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Abstract

Organic solar cells (OSCs) utilizing n-conjugated polymers have attracted widespread interest over the past three decades
because of their potential advantages, including low weight, thin film flexibility, and low-cost manufacturing. However, their
power conversion efficiency (PCE) has been far below that of inorganic analogs. Geminate recombination of charge transfer
excitons is a major loss process in OSCs. This paper reviews our recent progress in using transient absorption spectroscopy
to understand geminate recombination in bulk heterojunction OSCs, including the impact of polymer crystallinity on charge
generation and dissociation mechanisms in nonfullerene acceptor-based OSCs. The first example of a high PCE with a small
photon energy loss is also presented. The importance of delocalization of the charge wave function to suppress geminate

recombination is highlighted by this focus review.

Introduction

Over the past three decades, organic solar cells (OSCs)
utilizing n-conjugated polymers have attracted widespread
interest because of their potential advantages, including low
weight, thin film flexibility, and low-cost manufacturing [1-
4]. When light is shined on semiconducting polymers,
singlet excitons, i.e., Coulombically bound electron—hole
(e-h) pairs instead of free charge carriers, are promptly
generated because of their small dielectric constants. This is
in sharp contrast to inorganic semiconductors such as sili-
con, in which light absorption directly results in the gen-
eration of free electrons and holes in the conduction and
valence bands, respectively. OSCs require a donor—acceptor
(DA) heterojunction to ionize singlet excitons, where
singlet excitons separate into holes on the donor and elec-
trons on the acceptor as a result of the energy offset of the
lowest unoccupied molecular orbital (LUMO) or highest
occupied molecular orbital (HOMO). If the electron and
hole separate further, they become free from Coulombic
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attraction and hence survive up to nano- or microseconds,
long enough to be transported to each electrode. Otherwise,
the geminate e-h pairs are likely to recombine to the ground
state (Fig. 1).

Historically, geminate recombination has been one of the
most detrimental processes for OSCs. Singlet excitons in
blends of regiorandom poly(3-hexylthiophene) (RRa-
P3HT) and the fullerene derivative PCBM undergo efficient
charge transfer (CT) at the DA interface (the quantum
efficiency of CT at the DA interface is nearly unity);
however, CT excitons then experience strong geminate
recombination within ~2ns (~70% of CT excitons gemi-
nately decay to the ground state) [S]. Higher-performing
OSCs generally consist of crystalline donor polymers such
as regioregular P3HT (RR-P3HT) blended with either
PCBM or its C70 analogue PC;BM. For example, in
blends of RR-P3HT and PCBM, >90% of CT excitons
dissociate into free charge carriers [5]. Although recent
state-of-the-art OSCs do not display large geminate
recombination loss, a few OSCs exhibit ~100% charge
dissociation efficiency, falling behind their inorganic ana-
logs. Therefore, it is important to understand how polymer
crystallization impacts charge dissociation efficiency.

Nonfullerene acceptors (NFAs) have been considered an
alternative to fullerenes. They provide stronger optical
absorption in the visible to near-IR region, allowing easier
optimization of molecular orbital energies. Until recently,
however, NFA-based OSCs routinely lagged in charge
generation efficiency and hence power conversion effi-
ciency (PCE) behind their fullerene-based analogs [6-8].
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Fig. 1 a Chemical structures of materials highlighted in this focus review. b Photocurrent conversion processes in OSCs: (1) photon absorption to
generate singlet excitons, (2) exciton diffusion to the DA interface, (3) charge transfer to generate CT excitons, (4) dissociation of CT excitons into
free carriers, and (5) charge collection to each electrode. ¢ Exciton diffusion followed by charge transfer at the interface. d Geminate recombination

and charge dissociation of CT excitons
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One reason for the lower device efficiency of NFA-based
OSCs is that most NFA-based OSCs suffer from terrible
geminate recombination loss [9—14]. For example, blends of
PBDTTT-C and a perylene diimide (PDI) monomer lost
more than half of the CT excitons through geminate
recombination on the sub-nanosecond time scale [14]. As a
result, fullerenes were considered “special” electron
acceptors for a long time. Thanks to the development of
new NFAs, the PCEs for NFA-based OSCs have improved
very rapidly [4, 15, 16], and currently, some NFA-based
OSCs have a PCE far superior to that of conventional
fullerene-based OSCs [17-19]. In contrast to the rapid
improvement of device efficiency, the fundamental
mechanisms for charge generation and recombination in
NFA-based OSCs are still being debated. It is important to
understand whether the models developed for fullerene
acceptor systems are also applicable to efficient NFA
systems.

Another remaining challenge in this field is to reduce
photon energy loss (Ej.ss) in OSCs, which is defined as the
difference between the optical bandgap (E,) of the materials
and the open-circuit voltage (Voc) (Eioss=E; — qVoc,
where ¢g is an elementary charge). It is well known that the
Ejs in OSCs is typically more than 0.7 eV [20], which is
much larger than that in silicon-based solar cells (Ejo is
only ~0.4eV). This is partly because OSCs require a DA
heterojunction to ionize the excitons, as mentioned above,
resulting in a reduction of energy from E, to the CT state
energy Ecr. Historically, it has been considered that a
LUMO (or HOMO) energetic offset of more than 0.3 eV is
necessary for efficient charge generation. For example, Li
et al. found a strong correlation between the LUMO ener-
getic offset and the external quantum efficiency (EQE) [21].
The energetic offset was varied by using various donor
polymers with fullerene acceptors, and it was found that the
EQE dropped sharply when the Ej,s was <0.6 eV. This is
rationalized by an insufficient driving force for charge
generation as a result of the small LUMO energetic offset.
OSCs that exhibit efficient charge generation despite a small
energetic offset are therefore strongly required.

We have approached the abovementioned challenges by
using transient absorption (TA) spectroscopy. TA spec-
troscopy is one of the most powerful and useful tools for
tracking the time evolution of transient species in OSCs,
such as excitons and charges, with high temporal resolu-
tion [22-32]. In this focus review, our recent findings
regarding the dissociation of CT excitons into free charge
carriers are summarized. The impacts of polymer crystal-
lization on charge dissociation efficiency [24] and
mechanisms of charge dissociation in efficient NFA-based
OSCs [31] are discussed. Finally, a first example of effi-
cient charge generation with a small LUMO energetic
offset is introduced [28].

Impacts of polymer crystallization on charge
dissociation efficiency

Many previous studies have reported that crystallization or
aggregation of materials promotes charge dissociation in
OSCs [5, 33-38]. However, exactly how polymer crystal-
linity impacts charge dissociation is still unclear. Herein, we
discuss the impact of polymer crystallization on charge
dissociation in blends of various donor polymers with
PCBM [24]. Figure 2a shows the TA spectra of a PSBTBT/
PCBM blend film as an example. A positive signal at
~1500 nm observed immediately after photoexcitation is
attributable to a photoinduced absorption (PIA) band of
PSBTBT singlet excitons. Even just after photoexcitation
(t=0ps), the TA amplitude of the singlet exciton band is
reduced compared with that of the PSBTBT pristine film,
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Fig. 2 a TA spectra of the PSBTBT/PCBM blend film excited at 800
nm with a fluence of 11 uJ cm™2. The broken line represents the PIA
band of PSBTBT singlet excitons observed for a PSBTBT pristine
film. b Time evolution of polarons in the disordered phase (open
triangles) and polarons in the crystalline phase (open squares) in the
PSBTBT/PCBM blend film. The closed circles represent the total
polaron density. Adapted from Ref. [24] with permission from the
PCCP Owner Societies
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are charge dissociation efficiencies in the crystalline phase, in the disordered phase,

“The value in parentheses is the charge dissociation efficiency via hole transfer

"The value in parentheses is obtained from pristine PCPDTBT films. No clear diffraction peaks have been
reported for PCPDTBT in the blend films, suggesting that PCPDTBT forms less ordered aggregates in the

blend films

indicating that some excitons dissociate to charge pairs
within the time resolution of our TA system (~130 fs, full
width at half maximum). Instead, another PIA band
ascribable to polymer hole polarons was observed ranging
from 800 to 1300 nm for the blend film. Note that the
PCBM radical anion has a PIA band centered at 1020 nm>,
but this PIA band was not observed because of its small
absorption cross section. The singlet excitons decayed with
a time constant of 0.8 ps, and the polaron band became
more pronounced at the same time. At 10 ps after photo-
excitation, singlet excitons completely disappeared, and a
broad polaron band with peaks at 1000 and 1300 nm was
clearly observed. Interestingly, decay kinetics monitored at
1000 nm were faster than those monitored at 1300 nm,
indicating that there are at least two distinct charged states
in the PSBTBT domains. We found that the band at 1000
nm could be assigned to polarons generated in the PSBTBT
disordered phase and that the band at 1300 nm could be
assigned to the PSBTBT crystalline phase. Figure 2b shows
the decay kinetics of those two polarons after 10 ps. Inter-
estingly, the population of polarons in the crystalline phase
still increased with a time constant of ~24 ps, even though
singlet excitons had completely disappeared at this point.
We found that the increase in polarons in the crystalline
phase was accompanied by a decrease in polarons in the
disordered phase, indicating that some of the polarons in the
disordered phase were transferred to the crystalline phase.
Within a nanosecond time scale, approximately half of the
polarons in the disordered phase decayed geminately, while
geminate recombination was negligible in the crystalline
phase.

Charge dissociation efficiencies for other blends are
summarized in Table 1 [5, 38-45]. We first focus on the
impacts of hole transfer from the disorder phase to the
crystalline phase observed in PSBTBT/PCBM blends. A
similar hole transfer has been reported for RR-P3HT/PCBM
blends [5]. Owing to the hole transfer from the disordered
phase to the crystalline phase, the charge dissociation
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efficiency in the disordered phase (7cp®®) in blends of
crystalline donor polymers is higher than that in amorphous
RRa-P3HT blends. The driving force for hole transfer is
believed to be energetic cascades of molecular orbitals
between the crystalline and interfacial disordered phases.
Previous studies have established that most OSCs consist of
nanoscale domains of pure polymers and pure fullerenes,
with intermixed regions in between [46—49]. Thus, the
three-phase morphology introduced by polymer crystal-
lization would be a key driver for efficient charge dis-
sociation through hole transfer [35] because the ionization
potential of conjugated polymers, in general, is reduced
with increasing polymer crystallinity, resulting in a HOMO
energetic cascade between the intermixed disordered phase
and the pure polymer crystalline phase [50].

The charge dissociation efficiency is clearly dependent on
the blend morphology. The quantum efficiencies of charge
dissociation in crystalline phases (5cp™) are nearly unity,
which is surprisingly high according to the conventional
charge dissociation model based on the Braun—Onsager
framework [1]. According to the Braun—Onsager frame-
work, an electron and a hole are tightly bound at the DA
interface by strong Coulombic attraction because the
dielectric constants of organic materials are low; hence,
efficient charge dissociation requires a strong electric field
(>10’Vm™') and/or a high temperature. However, this is
not true for most OSCs, wherein electric field- and
temperature-independent charge dissociation has been
observed [33, 51]. We found a positive correlation between
dissociation efficiency and crystalline coherent length in the
ni-stacking direction Lgo, suggesting that delocalization of
hole polarons in the crystalline phase plays a key role in
charge dissociation. As shown in Table 1, high charge dis-
sociation efficiencies are observed for crystalline polymers
with a correlation length of Lgo>4 nm, which is compar-
able to the effective Coulombic capture radius at the DA
interface, taking into account the entropic contribution to the
Gibbs free energy [1]. We therefore conclude that large
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Fig. 3 TA spectra of the a PTB7-Th/bay-di-PDI blend and b PTB7-Th/
PC;;BM blend excited at 650 nm with a fluence of 1.6 uJ cm 2. The
spectra in the near-IR region (850-1050 nm) were rescaled to that of

delocalization of hole wave functions in polymer crystalline
phases promotes charge dissociation. It is worth noting that
some amorphous polymers display efficient charge genera-
tion [36, 52]. In that case, delocalization of the electron wave
function as a result of fullerene aggregation is a key driver of
ultrafast long-range charge separation for OSCs, as reported
previously [36].

Ultrafast charge dissociation in nonfullerene
acceptor-based solar cells

The charge dissociation mechanisms in NFA-based OSCs
are exemplified in blends of a benchmark donor polymer,
PTB7-Th, and an efficient NFA, bay-di-PDI [31]. Figure 3a
shows the femtosecond TA spectra for the PTB7-Th/bay-di-
PDI blend under the selective excitation of PTB7-Th. The
large positive band in the visible region is ascribed to
ground-state bleaching (GSB), and a broad PIA tail
observed at ~1400nm is attributable to polymer singlet
excitons. Singlet excitons rapidly decayed with a lifetime of
1.3 ps. The intrinsic exciton lifetime of PTB7-Th is ~220 ps,
indicating that almost all excitons were converted into
charged species. The PIA centered at 1150 nm became
dominant within 10ps, which can be ascribed to hole
polarons on the donor polymer. Note that the PIA band of
the bay-di-PDI radical anion was not observed because it
fully overlaps with the large GSB band [53]. Hole polarons,
then, remained almost unchanged until the nanosecond time
scale. For comparison, Fig. 3b shows the TA spectra for the
PTB7-Th/PC7;BM blend film. As in the PDI blend, the
polaron band remains unchanged until 1 ns. Note that an
additional PIA band was observed at 1300 nm at later times
only for the PC7;BM blend, which we attribute to polymer
triplet absorption formed through bimolecular charge
recombination [54-56].
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the IR region (1050-1400nm) owing to a small change in the
pump-probe overlap. Reprinted with permission from Ref. [31].
Copyright 2017 American Chemical Society

Figure 4a, b shows the normalized TA spectra in the
visible region. We found that both the peak position and
onset of the main GSB band blueshift even after singlet
excitons have been fully quenched. This indicates that a
small PIA overlap occurs in this region, with dynamics
different from both singlet excitons and charges. In line
with previous results [36], we attribute this to the electro-
absorption (EA) of PTB7-Th. When an exciton dissociates
into an e-h pair, a dipole-like local electric field is generated
in its surroundings. This results in a Stark shift for sur-
rounding molecules, adding a first-derivative-like spectrum
component to the TA data. As the amplitude of the EA
signal is a function of the local electric field, i.e., a function
of the separation distance of the e-h pair, we can directly
quantify the separation distance of the e-h pair. Figure 4c
shows the time evolution of the EA amplitude. For the
PC;,BM blend, the EA amplitude is already large at 200 fs
and reaches its maximum by 400-500 fs. As shown in the
right axis of Fig. 4c, the EA amplitude was converted into
electrostatic energy stored in the field per e-h pair, which
was calculated as jee, [|E |’dV and calibrated against
quasi-steady-state EA measurements on diode structures.
During this short duration, an electrostatic energy of ~200
meV was stored in the field, which is well above the thermal
energy at room temperature and on the same order as the CT
state binding energy. This indicates that the e-h pair
undergoes rapid spatial separation, despite the opposing
Coulombic attraction. This picture is again inconsistent with
the Braun—Onsager framework but is consistent with bal-
listic charge separation through the delocalized wave
function [36]. Interestingly, the EA amplitude of the PDI
blend is as large as that of the PC;;BM blend, indicating
that charge separation mechanisms for the PDI blend can be
rationalized by the ballistic charge separation model. Before
our study, ballistic charge separation was only observed in
blends that consist of relatively large fullerene aggregates.

SPRINGER NATURE



696 Y. Tamai
a — T T T
a
1 | | | | 1L -
g 05 0.8 -
B —_~
= £ [ 1
~ O S 06 —— PTB7-Th:bay-di-PDI |
S |— PIB7-Thbay-di-PDI e LG PRTCEM
_0.5|— PTB7-Th:PC,,BM _ = b
' PTB7-Th = 15 §
S T R S R
600 650 700 750 800 ]
0.8F -
Wavelength (nm)
b 06 — ex. 650 nm
1 ° ' ' ' or —— ex. 500 nm |
M B T M
— 0 500 1000 1500
.5
g Time (ps)
E 0 Fig. 5 a Normalized time evolution of the polaron band in the PDI
': (red) and PC7BM (black) blends. b Excitation wavelength depen-
'2 r—— PTB7-Th:bay-di-PDI dence of polaron dynamics in the PDI blend. Reprinted with permis-
05— PTB7-Th:PC71BM sion from Ref. [31]. Copyright 2017 American Chemical Society
’ PTB7-Th
S N R S N
600 650 700 750 800 coherently through delocalized states can be more widely
Wavelength (nm) applied to various types of OSCs.
c Figure 5a shows the time evolution of polaron signals in
0.5 T T T T T T the PDI and PC;;BM blends on the nanosecond time scale.
;‘3 3 = We found no apparent difference in the charge dynamics
E 04 300 & between the PDI and PC7;BM blends, indicating that there
i T is no intrinsic disadvantage for NFAs in terms of charge
ﬁ 0.3 8 generation; i.e., fullerenes are not so “special.” Figure 5b
g 200 % shows the excitation wavelength dependence of charge
E 02} 3 dynamics in the PDI blend. As clearly seen in the figure, the
= 1100 3 charge dynamics are independent of the excitation wave-
01k —— PTB7-Th:bay-di-PDI o} length, indicating that both electron transfer from PTB7-Th
5 — PTB7-Th:PC;BM 1 0 to bay-di-PDI (excited at 650 nm, red line) and hole transfer
Lol 1 T 1 from bay-di-PDI to PTB7-Th (excited at 500 nm, green line)

0 PR L L L
02 05 1 2 5 10 20

Time (ps)

Fig. 4 a, b Normalized TA spectra in the visible region. Broken lines
represent the TA spectra of the pristine PTB7-Th film as a reference.
¢ Time evolution of the EA amplitude per unit charge obtained by
dividing the EA amplitude by the charge signal. The right axis shows
the total electrostatic energy stored in the field per electron—hole pair.
The energy is obtained by assuming that half of the field is in the donor
phase as %808, JIE \2dV and by taking a value of 3 for ¢,. The spatially
integrated square of the electric field was converted from the diode-
based EA amplitude. Reprinted with permission from Ref. [31].
Copyright 2017 American Chemical Society

However, we provided clear experimental evidence that
ballistic charge separation can also take place in NFA-based
blends, and hence, the model that charges separate
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result in efficient charge generation. This is consistent with
the EQE spectra for this blend, which follows the absorption
spectra. It is interesting to investigate the separate roles of
electrons and holes in the charge dissociation process. We
find that the charge dissociation process is strongly depen-
dent on the morphology of both the donor and acceptor,
indicating that both the donor and acceptor play an impor-
tant role in the charge dissociation process.

Efficient charge separation with a small
driving force

We have demonstrated the first efficient charge generation
with small photon energy loss [28]. We used a highly
efficient donor polymer, PNTz4T or PNOz4T, blended with
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PC;,BM. The PNTz4T-based device had an E, of 1.56 eV
(based on absorption onset) and showed a PCE of 10.1%
with a high short-circuit current density (Jsc) of 19.4 mA
cm 2 [57]. However, the Ej was as large as 0.85eV,
resulting in a Ve of only 0.71 V. Such a large Ej is partly
because of the large LUMO energetic offset between
PNTzAT and PC; BM. In contrast, the PNOz4T-based
device showed an E, of 1.52¢eV [58], which is almost the
same as that of the PNTz4T-based device, and a V¢ of
0.96 V, resulting in an Ej,s of 0.56 eV [28]. Surprisingly,
the Jsc and PCE were as high as 14.6 mA cm 2 and 8.9%,
respectively. This results in our system having the highest
known PCE among OSCs with an Ej, <0.6eV (at least
in 2015).

We expected that the origin of the small Ej in the
PNOz4T-based device is a small LUMO energetic offset.
To confirm this, we measured the temperature dependence
of the V¢, as shown in Fig. 6. The V¢ increased linearly
with decreasing temperature. It is well known that the
effective bandgap (Egeff) obtained from the intersection at O
K is a good measure for Ect because Egeff is identical to Ect
at 0K [59, 60]. Note that the Ect at room temperature is
typically 0.1-0.2eV above E,S™. The E,S™ values for the
PNOzA4T- and PNTz4T-based devices were 1.38 and 1.07
eV, respectively. Thus, the difference between E, and Ecr
in the PNOz4T-based device at room temperature would be

Fig. 7 a, b TA spectra of the a

<0.14 eV, while it is as large as 0.4-0.5 eV in the PNTz4T-
based device. This is consistent with the observation that the
electroluminescence spectrum of the PNOz4T/PC; BM
device is almost the same as that of the pristine PNOz4T
device. This indicates that charge generation in the
PNOz4T-based device is efficient even though the LUMO
energetic offset is smaller than the empirical threshold of
0.3eV.

Figure 7a, b shows the TA spectra of the PNTz4T/
PC7BM and PNOz4T/PC7,BM blend films. Immediately
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after photoexcitation, PIA bands attributable to singlet
excitons were observed at 1100-1400 nm in both blends. In
the PNTz4T blend, singlet excitons had almost disappeared
within 10 ps, which is a sign of fine morphology. Instead,
another PIA band ascribable to PNTz4T polarons centered
at 1100 nm was observed, which then slightly decayed on
the nanosecond time scale through geminate recombination,
probably as a result of the well-mixed disordered mor-
phology. In contrast, singlet excitons decayed slowly in the
PNOz4T blend, which implies large phase-separated
domains or slow CT at the interface. Interestingly, a con-
tribution from polaron absorption was observed for the TA
data even at O ps, which indicates immediate CT of some
excitons that generated very close to the interface. This
suggests that CT itself is still fast and efficient even in the
PNOzAT blend, and hence, the slow exciton decay kinetics
are attributable to a large domain size. This is consistent
with the difference in morphology of the two blends
observed in the transmission electron micrography images.
What is important in our findings is that no polaron decay
was observed in the PNOz4T blend for up to 3 ns, which is
clear evidence of efficient charge dissociation. We therefore
conclude that, in the PNOz4T-based device, excitons dis-
sociate into charges very efficiently without a large driving
force. Although the mechanism of efficient charge genera-
tion without a large offset is still unclear, the highly crys-
talline nature of PNOz4T is probably essential, and this
study clearly demonstrates the potential advantages of uti-
lizing small offset systems.

Conclusion

This focus review highlights our recent studies using TA
spectroscopy to investigate charge generation and recom-
bination dynamics in OSCs. The impacts of polymer crys-
tallinity on charge dissociation efficiency, mechanisms of
charge dissociation in NFA-based OSCs, and efficient
charge generation with a small LUMO energetic offset were
described. It was shown that the crystallization or aggre-
gation of materials promotes charge dissociation, which is
rationalized by the delocalization of charge wave functions
in the crystalline or aggregate domains. Recent state-of-the-
art OSCs consist of wide-bandgap donor polymers and low-
bandgap NFAs with a small HOMO energetic offset, but
understanding charge generation mechanisms with a small
energetic offset remains a challenge. Further spectroscopic
studies will provide a comprehensive understanding and
clear design concepts for materials and devices.
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