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Abstract
Carbohydrates constitute a sustainable source of materials that has attracted growing interest due to their “green” aspects,
biocompatibility, biodegradability and biorecognition properties. Their industrial applications at the macroscopic scale offer
new solutions for biobased materials, and they have been applied in different sectors, such as cosmetics, health, packaging,
or microelectronics. To gain more understanding and incorporate these systems into new challenges/applications and devices
(e.g., bionanoelectronics) in response to the transition to a biobased economy, it is of great importance to control their self-
assembly at the nanoscale. This has been the aim of our work during the past decade—we have used “click chemistry” and
developed a new class of linear carbohydrate-based (so-called high χ) diblock copolymer systems resulting, via self-
assembly, in highly nanostructured sub-10-nm-resolution thin films. In this focused review, we summarize some recent work
illustrating the self-assembly properties leading to the design of glyconanoparticles and highly nanostructured thin films
potentially of great importance in different applications and biomarkers.

Introduction

The major interest in block copolymer (BCP) nanos-
tructured materials and their manipulation in nanoscience
derives from the promise of manipulating matter atom-by-
atom and molecule-by-molecule to create the next genera-
tion of miniaturized devices with performances and func-
tionalities that are orders of magnitude more efficient than
those provided by current manufacturing technologies. Two
general approaches, known as top-down and bottom-up
strategies, are actually applied to the preparation of nano-
sized structures. The top-down strategy consists of

“carving” a pre-existing macroscopic material through, for
example, chemical, mechanical or optical processes (litho-
graphy) to obtain final materials with precisely designed
shapes, dimensions and properties. The challenge facing the
nanotechnology community today is the development of
novel structures whose sizes and spacing are approaching a
few nanometers. This can be accomplished via the so-called
bottom-up approach, which consists of hierarchically assem-
bling (chemically or physically) a finite number of elementary
building blocks (atoms, molecules or macromolecules). In
addition to the reduced number of steps associated with this
strategy, it is reversible in most cases and allows the combi-
nation of different materials (minerals, metals, synthetic and
natural polymers, etc.). Bottom-up methods can elaborate
tailored and complex materials via self-assembly processes
driven by chemical and/or physical forces with low-cost
technology compared to standard techniques.

Self-assembly of BCP systems enables the low-cost
design of well-defined nanometer-sized nanoparticles and
periodic patterns that find potential applications in nano-
lithography, nanoscale device fabrication, production of
porous materials, templating and patterning of (in)organic
materials, which find important developments in catalysis,
membrane separation, sensors, the semiconductor industry
and storage technology [1–4]. The thermodynamics
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dictating the self-organization of a coil-coil BCP are well
established [5].

Depending on the block incompatibility (Flory interac-
tion parameter χ) and the BCP composition (weight fraction
and polymerization degree), one can design suspensions of
nanoparticles (spherical micelles, worm-like micelles and
vesicles) in solution, and different morphologies can be
generated in thin films, i.e., spherical domains, lamellar
domains oriented perpendicular to the substrate, bicontin-
uous gyroids, and hexagonally packed cylinders oriented
either perpendicular or parallel to the substrate. To date, the
most studied and applied BCP systems thus far are poly
(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) [6],
poly(styrene)-b-poly(ethylene oxide) (PS-b-PEO) [7], poly
(styrene)-b-poly(lactide) (PS-b-PLA) [8], and poly(styrene)-
b-poly(2-vinylpyridyne) (PS-b-P2VP) [9]. These model
systems have enabled us to reach some of the most
advanced knowledge and applications of BCP self-
assembly as well as most innovative conceptual designs
for their application as nanostructured templates [10].
However, all of them have typical limitations and advan-
tages (e.g., thickness, long period, long-range order, and
degradability limitations as well as the necessity for surface
“neutralization”), making them complementary systems for
the community working on BCP self-assembly. In addition,
other BCP structures, e.g., PS-b-poly(dimethylsiloxane)
(PS-b-PDMS) [11], P2VP-b-PDMS [12], or star-shaped
miktoarm BCPs [13], have also significantly contributed to
the actual state-of-the-art BCP self-assembly.

In the last decade, many efforts have been devoted to
developing high-χ (and thus low-N) BCPs to reach sub-10
nm nanopatterns [14]. This is motivated by the fact that
smaller features can be accessed using materials with low
polymerization degrees only if the χN product required for
phase separation is compensated by a higher value of χ.
This has been afforded by the careful design of new gen-
erations of BCP systems. Among others, significant exam-
ples of high-χ BCPs include PS-b-maltoheptaose (PS-b-
MH, a pioneering example affording one of the lowest
features reported to date: 5 nm) [15, 16], poly

(trimethylsilylstyrene)-b-MH (PTMSS-b-MH) [17], PDMS-
b-PMMA [18], poly(1,1-dimethyl silacyclobutane)-b-poly
(methyl methacrylate) (PDMSB-b-PMMA) [19, 20], or poly
(cyclohexylethylene)-b-PMMA [21].

This paper provides an overview of the design of gly-
conanoparticles [22–31] and thin films [32–62] obtained
from the self-assembly of high-χ carbohydrate-based BCPs
(PS-b-MH) and summarizes some significant results
obtained by the group of Hokkaido University (T. Satoh, T.
Isono), the group of National Taiwan University (W.-C.
Chen), and the group of Univ. Grenoble Alpes (CNRS-
CERMAV) (R. Borsali).

Characterization methods

Characterization

1H NMR spectra of polymer samples were recorded on a
Bruker Avance 400MHz spectrometer with a frequency of
400.13 MHz and calibrated with the signal of deuterated
solvent. Size exclusion chromatography (SEC) was per-
formed at 40 °C using an Agilent 390 MDS system (290 LC
pump injector, ProStar 510 column oven, 390 MDS
refractive index detector) equipped with a Knauer Smartline
UV detector 2500 and two Agilent Poly Pore PL1113–6500
columns (linear, 7.5 × 300 mm; particle size, 5 μm; exclu-
sion limit, 200–2,000,000) in DMF containing lithium
chloride (0.01 M) at a flow rate of 1.0 mLmin−1.

Typical systems such as polystyrene-b-maltoheptaose
(PS-b-MH) are generally synthesized using the click reac-
tion of azido-functionalized polystyrene (PS-N3) with
alkynyl functionalized maltoheptaose (MH) in DMF at 65 °
C in the presence of copper nanopowder (Scheme 1).

As illustrated in Scheme 1, ω-hydroxyl-polystyrene (PS-
OH) is first synthesized by anionic polymerization of styr-
ene in toluene using sec-butyllithium as an initiator at 35 °C
for 3 h. The reaction is then terminated by ethylene oxide,
accompanied by the addition of degassed methanol. PS-OH
is treated with p-toluenesufonyl chloride in the presence of

Scheme 1 Synthesis of polystyrene-b-maltoheptaose block copolymer
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triethylamine (TEA) to obtain tosyl-functionalized poly-
styrene (PS-OTs), which is then treated with excess NaN3 in
DMF at 65 °C overnight to obtain azido-functionalized
polystyrene (PS-N3).

Block copolymer (BCP) synthesis protocols

PS-b-MH BCP synthesis is preceded by hydroxyl-
terminated polystyrene (PS-OH), tosyl terminated poly-
styrene (PS-OTs) and azido-functionalized polystyrene (PS-
N3) preparation.

Synthesis of hydroxyl-terminated polystyrene
(PS-OH)

Hydroxyl-terminated polystyrene is prepared by anionic
polymerization of styrene accompanied by termination with
ethylene oxide. The sample is characterized using 1H NMR
and SEC. Mn (

1H NMR) ~ 4500 g/mol, Mn (SEC, DMF)=
3800 g/mol.

Synthesis of azido-functionalized polystyrene
(PS-N3)

The azido-functionalized polystyrene is prepared in the
following two steps: in the first step, polystyrene is

dissolved in dried CH2Cl2 in a two-necked, round-bot-
tom, flame-dried flask equipped with a magnetic stirrer,
followed by the addition of trimethylamine. The tem-
perature of the reaction is reduced to 0 °C by placing the
flask in an ice bath. The white precipitate of azido-
terminated polystyrene is filtered using a sintered
glass funnel under vacuum and dried in a vacuum oven at
40 °C overnight, producing 8.0 g of solid product, with
~89% yield. The sample is characterized by 1H NMR
and SEC.

The displacement of signals at 3.3 ppm in 1H NMR of
PS-OTs (Fig. 1) due to -CH2CH2OH of PS-OH and the
appearance of new peaks at 7.7 ppm corresponding to tosyl
functional groups indicates the formation of tosyl-
functionalized polystyrene. Finally, the complete dis-
appearance of the signals at 7.7 ppm dedicated to tosyl
function after treatment with NaN3 confirms the formation
of azido-functionalized polystyrene.

Synthesis of the polystyrene-block-maltoheptaose
(PS-b-MH) block copolymer system

PS-b-MH is prepared by click chemistry of azido-
functionalized PS and alkynyl-functionalized mal-
toheptaose. The solution is stirred under an argon atmo-
sphere at 65 °C for 3 days. At the end of the reaction, the
crude heterogeneous solution is diluted with THF and

Fig. 1 1H NMR of (a) PS-OH, (b) PS-OTs and (c) PS-N3 in CDCl3 at 25 °C (400MHz)
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filtered through diatomaceous earth. The unreacted poly-
styrene is removed by precipitation of the copolymer in a
cyclohexane/heptane (60/40, v/v) mixture. The resulting
white solid (~85% yield) is dried in vacuum at 40 °C
overnight and characterized by 1H NMR and SEC.

Typical NMR spectra of PS-b-MH are illustrated in
Fig. 2. The presence of signals at 6.5–7.7 ppm due to
polystyrene and 3.2–6.3 ppm dedicated to maltoheptaose in
1H NMR of PS-b-MH in DMF-d7 indicate the synthesis of
block copolymers.

The complete shifting of peaks dedicated to MH and PS-
N3 in the SEC chromatogram (Fig. 3) toward higher
molecular weights confirms the formation of PS-b-MH.

Illustrations of typical results and discussion

Self-assembly in solution: glyconanoparticles

Glyconanoparticles are generally obtained using the
nanoprecipitation technique: Dissolution of the copolymer
system at different concentrations (illustration of PS-b-MH)
in a cosolvent (organic solvent/water) solution (X:Y)
v/v stirred at 1000 rpm for 24 h. The volume fraction (X:Y)
generally depends on the volume fraction of the BCP sys-
tem. This fraction is calculated to solubilize both carbohy-
drate and synthetic blocks. For instance, in the present cases
of PS4.5k -b-MH1.3k, it is 70/30 (THF/water). There are two
methods (A and B) of preparation (Fig. 4).

Example of Glyconanoparticles prepared from
PS4.5k-b-MH1.3k

First, 5.0 mg PS4.5k-b-MH1.3k is dissolved in 5.0 g solvent
mixture [70%:30%, (w/w), THF/H2O] and stirred overnight.
The polymer solution is sonicated for 10 min at 30 °C under
24 kHz and 10W (amplitude adjustment at 100% and
ultrasonic source operated in continuous mode) before use.

Method A: Two grams of the copolymer solution is
slowly added dropwise to 100 g of Milli-Q water using a
Pasteur pipet during a customized period of time (50 s to
obtain monomodal spherical nanoparticles) under vigorous
stirring at a stirring rate of 500 rpm. Subsequently, the

Fig. 2 1H NMR of PS-b-MH in DMF-d7 at 25 °C (400MHz)

Fig. 3 SEC traces of PS4.5k-N3 (blue), MH1.2k (red) and PS4.5k-b-
MH1.2k (green)
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suspension obtained from method A is stirred vigorously for
2 h, and THF is removed by evaporation under reduced
pressure at room temperature.

Method B: Milli-Q water (100 g) is slowly added drop-
wise to 2.5 g of the copolymer solution in water using a
Pasteur pipet for 10 min under vigorous stirring at a stirring
rate of 500 rpm. Subsequently, the suspension obtained
from method B is stirred vigorously for 2 h, and THF is
removed by evaporation under reduced pressure at room
temperature.

Characterization of the glyconanoparticles

Generally, imaging techniques such as atomic force
microscopy (AFM), scanning electron microscopy (SEM),
transmission electron microscopy (TEM) and light scatter-
ing are used to characterize nanoparticle systems. Here, we
choose to list a few examples using dynamic light
scattering (DLS).

DLS experiments are carried out using an ALV/CGS-
8FS/N069 goniometer, which consists of an ALV/LSE-
5004 multiple-τ digital corrector with a 125 ns initial
sampling time and a 35-mW HeNe linearly polarized
laser operating at a wavelength of 632.8 nm. Nanoparticle
suspensions are directly poured into quartz cells ther-
mostatted at 25 ± 0.1 °C. In DLS, the relaxation time
distributions are determined using CONTIN analysis of
the autocorrelation functions, and the hydrodynamic
diameters (Dh,DLS) are calculated using the Stokes-
Einstein equation. The original suspensions of glycona-
noparticles are diluted with Milli-Q water to reach gen-
erally 0.01 mg mL−1 and introduced into the chamber
with a syringe.

Typical nanoparticle DLS experiments of carbohydrate-
based PS4.5k-b-MH1.3k

The hydrodynamic radii of the nanoparticles made from
methods A and B after filtration using a 0.8-μm MF Mil-
lipore membrane (mixed cellulose esters) are determined
using DLS measurements at detection angles of 30–110°.
Typical results are illustrated in Fig. 5. The results show
that the nanoparticles prepared using method B are more
monodispersed and larger than those prepared using
method A.

Self-assembly in the solid state: highly
nanostructured thin films obtained from PS2.5k-b-
MH1.3k

To gain more insight into the morphology of PS4.5k-b-
MH1.3k in the thin film state, atomic force microscopy
(AFM) was carried out in tapping mode. The thin film
samples were prepared on a silicon substrate by spin-
coating from a 2 wt % PS4.5k-b-MH1.3k solution in anisole
followed by various solvent mixtures of THF and H2O
annealing for different times ranging from 0.5 to 3 h. The
thickness of the thin films was ~30 nm, as determined by
Flimetrics (F20-UV film analyzer).

Considering the asymmetric structure of the BCP, the
observed morphology should consist of perpendicularly
oriented cylinder domains of MH blocks (minor compo-
nent) in a matrix of PS blocks (major component). The PS
blocks prefer THF rather than H2O, and the MH blocks
prefer H2O over THF. Therefore, both the MH and PS
blocks migrate equally to the polymer–vapor interface by
annealing with H2O–THF, resulting in hexagonally close-

Fig. 4 Schematic illustration of the self-assembly procedure of PS4.5k-b-MH1.3k
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packed MH cylinders oriented perpendicular to the surface.
Equilibrium is reached after a certain time. As shown in
Fig. 6, the surface morphologies of the annealed BCP thin
films were characterized by AFM phase images. After 1 h of
annealing time, a hexagonally close-packed cylinder per-
pendicularly oriented to the substrate was observed in the
thin films after annealing with various solvent mixtures for
different times. Such a difference in the surface morphol-
ogies of the BCP thin films due to the fraction of the
annealing solvent was universally observed, indicating that
the relative fractions of H2O and THF in the annealing
solvents are among the determining factors for the orien-
tation of the cylinders. The white spots are carbohydrates,
and the brown color represents the PS matrix. Interestingly,
it is found that the cylinders of MH in a PS matrix are
parallel to the substrate when the annealing time is 0.5 h for
one case (9:1 THF/H2O), which we believe is a metastable
morphology. At 1 h, the orientation of the cylinders is
perpendicular to the substrate. Thus, not only χ but also
selective evaporation, time of annealing, glass transition,
and interaction with surfaces and substrates are of great
importance.

Typical examples obtained on carbohydrate-based
high-χ BCP systems are illustrated in Fig. 6 (e.g., MH-

b-Block, where Block can be PS, PSSi, PDMS, PMMA,
PI or P3HT) exhibits sub-10-nm nanodomains of hex-
agonal cylinders oriented perpendicular to the silicon
substrate. Such systems have shown the lowest nanodo-
main size (5 nm) in the literature and have been applied
successfully to the development, for example, of memory
transistors [48, 50, 55, 56]. However, a strong limitation
of these BCP systems is their lack of long-range ordering
(although this can be improved by the use of directed
self-assembly (DSA)) and the difficulty of controlling
their perpendicular orientation over substrates other than
silicon.

State-of-the-art systems thus afford self-assembled fea-
tures as low as 5 nm from a handful of powerful high-χ BCP
systems. In addition to this domain spacing aspect, the main
actual Holy Grails in this domain are to efficiently manage
the orientation of these features (both cylinders and lamellae
oriented perpendicular to the substrate) and upgrade the
long-range ordering of self-assembled nanostructures
obtained from high-χ BCPs. Reaching and mastering these
goals using straightforward, cost efficient and “green”
methods would routinely afford sub-10 nm-scale ordered
nanodomains that will have tremendous potential in nano
(bio)electronic applications.

Fig. 5 Autocorrelation function C(q,t) measured in the range of 30–130 °C and decay time distribution at 30 °C, 90 °C, and 130 °C for the
nanoparticles prepared from PS4.5k-b-MH1.3k using method A (a, b) and method B (c)
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Conclusion and perspectives

In this focused review paper, we have summarized the main
results regarding the self-assembly of carbohydrate-based
block copolymer systems (the so-called high χ) in solution
(leading to the formation of glyconanoparticles) and in the
solid-state (leading to highly nanostructured sub-10 nm thin
films). We presented a simple strategy for driving the
carbohydrate-based block copolymer system to form gly-
conanoparticles in solution whose size depends on the
method of preparation. In water suspension, these nano-
particles are stable over many months and can be designed
to fit the application targets in terms of size, encapsulation
and decoration. The main advantage is that these glycona-
noparticles carry sugar moieties as external shells and also
carry OH groups that can be postfunctionalized to meet the
application requirements. This paper also discusses the

control of the orientation of the self-assembled thin film
surface of BCPs using the solvent vapor annealing techni-
que. In the asymmetrical specific PS-MH system, self-
organized thin films formed by maltoheptaose-block-poly-
styrene, where the maltoheptaose (MH) block (minor
component) likely assembles into cylindrical domains and
the polystyrene (PS) block (major component) is the matrix,
the orientation of the MH cylinders can be controlled
by varying the composition of a miscible H2O–THF
mixture used as the annealing solvent. As concluded, the
vapor produced from the H2O–THF mixture is directly
related to the mobility for both blocks of BCP, which is
necessary to control the ordering of the self-assembled BCP
thin films.

There are still important technological issues and bot-
tlenecks in the fields of BCP self-assembly and in the design
of controlled nanostructured thin films to be solved. Indeed,

Fig. 6 AFM phase images of PS4.5K-b-MH1.3K thin films with a thickness of ~30 nm after solvent vapor annealing. The weight fraction of THF
in the annealing mixture solvent (THF/H2O) is shown. The annealing times from left to right are in the range of 0.5–3 h
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most classical (petroleum) systems, such as the canonical
PS-b-PMMA system, exhibit domain spacing >20 nm and
will require downsizing of the periodic patterns using high-
χ BCPs to reach sub-10-nm morphologies (such as
carbohydrate-based BCP). In fact, only a few systems have
been developed thus far that can reach features as small as 5
nm with periodic domains oriented perpendicular to the
surface. The most important issues represent the major
concerns of the community working in this highly interna-
tional and competitive field and involve the pattern orien-
tation and long-range order of self-assembled (high-χ) BCP
thin films and the facile and selective degradation of one of
the nanodomains.
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