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Abstract
The ability to sense saccharides in aqueous media using conventional supramolecular approaches was a turning point in
modern chemistry. Herein, we performed oligosaccharide sensing using fluorophore-modified branched glucans. Through
the newly developed glucan-based chemosensor, acarbose sensing was achieved in a selectively and sensitive manner. The
optical properties and morphological changes in the chemosensor were investigated, revealing that the globule-to-
coaggregation process plays a key role in oligosaccharide sensing.

Introduction

Saccharide (sugar) recognition using synthetic receptors or
chemosensors in aqueous media has been extensively
investigated because the process is very important for a
range of biomedical applications [1–13]. Nevertheless,
further practical applications in this field are currently
hampered by numerous drawbacks. Methods to monitor
biologically important oligosaccharides as tumor markers in
real-time are highly desirable [14, 15]. Unfortunately,
methods that sense oligosaccharides in a selective and
sensitive manner are currently inefficient because the target
oligosaccharides in the blood exhibit conformational com-
plexity, extensive solvation (hydration), and extremely low
concentration [6, 12, 16].

To date, two strategies have been successfully used for
saccharide sensing. Boronic acid-incorporated chemo-
sensors capture mono- and disaccharides through dynamic
boronate formation [17–25]. Second, water-soluble supra-
molecular cages, or artificial lectins, are functional exam-
ples in which oligosaccharides are placed in the cavity
through hydrophobic effects and multiple CH-π interactions
[26–38]. However, neither method performs satisfactorily in
real-life applications. The inherent problem of the supra-
molecular approach is its lock-and-key or “rigid” mechan-
ism; the cage cavity must be expanded in a step-by-step
manner to fit the target oligosaccharide closely, which is
unrealistic. An attractive alternative for creating “smarter”
chemosensors with oligosaccharide-sensing control is an
induced-fit approach, which is flexible and dynamic. Nature
adopts induced-fit mechanisms for sugar chain recognition.
For example, lectins utilize the cooperativity of highly
ordered hydrogen-bonding networks and CH-π interactions
[39], which can serve as a blueprint for designing smart
dynamic chemosensor systems.

In 2010, we discovered that curdlan (Cur) functions as a
selective and sensitive oligosaccharide chemosensor
through interactions within the dynamic hydrogen-bonding
networks of the Cur polymer backbone [40]. Cur (Fig. 1a,
top) is the simplest glucan, as it possesses a linear backbone
and consists of β-(1,3)-linked D-glucose units. The most
intriguing characteristic of native glucans is their reversible
denaturing/renaturing behavior, which leads to the forma-
tion of random coils in DMSO and triplexes in aqueous
solutions [41–43]. Therefore, we focused on the reversi-
bility of Cur, hypothesizing that oligosaccharides become
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trapped after splicing into Cur strings during the renaturing
process. As a first prototype shown in Fig. 1b, the modified
Cur glucan bearing 4-dimethylaminobenzoate was devel-
oped as a reporter to sense the tetrasaccharide acarbose
(Fig. 1c) in aqueous media in a selective and sensitive
manner [40]. Although acarbose is used worldwide to treat
type 2 diabetes and obesity, the medication causes unwan-
ted side effects; thus, methods to monitor acarbose con-
centrations in blood, which is an aqueous solution, in real-
time are highly desirable [44]. During our acarbose-sensing
investigation using modified Curs, we established that
morphological changes in the modified Cur induced by
switching the solvent from DMSO to an aqueous medium
play a significant role in sensing [45]. Namely, as shown in

Fig. 1d, the random-coiled string of the modified Cur in
DMSO changes to a globule in aqueous media, which
selectively captures acarbose in dynamic and flexible
strings, generating Cur-saccharide coaggregation. Based on
the sensing mechanism, the limits of detection (LODs) were
significantly improved from 10 mM for DABz-Cur [40] to
5 mM for H2Por-Cur [45], 200 μM for AlPor-Cur [45],
100 μM for AlTPP-Cur [46], and 5 μM for TPE-Cur [47]
by varying the reporter (see structures in Fig. 1b). Previous
studies have noted the appreciable efficacy of the fluor-
escent reporter TPE compared to the circular dichroism
chromophores DABz and Por. Therefore, exploring novel
dynamic polymer backbones that can trap oligosaccharides
is very important.
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In this study, to expand the range of glucans and explore
this new possibility, we focused on the highly branched
glucan 6BG3 (Fig. 1a, bottom), which is a 1,6-glucose-
branched β-1,3-glucan, rather than other branched glucans,
such as schizophyllan (SPG) (Fig. 1a, center). Recently, we
established that 6BG3 also possesses denaturing/renaturing
characteristics based on random coil-to-globule conversion,
as observed for Cur [48]. These findings suggest that 6BG3
can function as a dynamic, flexible, and induced-fit type of
oligosaccharide chemosensor. This prompted us to investi-
gate the type of oligosaccharide recognized by 6BG3 in
aqueous media, the extent of recognition, and the under-
lying mechanism. Herein, we report the oligosaccharide-
sensing behavior of the fluorophore-probed 6BG3 (Fig. 1e)
in aqueous media. According to previous reports on Cur
chemosensors, the TPE fluorophore is suitable for the pre-
sent purpose. This comparative study of 6BG3 vs. Cur
provides new insights into the factors that govern
oligosaccharide-sensing outcomes when using glucans.

Experimental procedure

Materials

Spectroscopic-grade DMSO,Milli-Q H2O, and commercially
available nonaminosaccharides were used as received. 6BG3
(degree of glucose branching= 90%) was supplied by DS
Wellfoods Co., Ltd., and was dried at 60 °C under high
vacuum prior to use. The number-average weight (Mn) and
polydispersity index (PDI) of 6BG3 were previously deter-
mined to be 3300 and 3.9, respectively [48]. Glucosamine
and validamycin A, available in acidic form, were neutralized
by adding an appropriate amount of aqueous KOH to DMSO
containing TPE-6BG3. All polymer concentrations are
expressed in chromophore units unless noted otherwise.

AFM measurements

A 1:9 (v/v) DMSO-H2O solution of native 6BG3 or TPE-
6BG3 was dropped onto the mica surface, predried under

N2 gas flow, and dried under high vacuum prior to AFM
observation.

Saccharide-sensing procedure

Sample solutions of TPE-6BG3 in 1:9 (v/v) DMSO-H2O
were prepared; a portion of the stock DMSO solution
containing TPE-6BG3 and the target saccharide was dilu-
ted with H2O. The resulting mixture was further stirred for
10 min and subsequently subjected to fluorescence
spectroscopy.

Synthesis of TPE-6BG3

The synthetic scheme was shown in Fig. 2. 6BG3 (120 mg,
0.39 mmol in glucose units) was added to dry DMSO
(2 mL) in a three-necked flask. The solution was heated at
70 °C for 1 h, followed by the addition of N-methyl-2-pyr-
rolidinone (NMP) (18 mL). The resulting highly viscous
solution was stirred at 90 °C overnight. After cooling to
room temperature, TPE-COOH (84 mg, 0.22 mmol) was
dissolved in the solution. Subsequently, 1-ethyl-3-(3-dime-
thylaminopropyl)carbodiimide hydrochloride (EDC)
(425 mg, 2.22 mmol) and N,N-dimethyl-4-aminopyridine
(DMAP) (220 mg, 2.22 mmol) were added to the DMSO/
NMP solution, and the mixture was stirred for 3 days. To
promote the reaction, EDC (426 mg, 2.22 mmol) and
DMAP (220 mg, 2.22 mmol) were added every 24 h. After
three days, the reaction mixture was slowly poured into
methanol (200 mL), and a white precipitate was generated.
This precipitate was collected, washed with methanol
(3 × 50 mL), and dried under high vacuum to afford TPE-
6BG3 in 64% yield (135 mg, 0.25 mmol in monomer unit)
as a white solid. 1H NMR (400MHz, DMSO-d6, 25 °C) δH
7.71 (H7), 7.12 (H8), 6.97 (H8), 5.22–2.98 (sugar protons);
13C NMR (150MHz, DMSO-d6, 25 °C) δC 143.1 (CAr),
140.1 (CAr), 131.1–127.4 (CAr), 103.6 (C1), 86.6 (C3), 77.1,
76.8, 75.1, 74.2, 73.0, 70.5, 68.9, 61.4 (C6); IR ν 3426,
2895, 2360, 2135, 1716, 1645, 1445, 1026, 750, 700 cm–1.
The degree of substitution (DS) for TPE-6BG3 was
determined by comparing the molar extinction coefficient
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(ε) of authentic anionic TPE-COOH and the TPE-COOH
liberated from TPE-6BG3 upon hydrolysis. A 5:95 (v/v)
aqueous KOH-DMSO solution of TPE-6BG3 (0.094 g/L)
was stirred for hydrolysis and monitored via UV/vis spec-
troscopy. After hydrolysis (21 h) was completed, the
absorbance at 310 nm was 0.57579. Thus, the concentration
of liberated TPE-COO- from TPE-6BG3 was estimated to
be 4.89 × 10–5M based on the ε = 11772 of TPE-COO-.
When the DS of TPE-6BG3 was 1, the concentration of
liberated TPE-COO- was calculated to be 1.41 × 10–4M
(= 0.094/666.51). Thus, the DS can be estimated as 0.35
(= 4.89 × 10–5/1.41 × 10–4). TPE-6BG3, with a DS of 0.35,
was soluble in DMSO and in 1:9 (v/v) DMSO-H2O.

Results and discussion

For this purpose, the best-performing TPE chromophore for
aggregation-induced emission (AIE) [49] was attached to the
6BG3 backbone as a reporter to afford TPE-6BG3 with a
degree of substitution (DS) of 0.35 (Fig. 1e) (see NMR
spectra in the Supplementary Information (SI)). First, we
investigated the morphological changes in TPE-6BG3 using
atomic force microscopy (AFM). An aqueous solution (1:9
(v/v) DMSO-H2O) of native (nonmodified) 6BG3 was drop-
cast onto mica and then completely dried. The AFM image
of 6BG3 shown in Fig. 3a reveals a dispersed/diverse
structure, as previously reported [48], indicating that a
renatured macromolecular structure similar to that of other
glucans was formed [45–47]. In contrast, the AFM image of
mica obtained from the aqueous solution of TPE-6BG3
exhibited a dotted, globular morphology in the renatured
state (Fig. 3b). The height and width of the globules were
estimated to be 8.6 ± 5.9 nm (n= 13) and 125 ± 32 nm
(n= 12), respectively (Fig. S2 in the SI). These morpholo-
gical changes (random coil-to-globule conversions induced
by modifications of the chromophore on the glucan back-
bone) are very likely to be common in glucan chemistry.

Next, the photophysical properties of TPE-6BG3 were
analyzed in solution to investigate the effects of these
morphological changes on the fluorescence behavior. As
shown in Fig. 4a (black line, inset), the DMSO solution of
TPE-6BG3 displayed negligible fluorescence across the
wavelength range, indicating that the phenyl rings in the
TPE luminogen moved freely on the randomly coiled 6BG3
backbone. Interestingly, the fluorescence spectrum for the
aqueous DMSO solution of TPE-6BG3 (Fig. 4a, red line)
was intense due to the aggregation of the TPE luminogen
based on its AIE character, which is consistent with globule
formation in aqueous media; the appended TPE chromo-
phores aggregated in the globules formed by the dynamic
6BG3 backbone, affecting high emission. The fluorescence
quantum yield (ΦF) of TPE-6BG3 in aqueous DMSO was
sufficient for detection (0.30), in contrast to its undetectable
ΦF in DMSO. Direct evidence of globule formation was
obtained using dynamic light scattering (DLS) measure-
ments. As shown in Fig. 4b (black line), the DLS data
obtained in aqueous DMSO indicated the presence of
monodisperse particles with a hydrodynamic diameter (dh)
of 43 nm. To elucidate the origin of the excited species, the
fluorescence lifetimes of TPE-6BG3 were obtained. The
decay profiles obtained in aqueous media were not sub-
jected to regular deconvolution fitting, as the number of
excited species cannot be determined due to the globular
ensemble of the TPE fluorophores. Therefore, in this
situation, the stretched exponential function (Kohlrausch
decay) model (Eq. 1) appears to be more suitable for
polymeric systems [50, 51]:

IðtÞ ¼ I0 exp½ð � ðt=τÞ�β ð1Þ

where I0 and I(t) express the photon counts at the initial and
arbitrary times, respectively, τ is the average lifetime, and β
is the dispersion factor (0 < β < 1). As shown in Fig. 4c
(left), the decay profiles of TPE-6BG3 in aqueous DMSO
were fitted using Eq. 1 to obtain τ and β as 2.7 ns and 0.86,

Fig. 3 AFM images of (a) native
6BG3 (data from ref. 48) and (b)
TPE-6BG3 prepared from 1:9
(v/v) DMSO-H2O solutions
drop-casted on mica surfaces
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respectively. Next, the changes in optical and particle
characteristics upon complexation with oligosaccharides
were investigated.

To explore the selectivity of the dynamic globulization of
TPE-6BG3, we tested its response to various saccharides,
ranging from mono- to hexasaccharides (see structures in
Fig. 5a); the globule was retained at least during the spec-
troscopic examinations. As shown in Fig. 5b, the fluores-
cence intensities of all the examined saccharides decreased
for TPE-6BG3 upon complexation with saccharides (see
Figs. S3–6 in the SI for detailed data). Notably, acarbose and
its analog, validamycin A, induced markedly enhanced
fluorescence, indicating that robust interactions occurred
between the dynamic 6BG3 backbone and acarbose. Inter-
estingly, the data in Fig. 5c (red regression line) show that the
fluorescence changes were strongly correlated with the length
of the saccharide skeleton. Therefore, the extensive hydrogen
bonding network in the 6BG3 backbone plays a significant
role in the sensing behavior. Among the saccharides tested,
acarbose and validamycin A possess a valienamine structure
(red moiety in Fig. 5a) and may interact strongly with the
dynamic 6BG3 globule. Thus, the responses to glucosamine,
which bears a hydrogen-bond donor amino group, and
hydrophobic fucose, which has a methyl group, were com-
pared to those to the corresponding monosaccharide, glucose.

Based on the results, the former compounds induced more
pronounced changes in fluorescence intensity. This result
further supports the hypothesis that the high selectivity of the
6BG3 globule for acarbose (valienamine + maltotriose) led
to the difference. We found that 6BG3, a glucan, also
exhibited high selectivity toward the acarbose skeleton. This
discovery of acarbose sensitivity could apply to general
glucans, such as SPG and other branched glucans. Titration
experiments were also conducted to determine the sensitivity
for acarbose using the TPE-6BG3 chemosensor. As shown
in Fig. 5d, the AIE intensities gradually decreased upon
complexation of acarbose with TPE-6BG3, indicating that
the dynamic globules expanded (vide infra). In Fig. 5e, the
slope of the linear decrease, which was obtained from Δint

versus the concentration of acarbose (µM), was calculated to
be –3.51 and was used as the sensitivity parameter, Δint= -y
[acarbose (μM)]; the value obtained is smaller than that
(–5.94) of TPE-Cur (DS= 13%) [47]. Furthermore, the
LOD for acarbose obtained using TPE-6BG3 was deter-
mined to be 10 μM (see Fig. S7 and the present LOD defi-
nition in SI); the LOD obtained using TPE-Cur was 5 μM,
as described above. The differences between 6BG3 and Cur
are most likely responsible for the looser renaturing behavior
[48] based on the highly branched glucose on the glucan
backbone.

Fig. 4 a Fluorescence spectra
(λex 378 nm) of TPE-6BG3
(36 μM) in DMSO (black) and in
1:9 (v/v) DMSO-H2O at 25 °C.
b DLS profiles of 1:9 (v/v)
DMSO-H2O solutions of TPE-
6BG3 (9 μM) without (black)
and with acarbose (200 μM,
red). c Fluorescence lifetime
decays (black) of 1:9 (v/v)
DMSO-H2O solutions of TPE-
6BG3 (9 μM) without (left) and
with acarbose (200 μM, right).
The orange lines show the fitting
results
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To obtain mechanistic knowledge on the selective sen-
sing of acarbose by TPE-6BG3, the abovementioned ana-
lyses were performed with acarbose. DLS analysis revealed
a dh of 53 nm (Fig. 4b, red line). The expanded globule
structure resulted from the formation of 6BG3-acarbose
coaggregates, as illustrated in Fig. 5f. This finding is further
supported by the gradual decrease in the AIE intensities
upon the addition of acarbose, with a decreased ΦF of 0.27.
The decrease in fluorescence intensity upon the addition of
acarbose can be explained by the restricted rotation of the
phenyl rings in the TPE luminogen, which relaxed due to
the expansion of the dynamic globule. Furthermore, the
decay profile in the presence of acarbose was subjected to
Eq. (1), which yielded τ and β values of 2.5 ns and 0.83,
respectively. The shorter τ and high degree of β strongly
indicate that the degree of freedom increased for the
appended TPE chromophore, reinforcing the expansion of
flexible and dynamic globular coaggregation.

Conclusions

In conclusion, we developed a glucan-based dynamic,
induced-fit oligosaccharide chemosensor. The highly bran-
ched glucan 6BG3 traps acarbose, a clinical drug, in aqueous
media. Acarbose sensing was achieved in a selective and
sensitive manner via globule-to-glucan-saccharide

coaggregation conversion. This sensing behavior may be
general for all glucans. Therefore, the results obtained herein
can serve as a guideline for the construction of new smart
chemosensors based on a dynamic induced-fit approach,
which may enable the sensing of complicated oligosacchar-
ides and sugar chains, which are challenging to recognize
using conventional lock-and-key-type chemosensors.
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