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Abstract

Solid-state NMR is one of the most powerful analytical methods for the structural characterization and dynamics of
polymers. Owing to its intrinsically low signal sensitivity, however, analysis of trace chemical species supported on
polymers remains challenging. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted
attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for
insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved
high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR

measurements for a wide range of polymers.

Introduction

Understanding molecular-scale as well as higher-order
polymer structures is key to the rational development of
polymeric materials. Various methods are available for the
structural analysis of polymers, including FT-IR [1],
Raman spectroscopy [1], mass spectrometry [2], X-ray
scattering [3], neutron scattering [4], solution NMR [5],
and solid-state NMR [6]. Among them, solid-state NMR
is a highly useful analytical method for characterizing
the molecular structure and dynamics of polymers in a
nondestructive manner. While analysis of the ratio of
amorphous/crystalline phases and their dynamics via time-
domain NMR utilizes the observation of 'H nuclei with
high sensitivity, making high-throughput measurement
feasible, high-field NMR targets mainly nuclei with a low
natural abundance and a low gyromagnetic ratio (y), such
as 1°C nuclei, whose NMR signal sensitivity is inherently
insufficient for routine analysis. Therefore, various meth-
ods, such as the magic angle spinning (MAS) and the cross-
polarization (CP) methods, have been developed to
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enhance NMR signal sensitivity and resolution. Solid-state
NMR with dynamic nuclear polarization (DNP) (Fig. 1) has
recently attracted attention as a highly sensitive approach
for analyzing solid-state materials [7]. In DNP-NMR,
microwave irradiation in the presence of an appropriate
radical compound (polarizing agent) induces spin polar-
ization transfer from electron spins to nuclei. Although the
principle of DNP itself was developed by Overhauser in the
1950s [8], practical DNP measurements were recently
achieved by Griffin and coworkers, who utilized a gyrotron
to realize DNP under high magnetic field conditions.
Notably, studies on the structural analysis of polymers via
prototypical DNP-NMR were pioneered by Schaefer et al.
in the 1990s [9, 10]. Various radicals have been investi-
gated to achieve efficient DNP enhancement. For example,
Griffin et al. reported DNP-NMR of polystyrene (PS) with
BDPA as a polarizing agent under high-field conditions
[11] and Horii et al. demonstrated the utility of nitroxyl
radicals for the analysis of poly(methyl methacrylate) [12].
Recent works have focused mainly on the cross-effect with
a biradical compound (Fig. 2): a nitroxyl radical at an
appropriate distance was found to be useful in the 2000s,
and various materials were evaluated via DNP-NMR using
this approach [7, 13—15]. Compared with inorganic mate-
rials that possess large specific surface areas such as silica
[16], few studies have investigated the application of DNP-
NMR to synthetic polymers [17], particularly insoluble
polymers, which are suitable targets for solid-state NMR
[18]. On the basis of our previous contributions regarding
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PS-supported catalysts, we applied DNP-NMR to insoluble
polymers. First, we developed a DNP sample preparation
protocol to rationally select the optimal polarizing agent
solution in accordance with the swelling properties of
cross-linked PS. Furthermore, we extended our approach to
high-performance engineering plastics, which are tough
materials that typically have no swelling properties. A
precise structural analysis of trace species in polymer-
supported catalysts was also performed. In this focus
review, we highlight our recent contributions to the struc-
tural analysis of polymers via DNP-NMR.

Sample preparation protocol for cross-
linked polystyrene’

Cross-linked PS, which is conventionally prepared via
copolymerization of styrene and divinylbenzene at an
appropriate ratio, is widely used as a support for hetero-
geneous catalysts and ion-exchange resins. DNP-NMR
measurements of linear PS were reported by Viel et al., who
discussed several DNP sample preparation methods: the
glass-forming method, in which the polymer is dissolved in
a polarizing agent solution and frozen as is, and the film-
casting method, in which a film is prepared in a solution
containing the polymer and biradicals [19]. The key to these
methods is the uniform dispersal of the polarizing agent
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throughout the polymer. For cross-linked polystyrene,
however, an alternative sample preparation method should
be developed because the material does not dissolve in a
polarizing agent solution.

To achieve efficient DNP enhancement, we focused on
the swelling properties of the polymer as a guideline for
DNP sample preparation [20]. TEKPol/1,1,2,2-tetra-
chloroethane (TCE) and AMUPol/dimethylsulfoxide
(DMSO) solutions were selected as prototypical polarizing
agents for DNP-NMR measurements, and the affinity of
these solutions for the polymer is crucial for homogeneous
distribution of the biradicals involved. First, we tested the
swelling volume of cross-linked PS (Fig. 3a) in TCE and
DMSO. Pristine PS (1) swelled more in TCE than in
DMSO, whereas PS modified with NMe;Cl (3a) exhibited
the opposite swelling trend (Fig. 3b, ¢). The ratio of the '*C
signal sensitivity under microwave on/off conditions (ec)
was studied using TEKPol/TCE and AMUPol/DMSO as
polarizing agents. In this study, the ec values were esti-
mated on the basis of an integral of aromatic signals
(120-150 ppm). The ec values were greater when the PS
beads were efficiently swelled (Fig. 3d—g). In fact, the plot
of ec versus swelling volume for various cross-linked PSs
(1, 2, 3a-f) with various alkyl chain lengths of alky-
lammonium salts demonstrated a correlation for both
TEKPol/TCE and AMUPol/DMSO (Fig. 3h, i). For TEK-
Pol/TCE, a linear relationship was obtained for PS modified
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Fig. 3 Structures of pristine PS (1), Merrifield resin (2), and PS modified with quaternary alkyl ammonium salts (3a—f) (a). Photographs of polymer
beads before and after swelling (b, ¢), and DNP-enhanced 3C{'H} CPMAS NMR spectra of 1 (d, e) and 3a (f, g) recorded with AMUPol/DMSO
and TEKPol/TCE. Plots of ec versus swelling volume for TCE (h), and that for DMSO (i). These values are determined by the 'H-B3¢ cp

experiment. Figures are reproduced from ref. [20]
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Fig. 4 DNP-enhanced N{'H}
CPMAS NMR spectra of

3a—f recorded with AMUPol/
DMSO (for 3a-d) and TEKPol/
TCE (for 3e and 3f)

with ammonium salts (3a-f), whereas higher values were
obtained for pristine PS (1) and chloromethylated PS (2).
Compared with polymers bearing ammonium salt, outliers 1
and 2 are likely attributed to closer interfacial contact
between radicals and polymer chains. A linear relationship
was also obtained for AMUPol/DMSO, including for 1 and
2. On the basis of the optimized conditions, we structurally
analyzed various alkylammonium salts supported on PS by
DNP >N NMR at a '*N natural abundance level (0.37%).
For all the polymers studied, N signals with acceptable
signal-to—noise ratios were observed within several hours
of measurement, demonstrating that this method is readily
accessible in synthetic studies (Fig. 4). In addition, two
types of 1N signals were observed for polymers (3b-f) with
more than two alkyl group carbons. For example, in 3b, a
shoulder was observed at 66.1 ppm along with the main
signal at 69.0 ppm. DNP "N NMR measurements of the
model molecule BnNEt;Cl under the same conditions
yielded mostly identical signals, suggesting that structural
isomers of the alkylammonium salt were present on PS.
Furthermore, comparison of the chemical shifts with the
calculated values obtained by DFT revealed that the isomers
were characterized as different conformations of the alkyl
groups (conformers) around the quaternary nitrogen
[21, 22].

End-group characterization of
poly(phenylene sulfide)

High-performance engineering plastics are widely used as
alternatives for metallic materials because of their high
mechanical strength, heat resistance, and chemical resis-
tance [23-25]. In addition to being useful monomaterials,
they are also useful as polymer composites combined with
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other organic as well as inorganic materials, and increased
demand is expected in the near future. To develop com-
posite materials rationally, an in-depth understanding of the
structure of the polymer chain is necessary. High-
performance engineering plastics, however, have intrinsic
features making structural characterization by classical
analytical methods almost inapplicable at the cost of high
chemical stability. Thus, the development of a novel ana-
Iytical method that is suitable for such engineering plastics
is highly desirable. We aimed to apply DNP-NMR to the
structural analysis of engineering plastics and selected
polyphenylene sulfide (PPS) as a model material. As PPS
does not possess swelling properties in common organic
solvents, a novel sample preparation method available for
PPS was investigated [26].

First, the TEKPol/TCE solution was selected as the
polarizing solution for powdered PPS. The DNP sample
was prepared via the incipient wetness impregnation (IWI)
method. The DNP signal enhancement of the '*C signal of
PPS, however, was low (ecpps: ~4). Because the distribu-
tion of TEKPol in the PPS polymer network was apparently
insufficient, we next examined the following heating treat-
ment: PPS and the TEKPol/TCE solution were mixed and
heated at 60 °C or 100 °C in an NMR sample rotor, and B¢
CPMAS measurements were obtained for the sample to
determine ec pps over time. The results showed that heating
at 60 °C efficiently increased ecpps, whereas heating at
100 °C decreased ecpps over time due to the thermal
decomposition of biradicals (Fig. 5). Further optimization of
the polarizing agent concentration and solvent yielded the
maximum ecpps (~40) when 1-chloronaphthalene (1-CN)
was used.

The presence of the ring-opened product of N-methyl-
pyrrolidone (NMP), which is used in the polymerization
reaction as a solvent, at the PPS polymer end was
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previously reported, but no definitive evidence was pro-
vided. DNP *C CPMAS measurements of samples pre-
pared under optimized conditions revealed signals due to
the end group at 24, 34, 39, 52, 156, and 183 ppm (Fig. 6).
Furthermore, DNP SN CPMAS measurements revealed a
signal at 62 ppm (Fig. 7). By comparing the observed
chemical shifts with those observed from the measurement
of synthesized model molecules (4-7) under the same con-
ditions (Fig. 6), we determined the presence of a sodium
carboxylate salt (model structure: 4) at the end group of
PPS. The presence of sodium salt was also evidenced by
atomic absorption spectroscopy, which indicated that PPS
contains 0.11 mmol/g of Na. These results provide reliable
structural information for the development of PPS-based
composite materials. In addition, they clearly demonstrate the
involvement of the secondary amine moiety of the NMP-
derived ring-opened product in the termination step of the
PPS polymerization reaction.

Characterization of polymer-supported
catalysts

Polymer-supported catalysts have practical advantages in
that they can be easily recovered and reused and can be
applied to continuous flow-type reactions by packing them
into columns [27]. Whereas molecular catalysts can be
precisely characterized by solution NMR and other analy-
tical methods, analytical methods suitable for polymer-
supported catalysts are limited, making rational catalyst
design difficult. In this context, DNP-NMR serves as a
powerful analytical method for polymer-supported
catalysts.

Earlier, we developed an alkylammonium salt catalyst
for the synthesis of glycidyl esters by the transesterification
reaction between methyl esters and glycidol [28]. The cat-
alyst worked well in a homogeneous manner as well as in a
cross-linked PS-supported heterogeneous manner, but direct
analysis of the catalyst embedded in the PS polymer net-
work was difficult, preventing us from optimizing the
structure and discussing the reaction mechanisms. We
thus applied DNP >N NMR for structural analysis of the

~rt-=60°C +100°C

: ///%

40 60 80
Time (h)

100 120 140 160

PS-supported alkylammonium salt catalyst using a >N natural
abundance sample [29]. On the basis of precise character-
ization of the catalyst, we synthesized various PS-
supported alkylammonium salt catalysts that are active
for the transesterification reaction (Fig. 8a). After the
structure was optimized, we found that an alkylammonium
salt with two octyl groups and a methyl group was highly
active in the transesterification reaction. Notably, the cat-
alytic activity did not decrease even after reusing the cat-
alyst more than three times. We further examined DNP-
enhanced 'H-'>N HETCOR using a nitrate anion-type cat-
alyst mixed with glycidol. The 2D spectra clearly showed a
signal due to the ring-opened product derived from glycidol
and nitrate, indicating that the alkoxide species behaves as
an active catalyst (Fig. 8b). Moreover, we extended this
approach to another polymer-supported catalysts: a poly-
ethyleneimine (PEI)-supported Ir catalysts [30]. This cata-
lyst is highly active in the decomposition of formic acid,
which is a useful method for recovering hydrogen from a
portable liquid hydrogen carrier. Notably, the catalyst is
available in the form of a column reactor, in which
hydrogen gas is generated continuously simply by flowing
formic acid. In this contribution, DNP'NMR offered a
precise characterization of the catalyst species. On the basis
of DNP "N NMR and '°C NMR, we confirmed that the Ir
complex possesses a pentamethylcyclopentadienyl (Cp*)
group and a bipyridine ligand immobilized on a PEI net-
work. Because such a ligand structure around the Ir center is
critical for high activity, we concluded that the catalyst
works in a heterogeneous manner.

Summary

This focus review highlights our recent contributions to
solid-state. DNP-NMR measurement techniques for inso-
luble polymeric materials. We first described the DNP
sample preparation protocol for cross-linked PS, which is
commonly used in the fields of catalysis and organic
synthesis. We also established an effective DNP sample
preparation method for high-performance engineering
plastics and characterized the PPS end groups. Moreover,
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Fig. 6 DNP-enhanced '°C
CPMAS NMR spectra of model
compounds 4, 5, 6, 7 and PPS.
The signal with an asterisk
corresponds to an impurity in the
polarizing solution. SSB
represents the spinning sideband
of PPS and 1-CN. All the spectra
were recorded at 110-112 K.
This figure was reproduced from
ref. [26] with permission from
the American Chemical Society

Fig. 7 DNP-enhanced °N
CPMAS NMR spectra of model
compounds 5, 6, 8, and PPS. All
the spectra were recorded at
110-112 K. This figure was
reproduced from ref. [26] with
permission from the American
Chemical Society
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Fig. 8 Synthesis of glycidyl ester by catalytic transesterification of
methylester with glycidol. PS-supported quaternary alkylammonium
salts were structurally characterized via DNP-enhanced >N NMR and

we expanded the scope of application to various polymer-
supported catalysts. Further application toward hybrid
polymer materials, polymer-supported catalysts, biode-
gradable polymers, and surface analysis of chemically
treated polymers is ongoing in our group.
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