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Abstract
Hyaluronic acid (HA) has garnered much attention in the development of novel hydrogels. Hydrogels, as drug delivery
systems, are very important in tissue engineering applications. In this study, we developed a novel HA nanogel
containing a cholesterol and maleimide derivative (HAMICH) and its corresponding crosslinked hydrogel (HAMICH gel)
to encapsulate drugs for their subsequent release. HAMICH gels self-assemble into nanoparticles via hydrophobic
interactions. Dynamic light scattering analysis of HAMICH revealed that the particle size tended to decrease with
increasing degree of cholesterol moiety substitution. The HAMICH gel was prepared through a Michael addition reaction
between HAMICH and pentaerythritol tetra(mercaptoethyl)polyoxyethylene. The concentration of HAMICH needed for
gelation depends on the degree of cholesterol moiety substitution; the higher the substitution degree is, the greater the
concentration of HAMICH needed. The HAMICH gel exhibited less swelling and a smaller volume change than the gel
with an unmodified cholesterol moiety in phosphate-buffered saline (pH 7.4). The HAMICH gel displayed enhanced
peptide and protein trapping abilities without hydrogel swelling, suggesting its potential as a HA hydrogel for biomedical
applications.

Introduction

Hydrogels are useful in biomedical applications, such as
tissue engineering and drug delivery [1–11]. Numerous
hydrogels, including synthetic hydrogels obtained by

crosslinking hydrophilic polymers and hydrogels with
proteins (e.g., gelatin and collagen) or polysaccharides (e.g.,
alginic acid and carrageenan) as the main components, have
been reported [12–19]. Hyaluronic acid (HA) has attracted
considerable attention as a raw polysaccharide. Moreover,
as a functional polysaccharide that is a component of the
extracellular matrix, HA and its derivatives have been used
in various medical applications, including knee, eye, and
skin therapy, owing to their biocompatibility and biode-
gradability [20–28]. For example, HA and its derivatives
have been developed for the treatment of osteoarthritis and
dry eye [29–31]. In addition, HA interacts with certain
proteins, such as aggrecan and tumor necrosis factor-
inducible gene 6 protein, as well as receptors, such as
CD44, and these interactions are crucial for multiple bio-
logical processes, including cell survival, apoptosis,
inflammation, and tumorigenesis, suggesting that HA is
useful in regenerative medicine and cell therapy. Further-
more, HA is useful as a drug delivery substrate and has
various applications [32–39]. Although HA hydrogels have
many physiological advantages, they also have several
disadvantages, including low mechanical strength due to
swelling. In addition, crosslinked hydrogels prepared from
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HA modified with crosslinkable functional groups such as
methacryl or maleimide cannot encapsulate peptides or
proteins. This makes it difficult to apply HA crosslinked
hydrogels in regenerative medicine, where bioactive pro-
teins such as growth factors are used.

In this study, we focused on crosslinked hydrogels
comprising HA modified with cholesterol derivatives and
maleimide crosslinking groups. By adjusting the balance of
the hydrophobicity of the cholesterol group and the
hydrophilicity of HA, we believe that the amount of
encapsulated material could be controlled and that hydro-
phobic drugs could be encapsulated more efficiently.
Cholesterol-bearing HA can be used to form nanogels;
therefore, by assembling nanogels into a macrogel, we
expect to be able to create novel hydrogels with nanogel
characteristics, such as the abilities to encapsulate bioactive
substances and perform chaperone functions. For this pur-
pose, we prepared HA nanogels using HA modified with
cholesteryl and maleimide groups with the aim of con-
structing a novel crosslinked hydrogel system through a
Michael addition reaction using a poly(ethylene glycol)
(PEG) crosslinker with a thiol functional group.

Materials and methods

Materials

HA (average molecular weight= 120 kDa) was purchased
from Bloomage Biotechnology Japan Co., Ltd. (Tokyo,
Japan). Cation-exchange resin (Dowex® 50WX-8-400) was
purchased from Sigma‒Aldrich (Tokyo, Japan). Cholesteryl
chloroformate, N-Boc-1,6-hexanediamine, and N-(5-ami-
nopentyl)maleimide hydrochloride were purchased from
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).
Hydrochloride 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-
methylmorpholinium chloride (DMT-MM) was purchased
from Kokusan Chemical Co., Ltd. (Tokyo, Japan). Dime-
thyl sulfoxide (DMSO) and NaCl were purchased from
FUJIFILM Wako Pure Chemical Co., Ltd. (Osaka, Japan).
Dialysis membranes (Spectra/Por, molecular weight
cutoff= 12–14 kDa) were purchased from Spectrum
Laboratories, Inc. (Rancho Dominguez, CA, USA). Pen-
taerythritol tetra(mercaptoethyl)polyoxyethylene (4-arm-
PEG-SH) (molar weight= 1 × 104 g/mol) was purchased
from NOF Corporation (Tokyo, Japan). Other chemicals
were commercially available, and all other reagents were
used without further purification.

Characterization

1H nuclear magnetic resonance (NMR) measurements were
performed using a JEOL JNM-A400 spectrometer (JEOL,

Tokyo, Japan) with 0.02 N deuterium chloride (DCl)/d6-
DMSO as the solvent.

Synthesis of maleimide group-modified HA
nanogels containing cholesterol and a maleimide
derivative (HAMICH) (cholesteryl and maleimide
group-bearing HA)

HA was modified with cholesterol and maleimide deriva-
tives in solution to create new nanoparticles. Cholesteryl-6-
aminohexylcarbamate and HA tetra-n-butylammonium salt
(HA-TBA) were prepared as described previously [40].
HA-TBA was obtained by converting HA using a cation-
exchange resin and reacting it with N-(5-aminopentyl)mal-
eimide hydrochloride using DMT-MM as the condensing
agent. HA-TBA was fully dissolved in DMSO (1% w/v),
after which N-(5-aminopentyl)maleimide in DMSO was
added, and the mixture was stirred at 25 °C for 5 min.
Subsequently, DMT-MM was added to the mixture, which
stirred overnight at room temperature. The feed molar ratio
was 100:20:24 [glucuronic acid of HA:DMT-MM:N-(5-
aminopentyl)maleimide hydrochloride]. Thereafter,
cholesteryl-6-aminohexylcarbamate was reacted using a
similar procedure. The feed molar ratio was 100:x:1.2x
(glucuronic acid of HA:DMT-MM:cholesteryl-6-amino-
hexylcarbamate, where x= 1.2, 5, 10, 16, 22, 31, and 44).
The HA product was purified by dialysis with a 12–14 kDa
membrane against DMSO, 0.150M NaCl, and distilled
water. The purified HA solution was filtered through a 0.22-
µm membrane filter and then lyophilized until dry. For
NMR analysis, HAMICH was dissolved in 0.02 N DCl/
DMSO. 1H NMR spectra were obtained using a 400MHz
NMR instrument (JNM-ECS400). The degree of mal-
eimidation was 15%, as determined using 1H NMR.

Size exclusion chromatography coupled with
multiangle laser scattering

HA derivatives were analyzed by size exclusion chroma-
tography with multiangle light scattering detection (SEC-
MALS; Wyatt Dawn NEON multiangle light scattering
detector; Wyatt Technology, Santa Barbara, CA, USA)
and refractive index monitoring (Optilab refractive index
monitor; Wyatt Technology) using an isocratic high-
performance liquid chromatography system (Waters Cor-
poration, Milford, MA, USA). The HA derivatives were
diluted to 1.0 mg/mL in SEC-MALS buffer (10 mM
phosphate buffer, pH 7.4). Separation was performed in
SEC-MALS buffer using a Tosoh G4000SWXL column
(Tosoh Bioscience, San Francisco, CA, USA) at a flow
rate of 0.5 mL/min. Data analysis was performed using
ASTRA software (Wyatt Technology) using the dn/dc
values of HA.
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Dynamic light scattering (DLS)

DLS analysis was performed using the same solvent as that
used for SEC. A HAMICH solution in 10 mM phosphate
buffer (pH 7.4) was characterized by DLS using an ELSZ-
2000 instrument (Otsuka Electronics, Osaka, Japan).
Autocorrelation functions were calculated using the cumu-
lant method. The hydrodynamic diameter of HAMICH was
analyzed using the Stokes–Einstein equation.

Inverted vial tests (HAMICH gelation tests)

The gelation ability of HAMICH was determined using vial
inversion tests. HAMICH gel was prepared by crosslinking
through a Michael addition reaction between the maleimide
in HAMICH and the thiol groups in 4-arm-PEG-SH.
Briefly, HAMICH and 4-arm-PEG-SH were dissolved
separately in 10 mM phosphate buffer, and after both
materials had dissolved completely, the two solutions were
poured into a vial with cooling to 5 °C and then incubated at
37 °C for 30 min. When the sample showed no flow within
5 min, it was classified as either a gel or a sol.

Preparation of the crosslinked HAMICH gels

HAMICH and 4-arm-PEG-SH were dissolved separately in
10 mM phosphate buffer, and after both materials had dis-
solved completely, the two solutions were poured into a
disk-shaped silicone rubber mold (6 mm diameter and 1 mm
depth), which was placed on a polytetrafluoroethylene
membrane with cooling to 5 °C. Subsequently, a silicone
coverslip was used to cover the mold, which was then
incubated at 37 °C for 30 min. After the incubation, the
samples were transferred to glass vials. The molar ratio of
the maleimide groups in HAMICH to the thiol groups in 4-
arm-PEG-SH was 1.1:1.

Water uptake by the hydrogel

HAMICH gels (6 mm in diameter and 1 mm thick) were
placed at the bottom of replicate preweighed glass vials
(n= 4). The initial weights of the vials containing the
HAMICH gels were measured. Subsequently, 1 mL of
phosphate-buffered saline (PBS) was added, and each
mixture was incubated at 37 °C. At 1, 12, and 24 h, the
buffer solution from each vial was carefully removed, and
the vials were weighed to determine the mass of the swollen
hydrogel. Subsequently, fresh PBS was added to replace the
removed solution. The masses of the original (W0) and
swollen (WS) hydrogels were calculated by subtracting the
mass of the empty vials from the total mass. The water
uptake (Q) of the HAMICH gels was calculated by sub-
tracting the initial mass from the swollen mass using the

following equation:

Q ¼ Ws �W0ðmgÞ

Protein loading and release

HAMICH gels (6 mm in diameter and 1 mm thick) were
prepared as previously described and immersed in PBS. After
reaching equilibrium swelling, the HAMICH gels were
soaked in 1 mL of fluorescein isothiocyanate (FITC)-labeled
insulin (FITC-insulin; 100 μg/mL) in PBS at 37 °C. The
fluorescence intensity of the supernatant in the vial (200 μL of
solution) was measured at specific time points using a
DeNovix DS-11 FX+ Spectrophotometer-Fluorometer (with
the “Fluoro Protein” module; DeNovix Inc., Wilmington,
DE, USA). Subsequently, the fluorescent samples were
returned to their original vials. The loading efficiency of
FITC-insulin was estimated from the decrease in fluorescence
intensity. The in vitro release of FITC-insulin from the
HAMICH gels in the presence of serum was also evaluated.
Briefly, HAMICH gels complexed with FITC-insulin (6 mm
diameter, 1 mm thick) were immersed in 1 mL of PBS con-
taining 10% fetal bovine serum at 37 °C. Next, 200 μL
samples of the supernatant were collected at specific times,
and their fluorescence intensity was measured using a
DeNovix DS-11 FX+ Spectrophotometer-Fluorometer (with
the “Fluoro Protein” module; DeNovix, Inc.). Subsequently,
the fluorescent samples were returned to their original vials.
All the experiments were performed in triplicate.

Results

Synthesis and characterization of HAMICH

HA with a molecular weight of 120 kDa was used to
synthesize HAMICH after tetrabutylammonium HA was
prepared in a manner similar to that reported previously
[40]. Specifically, HAMICH was synthesized by the con-
densation of an amine or cholesterol derivative with a
maleimide group and the carboxylic acid moiety of HA
using DMT-MM (Fig. 1). As a result, a characteristic peak
derived from the maleimide group was observed at 6.9 ppm,
confirming that the target product, in which a maleimide
group was added to HA, was successfully obtained (Fig. 2).
This reaction proceeded at a high rate of reaction (>90%)
for target cholesterol derivative degrees of substitution
ranging from 1–30% (Table 1). To prevent residual
unreacted cholesterol hydrochloride remaining, the con-
densing agent DMT-MM was added at 1.1 eq. relative to
cholesterol hydrochloride. The unreacted DMT-MM and its
degradation products were removed by dialysis, and the
analysis was performed with HAMICH in aqueous solution.
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The absolute molecular weight and number of aggregates in
the solution were calculated using a MALS detector. The
results showed that the absolute molecular weight increased
with increasing degree of cholesterol derivative substitution.
Conversely, a decrease in the number of aggregates was
observed at a cholesterol derivative substitution degree of
15–20%. Furthermore, at a cholesterol derivative substitu-
tion degree of ≥28.6%, the absolute molecular weight
increased again, accompanied by an increase in the number
of associations.

The size of the particles associated with aggregation in
solution was further verified by DLS analysis. When dis-
solved in 10 mM phosphate buffer (pH 7.4) at a con-
centration of 2 mg/mL, HAMICH formed nanoparticles by
self-aggregating in water, and the smallest particle size was
observed for a cholesterol moiety substitution of 20%
(Fig. 3).

Crosslinked hydrogel preparation

The gelation behaviors of the maleimide-modified HA
derivatives with different degrees of cholesterol derivative
substitution were verified by inverted vial tests, and phase
diagrams were constructed using the concentrations of the
crosslinking agents 4-arm-PEG-SH and HAMICH
(Fig. 4a–e). The concentration of HAMICH needed for
gelation differed according to the cholesterol incorporation
rate; at cholesterol incorporation rates <10%, gelation
occurred at HAMICH concentrations <2.5 mg/mL, whereas
at cholesterol incorporation rates of 15%, the concentration
of HAMICH needed for gelation was >5 mg/mL. Con-
versely, at a cholesterol incorporation rate of 15%, the
concentration needed for gelation was ≥5 mg/mL, and at a
cholesterol incorporation rate of 20%, the minimum con-
centration of HAMICH needed was 10 mg/mL. Gelation
was rapid with all cholesterol derivatives, and crosslinked
gels formed in at least 30 min.

Influence of the cholesterol moiety on the water
uptake properties

Next, the water uptake behaviors of the crosslinked gels were
assessed. Specifically, crosslinked gels were obtained by
adjusting the final HAMICH concentration to 7 mg/mL. The
resulting gels were immersed in PBS, and water uptake was
calculated by tracking the change in weight of the gel. As a
result, the water uptake by the HA crosslinked gel without
cholesterol (0% Chol) increased by approximately 40%
compared to its initial weight. Water uptake by the
cholesterol-modified HA-crosslinked gels decreased with
increasing cholesterol content. In contrast, water uptake by
the cholesterol-unmodified HA-crosslinked gels increased.
Additionally, water uptake by the crosslinked gel decreased
as the cholesterol content increased (Fig. 5). At all cholesterol
incorporation rates, the hydrogels reached equilibrium within
1–3 h of immersion in PBS. A 20% cholesterol incorporation
rate was applied with a HAMICH concentration of 16.7 mg/
mL because a gel could not be obtained with 7 mg/mL
HAMICH (Supplementary Fig. X1).

Fig. 1 Scheme for the synthesis
of hyaluronic acid (HA)
nanogels containing cholesterol
and a maleimide derivative
(HAMICH)

a

a

CHHA

HAMICH

Fig. 2 1H NMR analysis of HAMICH in 0.02 N DCl/DMSO-d6
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FITC-insulin loading and release

Encapsulation tests were performed using FITC-insulin as
a model protein and peptide drug (Fig. 6a). The amount of
dye incorporated into the gel was calculated by subtracting
the fluorescence intensities of the supernatants. The
crosslinked gels with cholesterol showed coloration
derived from fluorescent dyes, but the crosslinked gel
without cholesterol showed almost no coloration (Fig. 6b).
The results showed that crosslinked gels with cholesterol
loaded more insulin. Additionally, the highest inclusion
amount was observed at a cholesterol incorporation rate of
5–10%, and the amount of encapsulated material was
reduced with the 15% HAMICH gel (Fig. 6c). In the
cholesterol-unmodified HA-based hydrogel, all of the
insulin was released within 1 day. On the other hand, in
the cholesterol-modified HA hydrogels, >50% of the
insulin was released after 1 day from all the crosslinked
gels, and >21 days were needed for the remaining insulin
to be released (Fig. 6d).

Discussion

Herein, we report a novel crosslinked HA hydrogel desig-
nated HAMICH gel. HAMICH was synthesized by mod-
ifying the carboxyl group of glucuronic acid with
cholesteryl and maleimide derivatives using HA, which has
a relatively low molecular weight (120 kDa) and the
advantage of low viscosity compared with that of high-
molecular-weight (>500 kDa) HA. Comparison with the
35 kDa molecular weight HA indicated that a lower mole-
cular weight weakens the gel strength; hence, 120 kDa HA
was selected (data not shown). In a previous study, dialysis
purification was performed under acidic conditions [41];
however, obtaining the target product under neutral condi-
tions was difficult. Under these reaction conditions, the
reaction mixture and dialysis mixture were acidic (pH 4–5),
and it was presumed that the target product could be
obtained stably without degradation of the maleimide
group. The pH of the purified aqueous solution before
lyophilization was approximately 4. For structural analysis,
the unreacted maleimide was removed by dialysis pur-
ification, lyophilized, and dissolved in a heavy solvent, and
its identity was confirmed by NMR. Cholesteryl HA
(CHHA) was synthesized as reported previously [40], and
the NMR peaks from samples with and without maleimide
were compared for verification. The peak at 6.9 ppm, which
is indicative of the maleimide group in HAMICH modified
with the maleimide group, was observed, indicating that this
group could modify HA (Fig. 2). Additionally, the struc-
tures of the synthesized maleimide-modified HA derivatives
with different degrees of cholesterol derivative substitution
were confirmed by 1H NMR [41].

Next, we analyzed the structure of HAMICH before
crosslinking in solution and found that it self-assembles into

Table 1 Characteristics of
HAMICH

Target degree
of Chol moiety
[%]

DSa [%] Molecular weight of
HAMICH polymerb

[units, g/mol]

Molecular weight of HAMICH
nanoparticle Determined by
SEC-MALS [kDa]

Association number
of HAMICH [−]

0 0.0 422.42 298.7 2

1 1.3 428.95 853.3 7

5 5.4 448.40 3864.8 29

10 10.3 473.15 9619.1 68

15 14.9 494.77 1947.3 13

20 20.1 520.90 1126.8 7

30 28.6 561.76 3682.4 22

aDegree of cholesterol derivative substitution
bMolecular weight of the HAMICH polymer calculated using DS. The DS per 100 glucuronic acid units was
determined. The DS of the cholesteryl derivative substitution (per 100 HA units) was calculated by the ratio
of the integrations of the peak of the N-acetyl group in HA (δ= 1.8, 3H, COCH3) and that of the methyl
group in cholesterol (δ= 0.7, 3H, CH3) in the 1H NMR spectrum. The DS of the maleimide derivative
substitution (per 100 HA units) was calculated in the same manner. The average molecular weight of the
HAMICH polymer was subsequently calculated by dividing the molecular weight derived from the DS by
the number of units

Fig. 3 Characteristics of HAMICH. The results are expressed as the
mean ± standard deviation (n= 3)
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nanoparticles in water via hydrophobic interactions between
cholesterol molecules with particle sizes ranging from 10 to
200 nm, depending on the degree of cholesterol moiety
substitution. The particle size tended to decrease with
increasing cholesterol incorporation. This trend is similar to
that observed for conventional cholesteryl-modified HA
without the maleimide group. Although the extent of the
cholesterol–maleimide interaction is currently unknown,
the particle diameter was determined in a cholesterol

incorporation rate-dependent manner, suggesting that par-
ticles consisting of a core of hydrophobic domains are
formed by cholesterol–cholesterol interactions. The dis-
tribution of maleimide groups (orientation and position of
the functional groups within the nanoparticles), which may
be strongly correlated to gelation behavior, should be ver-
ified in the future. The smallest particle size was observed
with 20% cholesterol incorporation, which tended to differ
from that of CHHA nanogels without the maleimide group.

Fig. 4 Phase diagram of the gelation of HAMICH with different degrees of cholesterol moiety substitution
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In other words, while the particle size of the previously
reported CHHA nanogels was the smallest at a cholesterol
incorporation rate of 40%, the particle size of HAMICH
increased with a cholesterol incorporation rate of 20%. This
suggested that the total carboxy group substitution rate of
HA may contribute significantly to the particle size. This
difference may be due to a decrease in hydrophilicity
resulting from the loss of the carboxylic acid moiety of HA.
MALS analysis from a previous report on CHHA nanogels
without maleimide also revealed that the particle size
decreased and the number of aggregates increased as the

degree of cholesterol derivative substitution increased to
approximately 40%, indicating a different trend [40].

Next, the gelation behavior of HAMICH, which can
form crosslinked gels through a Michael addition reaction
between the maleimide and PEGSH mercapto groups, was
examined (Fig. 7). Regarding the crosslinking gelation rate,
after mixing at a maleimide:thiol (SH) molar ratio of
1.1:1.0, gelation occurred within a few seconds under var-
ious specific conditions, suggesting its applicability as a
novel in situ gelation system capable of encapsulating
proteins. For example, attenuated total reflectance–Fourier
transform infrared analysis of the formation of crosslinked
hydrogels using HAMICH with 5% cholesteryl modifica-
tion revealed that the peak at 690 cm−1 derived from mal-
eimide disappeared after gelation [42]. Concerning the
relationship between the concentrations of the crosslinker
groups in 4-arm-PEG-SH and HAMICH, data with cho-
lesterol incorporation rates of 1, 10, and 15% suggest an
appropriate range of maleimide:thiol (SH) molar ratios. In
other words, by converting the phase diagram into molar
ratios, a maleimide:thiol (SH) molar ratio of 1:1 to 2:1 was
expected to be the preferred range. This is because at higher
concentrations of 4-arm-PEG-SH, the maleimide group may
react with the thiol group on one arm of 4-arm-PEG-SH
before the intramolecular crosslinking reaction between the

Fig. 5 Water uptake by the HAMICH gel. The results are expressed as
the mean ± standard deviation (n= 4)

Fig. 6 Insulin encapsulation profiles of the HAMICH gel.
a Encapsulation of fluorescein isothiocyanate (FITC)-labeled insulin in
the HAMICH gel, in which the concentration of HAMICH was
7.0 mg/mL (n= 3). b Images of hydrogels containing FITC-labeled
insulin. c Correlation diagram between the degree of cholesterol

moiety substitution and the uptake of FITC-labeled insulin at 24 h
(n= 4). d In vitro release of FITC-labeled insulin from HAMICH gels,
in which the concentration of HAMICH was 7.0 mg/mL (n= 3). The
results are expressed as the mean ± standard deviation
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two arms of 4-arm-PEG-SH occurs. Considering the rela-
tionship between the cholesterol incorporation rate and HA
concentration needed for gelation, gelation occurred even at
a very low HA concentration of 3 mg/mL when the cho-
lesterol incorporation rate was <10% with an average par-
ticle size was ≥50 nm, as determined by DLS. Conversely, a
higher HAMICH concentration (≥4.9 mg/mL) was needed
when the cholesterol incorporation ratio was ≥15%. This
was due to differences in inter- or intramolecular cholesterol
interactions during the self-assembly of the nanoparticles
and the fact that the polymer chains do not overlap, making
gelation difficult (Fig. 8). In contrast, in a previous study on
nanoparticle-based crosslinked hydrogels (cholesterol-
bearing pullulan [CHP] crosslinked nanogels), which

belong to the same polysaccharide family as HA, a CHP
concentration of ≥20 mg/mL was needed to obtain a
crosslinked gel [43–45]. This difference may be attributed
to the significant difference in the spreading of the polymer
chains of pullulan, a nonionic polysaccharide, and HA, a
polyelectrolyte, in water. Conversely, we also verified the
differences in the crosslinking groups. In other words, we
examined crosslinking groups other than maleimide that are
amenable to Michael addition. Specifically, we synthesized
HA derivatives modified with 3% cholesterol and 20%
methacryl groups and crosslinking groups, such as 19%
cholesterol and 20% methacryl groups, and examined the
possibility of gelation. However, obtaining gels under the
same conditions as those of maleimide, even at a

HAMICH 4arm-PEGSH

+

HAMICHgel

Michael addition

Fig. 7 Schematic illustration of
the Michael addition reaction
between HAMICH and PEGSH

1

Chol

sodium hyaluronate

Chol 15%
Maleimide 15%

4arm-PEGSH Maleimide

< Chol 15% 
Maleimide 15%

Fig. 8 Schematic illustration of the gelation of HAMICH with 4-arm-PEG-SH
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concentration of 20 mg/mL of the HA derivative, was dif-
ficult (data not shown). This was due to the low reactivity
for the Michael addition reaction, suggesting that the reac-
tivity of the crosslinking group is important for obtaining
crosslinked gels consisting of nanoparticles. A more
detailed rheological analysis of the relationship between the
polymer overlap concentration (C*) and gelation can pro-
vide a better understanding of the gelation mechanism [46].

The change in weight (volume) of the gels in PBS was
examined. Generally, HA and HA-crosslinked gels are
predisposed to extreme swelling owing to their hydrophilic
and water-holding properties [47–49]. Water uptake by the
cholesterol-unmodified HA-crosslinked gels increased the
weight of the gel by approximately 40% compared to its
initial weight. This swelling ratio is comparable to that of
hydrogels composed of maleimide-modified HA and gelatin
reported previously [41]. Conventional cholesterol-
unmodified HA hydrogels absorb a considerable amount
of water; however, the novel HAMICH hydrogels exhibit
less swelling and smaller volume changes. The swelling of
crosslinked hydrogels consisting of a novel HA with mal-
eimide and cholesteryl groups could be controlled by the
degree of cholesterol substitution. The hydrophobic domain
of the HA-crosslinked hydrogel, which participates in
hydrophobic interactions between the cholesterol groups,
contributes to the suppression of gel swelling.

Finally, insulin was used as a model compound for
peptide and protein drugs [50]. On the one hand, in the HA
crosslinked gel without cholesterol, almost no insulin was
encapsulated because of electrostatic repulsion. On the other
hand, in the HA crosslinked gel modified with cholesterol,
the insulin inclusion amount increased due to hydrophobic
interactions and the relaxation of electrostatic repulsion
attributed to the isoelectric point of insulin [50]. The higher
the cholesterol incorporation rate (up to 15%), the greater
the hydrophobicity and the less drug incorporated. This
finding suggested an optimal inclusion range for the degree
of cholesterol substitution in cholesteryl-substituted HA
nanogels without maleimide modification (Fig. 6c).
Although >60% insulin release was observed within 1 d, the
release was confirmed to be sustained over an extended
period compared with that in the cholesterol-unmodified
hydrogel (Fig. 6d). Conventional cholesterol-unmodified
HA-based hydrogels do not exhibit cholesterol-driven
encapsulation; therefore, encapsulating large amounts of
these materials and achieving sustained release are chal-
lenging. This method may also be suitable for use with
water insoluble drugs. These results suggest that this
material may be useful as a novel HA-based hydrogel for
loading various drugs. At present, the novel crosslinked
HAMICH gel has not undergone biological evaluation.

Detailed biological assessments are essential for demon-
strating the utility of this biomaterial. Further studies will
encompass biological evaluations to understand the bio-
compatibility of this material and, consequently, to develop
the most suitable biomaterial.

Conclusion

In this study, we report a novel crosslinked hydrogel
composed of HA modified with cholesteryl, maleimide
groups and PEGSH. Gelation depended on the concentra-
tions of HAMICH and PEGSH; however, the needed con-
centration varied depending on the rate of cholesterol
incorporation, with low concentrations enabling cross-
linking. Furthermore, the crosslinked hydrogels and nano-
gels contained a hydrophobic domain derived from
cholesterol that inhibited swelling, suggesting that the
change in volume could be controlled. These results indi-
cate that the novel crosslinked HA hydrogel, which can
encapsulate peptides and proteins and has controllable
swelling properties, can be applied in regenerative medicine
to control cell differentiation.
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