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Abstract
A library of 18 structurally diverse semisynthetic lupane, oleanane, and ursane types triterpenoids, including C19- or C28-
(1,2,3-triazolyl)- and aminomethylated derivatives obtained by the «click» reaction with various aromatic and sugar azides
or by Mannich reaction with secondary amines, were tested for antiviral activity against HCMV, HSV-1, and HPV-11 types.
C28-Triazolyl-derivative with a benzyl substituent of 2,3-indolo-oleanolic acid was the most active against the HCMV virus
with EC50 < 0.05 (SI > 81). Lupane 3,28-diacetoxy-triazolyl derivatives with phenyl- and fluorophenyl-fragments possess the
highest activity among all screened compounds toward HPV-11 type virus with EC50 values of 2.97 µM and 1.20 μM, SI90
values of 28 and >125, respectively. One can see that modification of triterpenic alkynes to Mannich bases was more
efficient in increasing an activity against HSV-1 than their conversion to triazoles.

Introduction

Natural products have played a leading role for many cen-
turies as a rich source of biologically active compounds that
can be employed in the development of new drugs [1–5].
Triterpenoids exhibit a variety of antiviral activities [6]
mainly involving effects on DNA viruses [7–9]. Bevirimat
[3-O-(3’,3’,-dimethylsuccinyl)-betulinic acid] has been
shown to inhibit HIV-1 maturation by a previously described
mechanism [7]. Betulin alone and in combination with acy-
clovir have been reported to inhibit HSV I and II [10].
Betulinic and betulonic acids are also active against HSV, as
well as against influenza A and ECHO-6 picornavirus [11],
and enveloped/non-enveloped viruses [12]. A series of tri-
terpenoids were found to inhibit HPV-11 and HPV-16
[13–15]. The synergistic effect of rimantadine and betulin-
derived compounds combinations against the reproduction of

influenza virus types A (H1N1, H7N1, and H3N2) and B
in vivo is established [16]. It was shown that betulin/betulinic
acid and artesunic acid hybrids [17] and triazine derivatives
of allobetulin and betulinic acid [18] were active against
HCMV with an EC50 in the micromolar range. Recent data
provide evidence for the sensitivity of RNA viruses, for
example, the significant synergistic effects of betulin deri-
vatives when combined with 3’-amino-3’-deoxy-adenosine
against Semliki Forest virus were shown [19].

Triterpenoids with an alkynyl moiety at C2 [20–22], C19
[23], C3-, and C28 [24], have become one of the most
actively developing areas of organic chemistry since they are
used as key intermediates in the synthesis of biologically
active compounds of Mannich and click reactions.
1,2,3-Triazole unit is known to decrease the overall lipophi-
licity of triterpenes, and to improve ADME parameters [24].
However, it was found that triterpenes with a triazole moiety
had significantly lower cytotoxicity and, in some cases, even
lower selectivity. In general, as summarized in the reference
[25], the goals of becoming new promising anticancer leads
have rarely been achieved, but there are also mentioned that
in the field of antiviral-active compounds, triterpene-triazole
hybrids showed slightly more potency. For example, olea-
nolic acid dimeric bis-triazole binds to the HCV envelope
protein E2 and thus blocks the virus-host fusion with an IC50

10.3 nM [26]. Some anti-HCV activity was observed for
triazole-speared ursolic acid cyclodextrin conjugates [27, 28].
Compounds of significantly higher anti-HIV activity were
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obtained from ursolic acid holding a propargyl moiety at
position C-3 that were used for click reactions with analogs of
the T20 peptide [29]. The two most important structural
elements of bevirimat, AZT (an inhibitor of reverse tran-
scriptase) and LH55 (an inhibitor of HIV fusion), were
combined via triazole by classical click reactions, but no
biological data have been published. However, most of the
studies report on the biological activity of targeted com-
pounds, and there is no information about the activity of
alkynyl-derivatives. A large number of novel substrates have
been synthesized using the aminomethylation Mannich
reaction and evaluated as potential treatments for a multitude
of diseases [30].

Here, we report the synthesis of new lupane, oleanane,
and ursane types alkynyl-derivatives. Obtained compounds,
as well as previously described, were evaluated for antiviral
activity against human cytomegalovirus, herpes simplex
virus, and human papillomavirus.

Results and discussion

Chemistry

The chemical synthesis and characterization of alkynes 1, 2,
and 3 obtained from betulin by oxidation to methylketone
fragment in cycle E with following dehydratation using
POCl3, alkynes 10 and 12–14 synthesized via acyl chloride
method from the corresponding acid, C19-(1,2,3-triazolyl)-
6–9, aminoalkyl- 4, 11, and 15–17 derivatives obtained
using Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or
Mannich reaction screened in this study have been pre-
viously reported (chemical structures are presented in
Fig. 1) [23, 31–33].

The 1,3-dipolar cycloaddition reaction of 3,28-diace-
toxy-C19-alkynyl betulin 1 (for 5) or 2,3-indolo-olean-12-
en-28-propargyl amide 13 (for 18 and 19) with 4-(azido-
methyl)-2,3,5,6-tetramethylphenol, azidomethyl phenyl
sulfide, or benzyl azide under standard conditions with
CuSO4·5H2O and sodium ascorbate in CH2Cl2-H2O
allowed us to obtain new C19- and C28-1,2,3-triazoles 5,
18, and 19 with yields of 45%, 62% and of 56%, corre-
spondingly (Figs. 1 and 2). The structures of the compounds
were ascertained by combined use of spectroscopy (1H
NMR, 13C NMR and MS) and elemental analyses. Thus, in
the spectra of compounds 18 and 19 disappearance of the
acetylene fragment signals at δ 2.21–2.23 ppm (NMR 1H)
and at δ 71.6–80.0 ppm (NMR 13C) and formation of 1,2,3-
triazole ring with signal of methine carbon atom as singlets
at δ 7.52 ppm, δ 7.59 ppm (NMR 1H) and at δ 122.1 ppm, δ
122.7 ppm (NMR 13C) were characteristic. The 1H NMR
spectrum of compound 5 showed the characteristic signal of
methylene group as multiplet at δ 5.59–5.69 ppm and of

methine group of triazole fragment as singlet at δ 6.91 ppm,
as well as the 13C NMR spectrum of 5 showed the signals of
aromatic carbons at δ 120.6–153.0 ppm (NMR 13C) (the
NMR spectra of compounds see in Supplementary Material
Fig. S1–S6).

Antiviral activity

Our previous studies of triterpene oxidized indoles [15],
azepanes [34], and l8αH,19βH-ursanes [35] have revealed
their promising antiviral potency. For example, 19β,28-
epoxy-18α-olean-28-oxo-2-nor-2,3-4’(1H)-quinolone was
active against HPV-11 with EC50 0.45 μM and SI50 322
[15]. Azepanobetulin, azepanouvaol, and azepano-
glycyrrhetol showed high potency toward HCMV (EC50

0.15, 0.11, 0.11 µM) with selectivity indexes SI50 115, 136,
172 respectively [34]. 3β-Acetoxy-21β-acetyl-20β,28-
epoxy-18α,19βH-ursane showed moderate activity (EC50

4.87 µM) toward the HCMV-resistant isolate (GDGr K17)
compared to standard drug Cidofovir and was four times
more potent than Ganciclovir [35].

Taking into account these data, lupane and oleanane
alkynyl-derivatives 1–19 were evaluated against DNA
viruses (human herpes simplex virus 1, cytomegalovirus,
and papillomavirus 11) using the possibilities of Division of
Microbiology and Infectious Diseases of the National
Institutes of Allergy and Infectious Diseases (http://www.
niaid-aacf.org/) program for antiviral assays. The detailed
information regarding antiviral screening and methods can
be found at http://www.niaid-aacf.org/ and were described
in the literature [36, 37].

The effects of compounds 1–19 on antiviral activity
against a normal laboratory HCMV strain, AD-169, and
their cytotoxicity were evaluated on HFF cells using
CellTiter-Glo (cytopathic effect/toxicity) assay (Table 1).
The compounds 1, 3, 5, 9, 10, 11, 15, 17, 18 and 19
demonstrated activity against HCMV with EC50 values > 6
µM, while compounds 2 and 8 showed a weak activity with
EC50 values > 30 µM, and derivative 6 was turned out to be
inactive (EC50 > 150 µM). The derivatives 4, 7, 12–14, and
16 have shown good viral inhibition toward HCMV
(EC50 > 1.20 µM; EC90 > 1.20 µM) compared to standard
drug Ganciclovir. The compound 19 was the most active
with EC50 < 0.05 µM; EC90 < 0.05 µM, but at the same time
it was cytotoxic with CC50 3.90 (SI > 81).

The antiviral activity of compounds 1–19 against HSV-1
was studied on the E-377 strain of HFF cell line using the
CellTiter-Glo (cytopathic effect/toxicity) assay (Table 1).
Compounds 5–9 were not active while derivatives 1, 2, 10,
13, and 18 showed a weak anti-herpes activity (EC50 > 30
µM). The compounds 3, 4, 11, 12, 15–17, and 19 showed a
moderate potency (EC50 > 6 µM; EC90 > 6 µM). Compound
14 was the most active against HSV-1 with EC50 > 1.2 µM.

Antiviral potency of lupane and oleanane alkynyl-derivatives against human cytomegalovirus and. . . 51

http://www.niaid-aacf.org/
http://www.niaid-aacf.org/
http://www.niaid-aacf.org/


Fig. 1 Synthesis of betulin derivatives. Reagents and conditions: i. 4-(azidomethyl)-2,3,5,6-tetramethylphenol, CuSO4·5H2O, sodium ascorbate,
CH2Cl2-H2O, rt, 5 h
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Compounds 1–19 were also evaluated against a HPV-11
strain HE611260.1 on C-33A cells using Nano-Glo Luciferase
(NanoLuc)/CellTiter-Glo (toxicity) assay. Compounds 6, 13,
14, and 18 were not active against the studied virus strain,
whereas compounds 1–3, 5, 8, 10–12, and 19 showed mod-
erate or weak activity. The derivatives 4, 15, and 17 displayed
good activity with EC50 > 1.20 µM and EC90 > 1.20 µM.
Compounds 7 and 16 showed moderate activity against HPV-
11 with EC50 2.97 µM and 4.25 µM, and low values of cyto-
toxicity (CC50 82.79 and 133.71 respectively) as well. Com-
pound 9 showed activity toward HPV-11 (EC50 1.20 µM; EC90

20.07 µM) with a good selectivity index (SI50 > 125; SI90 > 7)
compared to standard drug 9-[2-(phosphonomethoxy)ethyl]
guanine (EC50 0.89 µM; EC90 102.22 µM; SI50 > 168; SI90 > 1).
Generally it seems that modification of triterpenic alkynes such
as 1, 13 or 14 to Mannich bases was more efficient in
increasing an activity against HSV-1 than their conversion to
triazoles, such as 5–8, 18.

Based on the differences in activity between the derivatives,
the following structure-activity relationships could be

Table 1 In vitro antiviral activity of compounds 1–19, µM

Compound EC50 EC90 CC50 SI50 SI90

Human cytomegalovirusa

1 >6 >6 18.87 <3 <3

Ganciclovir 0.8 >150 >150 >187 1

2 >30 >30 53.01 <2 <2

3 >6 >6 11.45 <2 <2

Ganciclovir 0.24 1.08 >150 >625 >139

4 >1.2 >1.2 4.63 <4 <4

5 >6 >6 25.71 <4 <4

6 >150 >150 >150 1 1

7 >1.2 >1.2 5.16 <4 <4

8 >30 >30 55.18 <2 <2

9 >6 >6 27.85 <5 <5

10 >6 >6 20.85 <3 <3

11 >6 >6 9.99 <2 <2

Ganciclovir 0.4 0.88 >150 >377 <170

12 >1.2 >1.2 5.49 <5 <5

13 >1.2 >1.2 4.27 <4 <4

14 >1.2 >1.2 3.64 <3 <3

15 >6 >6 13.31 <2 <2

16 >1.2 >1.2 2.99 <2 <2

17 >6 >6 10.44 <2 <2

18 >6 >6 18.43 <3 <3

19 <0.05 <0.05 3.90 >81 >81

Ganciclovir 0.8 >150 >150 >187 1

Herpes simplex virus 1b

1 >30 >30 72.70 <2 <2

Acyclovir 0.87 >150 >150 >172 1

2 >30 >30 89.22 <3 <3

3 >6 >6 29.35 <5 <5

Acyclovir 0.83 >150 >150 >181 1

4 >6 >6 6.84 <1 <1

5 >150 >150 >150 1 1

6 >150 >150 >150 1 1

7 >150 >150 >150 1 1

8 >150 >150 >150 1 1

9 >150 >150 >150 1 1

10 >30 >30 63.92 <2 <2

11 >6 >6 15.39 <3 <3

Acyclovir 0.61 1.14 >150 >246 >132

12 >6 >6 19.38 <3 <3

13 >30 >30 32.03 <1 <1

14 >1.2 >1.2 5.14 <4 <4

15 >6 >6 9.36 <2 <2

16 >6 >6 7.36 <1 <1

17 >6 >6 9.85 <2 <2

18 >30 >30 142.15 <5 <5

19 >6 >6 9.66 <2 <2

Acyclovir 0.87 >150 >150 >172 1

Human papillomavirus 11c

1 >30 >30 90.58 <3 <3

2 87.15 140.81 >150 >2 >1

3 12.28 14.84 63.10 5 4

9-[2-(Phosphonomethoxy)
ethyl]guanine

0.68 100.62 >150 >221 >1

4 >1.20 >1.20 4.41 <4 <4

5 17.14 >30 109.18 6 <5

Table 1 (continued)

Compound EC50 EC90 CC50 SI50 SI90

6 >150 >150 >150 1 1

7 2.97 18.27 82.79 28 5

8 8.41 23.40 71.64 9 3

9 1.20 20.07 >150 >125 >7

10 >30 >30 133.93 <4 <4

11 >6 >6 12.64 <2 <2

12 7.79 16.50 46.94 6 3

14 >150 >150 >150 1 1

16 4.25 >30 133.71 31 <4

17 >1.2 >1.2 3.23 <3 <3

9-[2-(Phosphonomethoxy)
ethyl]guanine

0.89 102.22 >150 >168 >1

13 >150 >150 >150 1 1

15 >1.2 >1.2 3.32 <3 <3

18 110.32 149.54 >150 >1 >1

19 >6 >6 10.12 <2 <2

9-[2-(Phosphonomethoxy)
ethyl]guanine

0.68 100.62 >150 >221 >1

EC50—compound concentration that reduced viral replication by 50%;
EC90—compound concentration that reduced viral replication by 90%;
CC50—compound concentration that reduced cell viability by 50%;
SI50—Selectivity index (CC50/EC50)
aVirus strain: AD169; cell line: HFF; vehicle: DMSO; drug conc.
range: 0.048–150 μM; control conc. range: 0.048–150 μM; control
assay order: primary; control assay name: CellTiter-Glo (cytopathic
effect/toxicity)
bVirus strain: E-377; cell line: HFF; vehicle: DMSO; drug conc. range:
0.048–150 μM; control conc. range: 0.048–150 μM; control assay
name: CellTiter-Glo (cytopathic effect/toxicity)
cVirus strain: HE611260.1; cell line: C-33 A; vehicle: DMSO; drug
conc. range: 0.048–150 μM; control conc. range: 0.048–150 μM;
control assay name: Nano-Glo Luciferase (Nanoluc)/CellTiter-Glo
(toxicity)
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observed. In the case of HCMV, C19-triazols with different
phenyl substitutes 5, 7–9 were comparable with a starting
alkyne 1, while the introduction of a sugar moiety 6 led to a
complete loss of activity. The compound 7 with phenyl frag-
ment was found to be more effective and at the same time
more cytotoxic. The modification of C28-alkynyl amides had
a positive influence on EC50 or CC50 value. The introduction
of a benzyl fragment had the most favorable effect on activity
(EC50 0.05 µM). The activity of Mannich bases 4, 11, 15–17
was comparable or better than an activity of parent com-
pounds, but triterpenoids 4 and 16 were more cytotoxic.

In the case of HSV-1, modification of С19-alkyne 1 to
triazoles 5–9 led to the loss of activity. For compounds 1–3
the beneficial effect of acetylene groups was observed.
Modification of both C19- 1 and C28-alkynyl derivatives
13, 14 by Mannich reaction improved the values of activity,
as well as against HPV-11. The exception was compound
18, which activity was comparable to the parent alkyne.

In addition, increased activity against HPV-11 was displayed
by all triterpenic triazoles with aromatic fragment 5 and 7–9,
except sugar triazole 6. Thus, compounds 7 and 9 with phenyl-
and fluoro-phenyl-fragments possess the highest activity among
all screened compounds with EC50 values of 2.97 µM and
1.20 μM, SI50 values of 28 and >125, respectively.

Experimental

General

The spectra were recorded at the Center for the Collective
Use “Chemistry” of the Ufa Institute of Chemistry of the
UFRC RAS and RCCU “Agidel” of the UFRC RAS. 1H
and 13C NMR spectra were recorded on a “Bruker Avance-
III” (Bruker, Billerica, MA, USA, 500 and 125.5 MHz
respectively, δ, ppm, Hz) in CDCl3, internal standard—
tetramethylsilane. Mass spectra were obtained on a liquid
chromatograph–mass spectrometer LCMS-2010 EV (Shi-
madzu, Kyoto, Japan). Melting points were detected on a
microtable «Rapido PHMK05» (Nagema, Dresden, Ger-
many). Optical rotations were measured on a polarimeter
Perkin-Elmer 241 MC (PerkinElmer, Waltham, MA, USA)
in a tube length of 1 dm. Elemental analysis was performed
on a Euro EA-3000 CHNS analyzer (Eurovector, Milan,
Italy), the main standard is acetanilide. Thin-layer chro-
matography analyzes were performed on Sorbfil plates
(Sorbpolimer, Krasnodar, Russia), using the solvent system
chloroform–ethyl acetate, 40:1. Substances were detected
by a 10% solution of sulfuric acid solution with subsequent
heating at 100–120 °C for 2–3 min. All chemicals were of
reagent grade (Sigma-Aldrich). Compounds 1, 2 and 3 [31],
4, 10–12 [32], 6–9 [23], 13–17 [33] were obtained
according to the methods described previously.

Chemistry

Synthesis of compounds 5, 18, and 19

To a solution of compound 1 (0.51 g, 1 mmol) or 13 (0.56 g,
1 mmol), CuSO4·5H2O (0.04 g, 0.2 mmol) in СH2Cl2-H2O
(1:1, 5 ml), 4-(azidomethyl)-2,3,5,6-tetramethylphenol
(0.21 mg, 1 mmol), azidomethyl phenyl sulfide (0.14 ml,
1 mmol), or benzyl azide (0.13 ml, 1 mmol) were added.
The reaction mixture was stirred for 1 h at 20 °С, then Na-L-
Asc (2 mg, 0.01 mmol) was added and stirred at 50 °С for
24 h. The reaction mixture was poured into Н2О/Н

+, the
precipitate was filtered off, washed with water until neutral
pH, dried in air. The resulting material was chromato-
graphed on SiO2 using chloroform as an eluent.

3β,28-Diacetoxy-19-{1-(4-hydroxy-2,3,5,6-tetramethylbenzyl)-
1H-1,2,3-triazol-4yl}-20,29,30-trinor-betulin (5)

Yield 0.32 g (45%). m.p. 192–194 °С; [α]D20+ 21.00
(c 0.1, CHCl3); δH (500.13MHz, CDCl3) 0.81, 0.82, 0.83,
0.91, 0.98 (5 s, 15H, 5CH3), 1.01–1.99 (m, 25H, CH, CH2),
2.01 and 2.09 (2 s, 6H, 2COCH3), 2.19 and 2.21 (2 s, 12H,
4CH3-arom), 3.22 (m, 1H, H-19), 3.81 and 4.25 (both d,
J= 11.0 Hz, H-28), 4.45 (dd, 1H, J= 10.8 Hz, J= 5.4 Hz,
H-3), 5.59–5.69 (m, 2H, CH2), 6.91 (s, 1H, H-triazol); δC
(125.76 MHz, CDCl3) 12.6, 12.6, 14.6, 16.0, 16.1, 16.5,
16.5, 18.1, 20.6, 21.1, 21.2, 21.3, 23.7, 26.8, 26.9, 27.9,
29.6, 32.1, 34.0, 35.4, 36.0, 37.0, 37.1, 37.8, 38.4, 40.8,
42.7, 46.6, 49.9, 50.6, 53.5, 55.3, 62.5 (C-3), 80.9 (C-28),
120.4 (CH-triazol), 120.6 (C-arom), 120.6 (C-arom), 121.1
(C-arom), 134.9 (C-arom), 134.9 (C-arom), 152.1 (C-tria-
zol), 153.0 (C-arom), 171.0, 171.5. MS: m/z 716.49
[M+H]+; Anal. Calcd for C44H65N3O5: С, 73.81; H, 9.15;
N, 5.87. Found: С, 73.80; H, 9.14; N, 5.86.

[3,2b]-Indolo-N-[1-((phenylthio)methyl)-1H-1,2,3-triazol-4-
yl)methyl)]-olean-12(13)-en-28-carboxamide (18)

Yield 0.45 g (62%); m.p. 157 °С; [α]D20+ 29° (с 0.05,
CHCl3); δH (500.13 MHz, CDCl3) 0.68, 0.92, 0.93, 0.94,
0.96, 1.22, 1.32 (7 s, 21H, 7CH3), 1.35–2.82 (m, 22H, CH,
CH2), 4.34–4.57 (m, 2H, H-37), 5.51 (s, 1H, H-12), 5.58 (s,
1H, H-40), 6.68 (br. s., 1H, NH), 7.06–7.47 (m, 9H, H-
arom), 7.59 (s, 1H, CH-triazol), 8.13 (br. s., 1H, NH); δC
(125.76 MHz, CDCl3) 15.6, 16.4, 19.3, 23.3, 23.5, 23.6,
23.9, 25.6, 27.3, 30.7, 30.9, 31.9, 32.5, 33.0, 34.0, 34.1,
35.1, 36.8, 37.9, 39.5, 42.1, 46.2, 46.3, 46.6, 53.1, 53.8,
106.6 (C-2), 110.4 (C-arom), 117.9 (C-arom), 118.8 (C-
arom), 120.9 (C-arom), 122.1 (CH- triazol), 123.5 (C-12),
128.2 (C-arom), 128.6 (C-triazol), 129.5 (2C, C-arom),
131.9 (2C, C-arom), 132.1 (C-arom), 136.2 (C-arom), 140.9
(C-arom), 144.1 (C-13), 145.3 (C-3), 178.4 (C-28); MS

54 E. F. Khusnutdinova et al.



(APCI) m/z 730.50 [M]+, (calcd for C46H59N5OS, 730.07).
Anal. Calcd for C46H59N5OS: C, 75.68; H, 8.15; N, 9.59; S,
4.39. Found: C, 75.75; H, 8.23; N, 9.46; S, 4.29.

[3,2b]-Indolo-N-[1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-
olean-12(13)-en-28-carboxamide (19)

Yield 0.39 g (56%); m.p. 164 °С; [α]D20+ 14° (с 0.05,
CHCl3); δH (500.13MHz, CDCl3) 0.62, 0.86, 0.87, 1.15, 1.17,
1.21, 1.30 (7s, 21H, 7CH3), 1.32-2.90 (m, 22H, CH, CH2),
5.13-5.20 (m, 2H, H-37), 5.34 (s, 1H, H-12), 5.46–5.51 (m,
1H, H-40), 7.03–7.44 (m, 9H, H-arom), 7.52 (s, 1H, H-tria-
zol), 7.91 (br. s., 1H, NH); δC (125.76MHz, CDCl3) 15.6,
16.6, 19.4, 23.1, 23.3, 23.4, 23.6, 25.7, 27.7, 30.7, 31.0, 32.2,
32.3, 33.1, 33.9, 34.0, 36.8, 38.1, 39.4, 41.5, 41.9, 45.9, 46.3,
46.8, 53.2, 54.2, 57.6 (C-40), 106.8 (C-2), 110.4 (C-arom),
117.9 (C-arom), 118.9 (C-arom), 120.9 (C-arom), 121.9 (C-
arom), 122.7 (CH- triazol), 124.5 (C-12), 128.1 (2C, C-arom),
128.3 (C-arom), 128.9 (C-triazol), 129.2 (2C, C-arom), 134.4
(C-arom), 136.2 (C-arom), 140.9 (C-3), 143.4 (C13), 177.8
(C28); MS (APCI) m/z 699.5 [M+H]+ (calcd for
C46H59N5O, 698.01). Anal. Calcd for C46H59N5O: C, 79.15;
H, 8.52; N, 10.03. Found: C, 79.21; H, 8.45; N, 10.12.

Antiviral screening

All biology experimental procedures and molecular model-
ing methods are described in the Supplementary Materials.

Conclusions

By Cu(I)-catalyzed azide-alkyne cycloaddition and Man-
nich reaction 18 lupane, oleanane and ursane alkynyl-
triterpenoids were synthesized and evaluated for antiviral
activity against HCMV, HSV-1, and HPV-11. Among tes-
ted compounds, oleanane C28-1,2,3-triazole with a benzyl
substituent 19 was active against HCMV with SI > 81,
while lupane 3,28-diacetoxy-triazoles with phenyl-7 and
fluorophenyl-9 fragments demonstrated strong HPV-11
antiviral activity. This approach was not effective toward
HSV-1 type virus, while Mannich bases were more active
than the parent alkyne. To sum up, of special interest are
derivatives of 2,3-indolo-oleanolic acid and nor-lupane
triazoles with promising potency against human cytome-
galovirus and papillomavirus.
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