit
adipogenesis and fat storage capacity by suppressing
PPARɣ. Lower serum levels of carotenoids have been
found in overweight and obese individuals [23]. Also obese
subjects could have a reduced capacity of conversion from
carotenoids to retinoids [24]. A prospective study suggests a
positive effect on children adiposity and BMI concomitant
with carotenoid supplementation [25]. Lifestyle of subjects
and antioxidant activity from carotenoids could explain this
fact, but also, it is important to highlight that adipose tissue
is one of the main storages of carotenoids and retinoids [26].
There are other studies that focus on particular compounds,
a cardioprotective profile has been delineated for lycopene
and some potential mechanisms have been described for its

Fig. 3 HPLC chromatograms of random samples of carotenoids extracted from human plasma. 1–Astaxanthin; 2–Zeaxanthin; 3–E-ß-apo-8′-
carotenal; 4– Cryptoxanthin; 5–13-Z-ß-carotene; 6–α-carotene; 7–ß-carotene; 8–9-Z-ß-carotene; 9–Lycopene
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anti-atherogenic effect [20] and it has also been shown to be
inversely associated with the positive prostate cancer risk
[27]. Cerhan et al. showed a lower risk of rheumatoid
arthritis when levels of β-cryptoxanthin in body were higher
[28]; however, this relationship was not found by other
authors [29]. Moreover, other conditions related with oxi-
dative stress like Alzheimer disease have been associated
with low concentration of carotenoids in subjects [30, 31].
Although some results are discordant or require further
research, the positive health effect of high carotenoid intake
through the diet is clearly demonstrated [21].

In this review, we aim to go through the different factors
that influence the high inter-individual variability of car-
otenoid levels in human plasma.

Matherials and methods

Literature search and selection

A comprehensive literature search about plasma carotenoid
level variability was performed between May and August
2017 through the database Pubmed. The search terms
included “carotenoid” in combination with “variability”,
“plasma levels”, “Mediterranean diet” or “Northern diet”.
After the removal of duplicates and articles with only
abstract in English available the articles were selected by
title and through links of related articles and references.
Then, studies with no relevant outcome or data were
eliminated as well.

Results

Factors influencing carotenoid levels in human
plasma

The concentration of carotenoids found in human plasma
after the same meal may not be equal in different subjects.
There is a high inter-individual variability that might be due
to very different causes (see Table 1).

Not only diet, but also biological activity depends on
bioavailability that is mainly determined by bioaccesibility.

Food matrix, dietary fat, dietary fiber, interaction between
carotenoids and interaction between factors affect bioacce-
sibility, while passive diffusion and facilitated transport of
carotenoids determine their bioavailability.

Mediterranean diet

When talking about inter-individual variability, the main
cause is, certainly, the diet. It is difficult, in large studies
where volunteers are asked to follow a particular diet, to
control dietary habits of the participants to the extent of
measuring the exact amount of carotenoids or carotenoid
containing foods. In this way, although the participants may
not change significantly their habits from one intervention
to the other, very different practices from one person to
another might occur and these differences could be crucial.

Globally, differences between populations are explained
through diet. Mediterranean and Northern diet are typical
European diets. Mediterranean diet is the typical diet from
Mediterranean countries (Spain, Greece, France, Italy, Por-
tugal…), whereas the countries from northern Europe, like
UK and Republic of Ireland have another diet commonly
known as Northern diet. The Mediterranean diet is probably
the most carotenoid bearing diet for its richness in fruits and
vegetables [32]. Because of this, it would be understandable
that people that follow this type of diet are more likely to
have higher content of carotenoids in their plasma.

A good example of this is an exchange list diet study
performed in the United States in 2009. A group of healthy
women were asked to follow a Greek-Mediterranean diet
for 6 months after which, plasma carotenoids and fatty acids
among other parameters were measured. As a result of the
intervention the carotenoids in plasma were doubled,
reflecting the larger fruit and vegetable consumption [33].

Other studies that have assessed the properties of the
Mediterranean diet show that the consumption of this diet
leads to an increase of the carotenoid content in plasma [34,
35].

A report from the European Prospective Investigation
into Cancer and Nutrition was able to differentiate people
from different European regions according to their car-
otenoid profile in plasma. Total carotenoids were higher in
Southern regions, same as individual carotenoids, with the
exception of carotenes, that showed no clear north-south
difference [36]. Mediterranean population have higher
amount of carotenoids present in plasma than anglo saxon
population, especially for lycopene [37]. This fact can be
explained by the large intake of tomatoes in the Medi-
terranean diet [38]. O’Neill et al. carried a study in which
five European countries participated (Spain, The Nether-
lands, Finland, France, Republic of Ireland). With 80 sub-
jects per country higher levels of lycopene and lutein and
two-to-three-fold more β-cryptoxanthin in Spain, regarding

Table 1 Causes for plasma carotnoid inter-individual variability

Carotenoid interactions

Culinary factors and processing

Dietary habits

Intrinsic host factors ADME

Volume of distribution

Microbiota

ADME absorption, distribution, metabolism and excretion
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to other European countries, were found. There was,
though, a similar concentration of α-carotene and β-carotene
[38].

Another study described blood concentrations of differ-
ent biomarkers of fruit and vegetables intake, namely car-
otenoids, tocopherols, ascorbic acid and retinol in young
and healthy people from five European countries (France,
UK (Northern Ireland), Republic of Ireland, The Nether-
lands and Spain). The serum concentrations of the cited
biomarkers were considered “reference values” for these
populations due to the study design. The authors found
differences in the xanthophylls to carotenes ratio, being
double in Spain compared to the northern countries
(Northern Ireland and Republic of Ireland). The Spanish
cohort also had higher levels of lutein, zeaxanthin and β-
cryptoxanthin. The study concluded that some carotenoids
(lutein, zeaxanthin, β-cryptoxanthin) and total xanthophylls
in human plasma could be markers of the Mediterranean
diet adherence [37].

Moreover, changes within Mediterranean diet consumers
can be explained by seasonal variations [37–39]. For
example, in Spanish diet higher β-cryptoxanthin and lyco-
pene levels were found in winter and summer, respectively,
because of the citrus fruits being more consumed in winter
and tomatoes and watermelon in summer [39, 40]. Also,
differences in some carotenoids and serum concentrations
can take place because of the geographic, timing, demo-
graphic and cultural factors. In general, European countries
from Mediterranean (southern) areas consume greater
amounts of vegetables and fruits than northern countries
[41, 42].

Intrinsic host factors

The distribution profile of carotenoids in the body is a more
difficult aspect to assess due to the immense number of
factors related not only to the food or carotenoid itself but
maybe to the influence of host factors.

Earlier this year, Bohn et al. reviewed inter-individual
discrepancies in host factors that might be affecting plasma
carotenoid levels. Apart from dietary habits, health status
including viral infections, micronutrient status, blood lipid
profile, respiratory conditions and thyroid disorders are the
main cause of variability according to, mostly, observa-
tional studies [14]. Other conditions related to the intestine
length, permeability and function are obviously affecting
overall absorption, not only carotenoid one. Other obser-
vational studies suggested other lifestyle habits such as
smoking, alcohol consumption and physical activity also as
sources of variability, as well as gender, age, weight, and
ethnicity [14].

The volume of distribution of carotenoids is, as men-
tioned before, quite large in the body due to their lipophilic

profile [14]. Because of this, and although it should not
change intra-individually depending on the levels absorbed,
the carotenoids could remain more or less constant in
plasma but be higher in the different target tissues, accu-
mulating in the adipose tissue, the skin, the liver and maybe
other tissues. Besides, volume of distribution might not be
the same in all individuals and can change according to
health status. Plasma is one of the easiest samples that can
be obtained in humans whereas tissue biopsies are quite
invasive. A more expensive option would be to use iso-
topically labeled carotenoids and measure them in tissue
[43].

In this matter, another reason that can make the profiles
to vary is whether the volunteers are, or not, deficient in
carotenoids (provitamin A or non provitamin A car-
otenoids). An intervention trial performed by Record et al.
consistent in consumption of diets high or low in fruit and
vegetables or following dietary supplementation with an
antioxidant mixture detected a significant increase in α- and
β-carotene, lutein and zeaxanthin [44]. When the studies are
designed with a depletion period before the intervention, the
absorption might be enhanced in order to replenish the body
and not because of a different content of carotenoids in the
foods.

Carotenoid absorption, distribution, metabolism and
excretion (ADME), as every nutrient, non-nutrient or drug,
can be affected by many reasons. In this case, some phy-
siological parameters could be affecting carotenoid bioac-
cessibility. Some in vitro studies have been performed in
order to assess them. Biehler et al. described that a low
gastric pH would be degrading some carotenoids and thus,
reducing their accessibility and absorption [45]. Periago
et al. also found that high pepsin concentration facilitates
the breakdown of protein-lycopene complexes increasing
their availability [46]. In a study by Garret et al. and a
posterior paper by Biehler et al. suggested that the con-
centrations of bile salts and pancreatic enzymes is critical
for the micellization of carotenoids [47, 48]. A rather new
approach to nutrition and metabolism, nutrigenomics, is
starting to ease the explanation of ADME inter-individual
variability following intervention trials. Two reviews have
described a number of genes involved in the ADME pro-
cesses whose different polymorphic variants could be the
cause of the different outcomes [14, 15]. The genes men-
tioned vary from transport to –SR-BI, CD36, NPC1L1–,
from –ATP binding cassette (ABC) proteins—and within
the intestinal cells—fatty acid binding protein (FABP)–; to
cleavage in intestinal and non-intestinal cells –BCO1 and
2–; transport in the circulatory system—the different apo-
lipoproteins and the cholesterol ester transfer protein
(CETP)—and elimination enzymes –cytochrome P450.

Lastly, although not much has been made clear in the
area, the microbiota might have an influence on carotenoid
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assimilation. Even though it seems that carotenoids are not
very much absorbed in the large intestine, Karlsson et al.
stated that the bacterial genus Collinsella was enriched in
obese patients with atherosclerosis and that these same
patients presented lower ß-carotene levels [49]. The authors
suggested that the genome of this genus might not be
favorable for the production of this carotenoid. These
findings, though probably insufficient to state that micro-
biota has a critical function in carotenoid absorption, may
hint an interesting role of the microbiome balance.

Interaction between carotenoids

Some studies have shown a competition of carotenoids to be
micellized or absorbed [50]. There are evidences about the
decrease of lutein when it is consumed along with lycopene
or β-carotene [51–53] and of α-carotene and lycopene after
β-carotene uptake [54], inversely to described by an Aus-
tralian study [55].

Culinary factors and processing

Carotenoids are characterized by their high instability.
During processing, due to their antioxidant capacities, some
of the carotenoids are oxidized and degraded; however,
isomerizations also occur. This degradation is induced by
heat, light, oxygen, acids, transition metals, or interactions
with radical species. Thermal processing causes the break-
down of the cellular matrix of the plant material and may
also induce trans to cis isomerization due to the heating,
increase in surface area, and agitation processes involved.
The cis isoforms that are originated are more bioavailable
because it seems that the packed structure of cis-isomers is
more soluble in bile acid micelles and may be preferentially
incorporated into chylomicrons. So, in processed foods and
in human plasma and tissues, higher quantities of cis-iso-
mers are found [56].

Some mechanisms of carotenoid degradation in food
have been studied. Vallverdú-Queralt et al. and Rinaldi de
Alvarenga et al. [9, 10] recently described the effect that
cooking time and ingredient synergism have on carotenoid
levels and isomerization. An adequate processing time and
temperature and the addition of extra virgin olive oil or
onion to the mix improved the bioavailability of car-
otenoids. Small variations in this aspect could be, to some
extent, responsible for the inter-individual variability of
carotenoid content in plasma.

Conclusion

In general, it is known that carotenoids have an important
role in prevention of several diseases. However, the

absorption and transformation of these compounds are
essential for these health benefits to take place. Different
types of studies have been performed to decipher the causes
of the variation of the carotenoid profile in human plasma
from different subjects after the same type of meal. Factors
such as age, region, diet and intrinsic factors from the host
have been suggested as possible causes for this variability
but some of them are not fully understood. The levels of
carotenoids in human plasma could be useful for the pre-
diction of some diseases if we knew exactly how and why
they vary from person to person. Some research is already
taking place in this matter; however, more studies are
needed in order to use these molecules as predictors.
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