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Abstract

While it is recognized that there are low levels of new cardiomyocyte (CM) formation throughout life, the source of
these new CM generates much debate. One hypothesis is that these new CMs arise from the proliferation of existing
CMs potentially after dedifferentiation although direct evidence for this is lacking. Here we explore the mechanisms
responsible for CM renewal in vivo using multi-reporter transgenic mouse models featuring efficient adult CM (ACM)
genetic cell fate mapping and real-time cardiomyocyte lineage and dedifferentiation reporting. Our results
demonstrate that non-myocytes (e.g., cardiac progenitor cells) contribute negligibly to new ACM formation at baseline
or after cardiac injury. In contrast, we found a significant increase in dedifferentiated, cycling CMs in post-infarct hearts.
ACM cell cycling was enhanced within the dedifferentiated CM population. Single-nucleus transcriptomic analysis
demonstrated that CMs identified with dedifferentiation reporters had significant down-regulation in gene networks
for cardiac hypertrophy, contractile, and electrical function, with shifts in metabolic pathways, but up-regulation in
signaling pathways and gene sets for active cell cycle, proliferation, and cell survival. The results demonstrate that
dedifferentiation may be an important prerequisite for CM proliferation and explain the limited but measurable cardiac

myogenesis seen after myocardial infarction (MI).

Introduction

The potential of cardiomyocytes (CMs) to proliferate is
tightly developmentally controlled. The mammalian heart
grows by hyperplasia during fetal life but this proliferative
potential is lost in the adult. Neonatal CMs retain some
proliferation capacity and can even regenerate lost myo-
cardium after injury, but this ability is lost by 7 days after
birth!™*. Adult CM (ACM) growth is typically hyper-
trophic; however, there is a very low, but measurable rate
of new CM formation in adult hearts>~®. Although it has
been much debated on the source of this proliferation and
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whether it is restricted to a subset of ACMs, the magni-
tude, an annual renewal rate of ~0.5-1% has now been
accepted by most investigators®® ™!, Given the low rate of
overall ACM renewal, detecting CM cell cycle progression
especially cell division is challenging but crucial for future
studies targeting endogenous CM regeneration. Recent
strategies to quantitate new ACMs based on heavy isotope
labeling appear to be more accurate than standard his-
tology, but they require specialized expertise and equip-
ment and are limited both in their throughput and ability
to be combined with mechanistic studies. We sought to
develop a simplified, high-throughput system that pro-
vides enhanced accuracy and facilitates the study of the
cellular sources and mechanisms underlying CM renewal
in adult mice.

Theoretically, new CMs could arise from the differ-
entiation of resident cardiac progenitor cells (CPCs) or by
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the proliferation of pre-existing CMs'>'®>. CPCs are

essential for normal cardiac development, but their role, if
any, in adult hearts is disputed and uncertain®'*~>*,
Recent genetic cell fate tracking and clonal analyses
demonstrated that new myocytes likely arise from pre-
existing CMs. However, incomplete genetic labeling of
ACMs in previous Cre/LoxP models and inefficient gene
recombination inherent in “mosaic analysis with double
markers” model have made the findings inconclusive™®. In
order to fully characterize endogenous myocyte renewal,
we developed a new bi-transgenic aMHC—MCM;RFPﬂ/
GFP system that has improved CM fate mapping®”%°.

Dedifferentiation is a regressive process where specia-
lized cells or tissues regain primitive phenotypes—this is
critical for repair and regeneration in many lower verte-
brates. While ACMs are known to be able to dediffer-
entiate and re-differentiate both in cell culture and when
transplanted into post-infarct myocardium® ~>!, whether
this happens in vivo and how to accurately quantify the
magnitude of myocyte dedifferentiation is unknown. To
address these limitations, we created a cardiac nucleus-
specific ~ reporter  transgenic = mouse  Tg(Myh6-
H2BBFP6xHis) referred to as the blue fluorescent protein
(BFP) model. This BFP mouse model enabled the high-
throughput quantification of ACMs and their dediffer-
entiation. BFP signal was highly expressed in ACMs but
reduced in dedifferentiated ACMs and immature myo-
cytes, such as those from neonatal hearts. When our BFP
mice are bred to bi-transgenic aMHC-MCM;REPY/GEP
mice, the new triple transgenic aMHC-MCM;REPY/GEP;
BFP mice provide a genetic model to visualize and
quantitate dedifferentiated CMs in vivo™®!>!81921:29733
Using these novel transgenic models, we demonstrated
that CM dedifferentiation occurs after cardiac injuries,
and is associated with the enhanced ACM cycling in post-
infarct hearts. Massive parallel single-nucleus RNA-seq
(snRNA-seq) analysis revealed novel transcriptomes in
the subset of CMs expressing specific transgene reporters
consistent with dedifferentiation and active cell cycling.
This model provides a useful tool to study the mechan-
isms controlling endogenous myocardial regeneration in
injured hearts by combining high-throughput single-cell
imaging and transcriptomic analyses.

Results
Minimal contribution of non-myocyte pools to
cardiomyocyte renewal in post-infarct hearts

To determine the potential contribution of non-
myocyte populations, including putative resident CPCs
to CM renewal >®!®19212931 = e generated a bi-
transgenic aMHC-MCM;RFPY/GFP mouse model by
cross-breeding aMHC-MCM mouse with Rosa26-mT/
mG reporter mouse (the latter referred to as RFP/GFP
mouse for its dual-color reporters in red and green

Page 2 of 15

fluorescences) (Fig. 1a; and Supplementary Fig. S1a)*>*°,

This bi-transgenic mouse model has a tamoxifen-induci-
ble, CM-specific GFP signal that is superior to previously
reported systems®*>?®?°, More than 98% of CMs in
tamoxifen-treated bi-transgenic adult mice irreversibly
switched from RFP to GFP expression (Fig. 1b, c).
Immunostaining revealed the co-expression of GFP signal
with CM markers, such as a-myosin heavy chain (aMHC),
Tropomyosin, a-sarcomeric actinin (a-SA), and troponin
I (cTnl) (Supplementary Fig. Slb, c). After tamoxifen
treatment, over 98% ACMs were GFP™; and there was a
minor portion of CMs that co-expressed GFP and RFP
(<1%), likely due to asymmetric gene recombination®* in
ACMs that were binucleated (Fig. 1c). There was a barely
detectable GFP™" population (<0.03%) among small non-
myocytes, confirming that gene recombination was spe-
cific to ACMs, without leaky labeling of putative non-
myocytes, such as CPCs or committed cardiac precursors.
Therefore, the GFP population specifically identified the
vast majority of pre-existing ACMs in tamoxifen-treated
bi-transgenic mice.

To determine if cardiac differentiation of any putative
resident CPCs among the non-myocyte pool contributed
to ACM renewal in post-infarct hearts, we induced
myocardial infarction (MI) in tamoxifen-treated aMHC-
MCM;RFPY/GFP adult mice and followed them for the
appearance of “new” RFP-positive cardiac myocytes.
There was no significant change in the percentage of
GFP" cells among CMs up to 3 months after MI com-
pared to sham-operated hearts (96.5% in MI versus 97.9%
in Sham) (Fig. 1d). The amount of RFP™ CMs remained
minimal, and showed no significant difference between
sham and post-infarct hearts. To track ACM cell cycle
activity, we labeled cycling cells in sham or post-MI bi-
transgenic mice for 3.5 weeks via drinking water con-
taining 5-bromo-2'-deoxyuridine (BrdU). BrdU'* GFP
ACMs were significantly increased in post-infarct hearts
compared to sham hearts as revealed by ImageStream, a
multispectral, microscopy imaging-based flow cytometry
analysis (Fig. 1e). No RFP*BrdU" ACMs were detected in
either post-MI or sham hearts (data not shown). These
results are consistent with the notion that non-
cardiomyocyte pools do not contribute to ACM renewal
in post-infarct hearts and suggest that if new myocytes are
formed they arise from pre-existing CMs®,

Generation of a cardiac-specific nuclear BFP reporter
mouse to visualize myocyte maturity and dedifferentiation
To track CMs with a real-time reporter of CM maturity,
we generated an ACM nucleus-specific transgenic BFP
mouse model. The BFP gene was fused in-frame to his-
tone H2B gene under the control of cardiac-specific
aMHC (Myh6) promoter. Therefore, only ACMs
expressed BFP (Fig. 2a, b; and Supplementary Figs. S2 and
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Fig. 1 Non-cardiomyocyte pools do not contribute to CM renewal in post-infarct hearts of bi-transgenic mice. a Cardiomyocyte renewal can
potentially originate from pre-existing cardiomyocytes (GFP™) or resident progenitors (RFP) in tamoxifen-treated bi-transgenic AaMHC-MCMRFP/
GFP mice. b a-sarcomeric actinin (aSA, magenta) immunostaining on myocytes isolated from bi-transgenic aMHC-MCM;RFP"/GFP mice with
tamoxifen (TAM) or vehicle (VEH) treatment, or cells from wild-type (WT) littermates. Scale bar = 50 um. ¢ Flow cytometry analysis showing the
expression of GFP and RFP in myocytes isolated from hearts of bi-transgenic mice without (VEH) or with tamoxifen (TAM) treatment. The far-left panel
shows the total ventricular populations containing small cells (non-myocytes), and larger cells (circled) that were either RFP™ (VEH; 2nd dot plot) or
GFP™ (TAM; 3rd dot plot). n = 3 mice for each group. d Expression profile of GFP and RFP in cardiomyocytes from bi-transgenic mouse ventricles
10 days, 3.5 weeks, or 3 months after Ml or Sham operation. Statistics: p > 0.05 in two-way ANOVA analysis (n = 3-4 mice for each group). e
ImageStream analysis on total ventricle cells from 3.5-week post-Ml or sham mice. GFP and RFP are shown in channel Ch02 and Ch04, respectively;
and BrdU incorporation signal revealed by Alexa Fluor 647-conjugated antibody is shown in Ch05; nuclear staining (by DAPI) in Ch01; and the bright
phase signal in Ch03. n =3 mice (Sham or MI). *p <0.05 in t-test

S3). BEP" nuclei also demonstrated strong co-expression  expression did not adversely affect cardiac development
of pericentriolar material 1 (PCM1) which has been used  or growth, and transgenic mice had normal cardiac his-
to identify ACM nuclei previously (Fig. 2c)''. Transgene tology and function (Supplementary Fig.  S4).
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Fig. 2 Creation of cardiomyocyte nucleus-specific transgenic BFP mice. a Gene construct for transgenic cardiac nuclear blue fluorescent protein
(BFP) reporter mouse. A full-length mouse a-MHC (mMyh6) promoter drives an in-frame fusion gene containing H2B, BFP, and a tag of six histidines
(6xHis). Scale bar =10 um. b Confocal images (left panels) and flow cytometry dot plot (right panel) showing cardiomyocyte nucleus-specificity of
BFP signal. Native blue fluorescent signal from BFP transgene was found in cardiomyocytes identified by a-sarcomeric actinin (a-SA, green); nuclei
were stained by Drag5 (magenta). Scale bar = 10 um. For flow cytometry analysis, samples were gated on Drag5™" population and a-SA (Alexa Fluor
488) and native BFP signal was analyzed. ¢ Upper panel: Flow cytometry histogram showing the expression of pericentriolar material 1 (PCM1) (Alexa
Fluor 488) in BFP™ population in the total heart nuclei preparations. 98.840.9% BFP™ nuclei are PCM17 (n = 3 mice). Lower panel: Confocal image
showing the expression of PCM1 (green) and native BFP signal (blue) in ventricular tissue of transgenic mouse carrying BFP and Rosa26-mT/mG
(RFP"/GFP) transgenes. RFP expressed ubiquitously in all cells. Nuclei were stained with Drag5 (pseudo-white). Scale bar = 100 um. d Native BFP
signal intensity normalized to DNA content determined by Drag5 staining in heart tissues. p < 0.0001 with one-way ANOVA test. n =3, 4, 3, 3, and 4
mice for P1, P3, P6, 1 month, and 5 months ages, respectively. e BFP signal determined by live cell imaging during adult CM dedifferentiation in cell
culture. p < 0.0001 with one-way ANOVA test. N = 300-500 cells from three cell cultures. f ImageStream analysis of total ventricular cell preparations.
Left panels: example BrdU™ BFP cardiomyocytes. BFP signal is shown in Ch01, BrdU incorporation signal in Ch03, nuclear staining (by Drag5) in Cho5,
and the bright phase signal in Ch04. *p < 0.01 in t-test (n =3 mice; Sham or MI)

Approximately 35% of total ventricular nuclei were BFP™  of a-SA or cardiac Troponin T (cTnT) (Fig. 2b; and
when assayed by either imaging native BFP fluorescent  Supplementary Figs. S2, S3, and S5). Analyses of a panel of
signal, or by immune reactivity to BFP and polyhistidine-  major organs further confirmed the expression of BFP was
tag proteins (Supplementary Fig. S5). BFP signal was specific to CMs (Supplementary Figs. S6 and S7). Com-
expressed in over 99% ACMs identified by the expression  parable BFP" populations were seen in the ventricles of
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young (1 month old) and adult (5 months old) hearts
(Supplementary Fig. S8). Importantly, the BFP signal was
developmentally regulated: minimally expressed in early
neonatal CMs, but significantly augmented in ACMs (Fig.
2d; and Supplementary Fig. S9a and b). When isolated
BFP ACMs were subjected to dedifferentiation cell culture
conditions, BFP signal reduced rapidly within a week (Fig.
2e; and Supplementary Fig. S9c), consistent with the
reduced aMHC expression in dedifferentiated CMs’.
Therefore, BEFP signal could potentially be used as a sur-
rogate to visualize CM maturity, and BFP signal reduction
in ACMs may reflect their dedifferentiation.

To quantify ACM cycling in this model, we treated
sham-operated or post-MI transgenic BFP mice with
BrdU for 3.5 weeks. Approximately 30% BFP" myocytes
were lost in post-infarct hearts compared to sham as
evaluated by ventricular BFP* nuclei (Supplementary Fig.
S$10). In surviving myocytes, there was a significant
increase (9.2-fold) of BEP*BrdU™" cells in post-MI hearts
compared to sham mice (Fig. 2f). This labeling rate was
comparable to previous isotope labeling studies when
converted to similar pulsing period: 0.47% of all CMs in
the whole-ventricle in our single-cell imaging analysis
versus 1.2% specifically in the infarct border zone mea-
sured with multi-isotope imaging mass spectrometry
(MIMS) analysis®.

Increased dedifferentiated ACMs in post-infarct multi-
reporter tri-transgenic mice

Next, we sought to identify ACM dedifferentiation
in vivo by creating a tri-reporter mouse model. By
crossbreeding the mouse model for permanent GFP
labeling in CMs (aMHC-MCM;RFPY/GFP model) with
the mice that express a CM-specific, maturity/dediffer-
entiation reporter (BFP model), we created a triple-
transgenic mouse model. In this model, dedifferentiation
of pre-existing ACMs would be identified as GFP"BFP'*Y
(or GFP"BFP") cells (Fig. 3a).

After tamoxifen treatment, over 99% GFP" CMs were
BFP™ in tri-transgenic mice, and RFP" BFP™ cells were
minimal among ACMs (Fig. 3b). After MI, there was no
significant change in GFP and RFP expression among
BFP" ACMs when compared to those in sham-operated
hearts, consistent with our previous results (Fig. 3c). In
total ventricular cells, only ~0.02% were RFP"BFP" at
baseline, which might represent the minimal RFP™ ACMs
that had failed to undergo Cre/LoxP gene recombination.
The RFP*BFP" population remained minimal and not
different between post-MI or sham hearts (Fig. 3c).
Although ACMs suggestive of dedifferentiation have been
shown in previous studies, definitive in vivo proof has
been lacking. As shown in Fig. 4a, there was approxi-
mately a three-fold increase in the rare GFPTBFP'Y
population in post-MI hearts compared to sham hearts.
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The forward and side scatter indices (FSC and SSC,
respectively) for GFPTBFP'" cells in post-MI hearts were
significantly lower than those in sham-operated hearts
(Fig. 4b, c), suggesting they were smaller and had rounder
morphology.

Definitively identifying dedifferentiated CM is proble-
matic, as no consensus exists on the specific molecular
signatures. To identify genes that were unique to the
dedifferentiated state, we performed whole-transcriptome
analysis on in vitro dedifferentiated CM, embryonic CMs,
normal ACMs or hypertrophic ACMs. Dedifferentiated
CMs displayed a distinct transcriptional profile (Supple-
mentary Fig. S11). Dedifferentiation-specific genes were
defined as those upregulated in dedifferentiated CMs
compared to normal ACMs, excluding genes that were
more highly expressed in embryonic CMs or hypertrophic
ACMs (Supplementary Table S1). We then used this
molecular signature to compare GFPBFPM" (normal
ACMs) to GFPTBFP'" cells in post-infarct hearts. Con-
sistent with in vitro results, GFP*BFP'Y cells expressed
significantly higher levels of these dedifferentiation genes,
including Fos-like antigen 1 (Fos/I), myelocytomatosis
oncogene (Myc), S100 calcium-binding protein A6
(S100a6), SRY-box containing gene 4 (Sox4), and thy-
mosin beta 10 (Tmsb10). In addition, cardiac marker
Myh7 was significantly higher than Myh6 in GFP*BFP'"
myocytes although both transcripts were down-regulated
(Fig. 4d). Thus, GFP"BEP!®" cells in tri-transgenic hearts
are morphologically and molecularly similar to dediffer-
entiated CM>”7731,

Dedifferentiated CMs contributed to active cycling ACMs
in post-infarct hearts

Dedifferentiated ACMs in tissue culture demonstrate
increased cell cycling and are capable of proliferation®”°,
Given the increased cycling of GFP myocytes in post-MI
bi-transgenic mice (Fig. le) and that GFP*BEP'" cells
expressed higher cell cycle genes, such as Ccnb1 and Cdk2
(Fig. 4d), we hypothesized that BEP'®Y ACMs might have
enhanced cell cycling and proliferation activity. Flow
cytometry analysis revealed similar levels of BrdU" GFP
CM:s in post-MI hearts of tri-transgenic mice compared to
post-MI bi-transgenic hearts, which were both sig-
nificantly higher than that in sham-operated hearts (Fig.
5a). However, the rate of cycling was ~50% higher in the
dedifferentiated ACM subpopulation (GFP"BFP'Y; 2.2%)
compared to normal, mature ACMs (GFP'BFP"ieh;
1.49%) (Fig. 5b). To identify regional differences in CMs
dedifferentiation and cell cycle activity in post-infarct
hearts, we performed high-content imaging analysis of
whole-ventricular sections (Fig. 5¢c, d). The BFP signal in
cycling GFP" myocytes was barely detectable in peri-
infarct zones, with reduced expression in border zones,
while expression remained at normal levels in remote
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Fig. 3 Adult cardiomyocyte renewal in post-infarct tri-transgenic mouse hearts. a Potential cellular mechanisms underlying endogenous CM
renewal in the triple-transgenic mouse model. b Flow cytometry dot plot showing specific expression of both genetic GFP tag and BFP reporter in
CM from mice after tamoxifen-induced gene recombination. Nuclei were stained with Drag5. The shown cell dot plot is pre-gated on BFPhian
population. ¢ Characterization of cell populations in tri-transgenic mouse hearts 1.5 weeks after Sham or myocardial infarction (MI). Nuclei were
stained with Drag5. No significant changes in BFP myocytes with GFP or RFP reporter. n =3 mice (Sham or Ml)

areas similar to that in sham-operated hearts (Fig. 5e).
These results suggest that CM dedifferentiation and cell
cycle activity might be regulated locally in response to
post-infarct remodeling of the myocardium®>~’.

To assess overall CM dedifferentiation and cell cycle
activities in the whole heart, we examined individual heart
cells from tri-transgenic mice using single-cell Image-
Stream analysis (Fig. 6a). There was a significant increase
(10.8-fold) of BrdU" GFP myocytes in post-MI hearts
compared to sham hearts (Fig. 6b). The GFP*BFPY
ACM population had a significantly higher BrdU™
incorporation rate compared to GFPTBFPME" ACMs,
indicating a higher rate of cycling in dedifferentiated
(GFP*BFP"") ACMs (Fig. 6c). To determine if this
cycling progressed to cytokinesis we examined the
expression of Anillin (Anln) and found that there were
more Anln" cells among the BFP'*Y GFP ACMs com-
pared to that in BEPM&" GFP ACM population (Fig. 6d).
Cytoskeletal structure in cycling CM appeared to be less
organized consistent with a dedifferentiated cell state
(Supplementary Fig. S12). ACMs cycling estimated by
Ki67 expression was 4.6-fold higher in post-infarct hearts
compared to sham hearts; and there was a ~2-fold
increase of Ki67" cells in BFP®Y CMs compared to
BFP"#" CMs (0.63% versus 0.34%) (Fig. 6€). In contrast to
Ki67~ CMs in normal hearts being mainly binucleated,
cycling (Ki67*) CMs from post-MI hearts were pre-
dominately mononucleated (Supplementary Fig. S13).

These data suggest that dedifferentiated (BFP'*Y) ACMs
are more actively cycling and may be more likely to divide.

Transcriptomic analysis of in vivo cardiomyocyte
dedifferentiation

To dissect transcriptomic reprogramming of dediffer-
entiated myocytes in post-infarct hearts, we performed
massive parallel single-nucleus RNA-sequencing (snRNA-
seq) using a modified 10x Genomics protocol allowing a
targeted analysis of the highly heterogeneous cell popu-
lations in the heart. After filtering and data normalization,
we obtained high-quality single-nucleus datasets for
22,992 nuclei from post-MI hearts, and 8550 nuclei for
control myocardium. Unsupervised graph-based cluster-
ing with smart local moving (SLM) algorithm revealed 15
clusters of cells in the control (Fig. 7a), including common
cardiac populations: CMs expressing structural genes
(Actn2, Myl2, Tnnt2, Tpml) and ion channel genes
(Scn5a, Kenj3, and Kend2); cardiac fibroblasts expressing
Col3al and Ddr2; endothelial cells expressing Pecaml
(Cd31) and Tiel; smooth muscle cells expressing Mylk,
Pde8b, and Rerg; and a small fraction of macrophages (Fig.
7a; Supplementary Fig. S14a, and Supplementary Table
S2). In post-infarct hearts, the myocyte nuclei population
was reduced, and inflammatory cells such as macrophages
(CD45, Ccr5) and B/T cells (CD74, Fcgr2b, Themis)
increased (Fig. 7a, b; and Supplementary Table S3 and S4).
BFP and GFP transcripts were enriched in the putative
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hearts. n =3 mice, t-test. *p < 0.05. b Representative forward side scatter (FSC) histograms of gated GFPTBFP'®" populations in post-Ml and Sham
hearts. ¢ Frequency distribution of FSC and side scatter (SSC) indices of GFP*BFP'Y cells from post-MI or Sham hearts (n = 3 mice). One-way ANOVA
test: p < 0.0001 for both FSC and SSC indices, comparing MI to Sham. d RT-gPCR analysis of gene expression in GFP*BFP~ (G'B'Y) myocytes
compared to GFP*BFPT (G*B"9") myocytes isolated from post-infarct tri-transgenic mouse hearts. *p < 0.05, G*B" vs. G*B"9" (n = 3 mice)

cells among GFP™ myocytes in ventricles of 1.5-week post-MI or Sham

CM clusters in both control and post-infarct hearts. The
BFP~/BFP" ratio of CM populations (GFP") increased
from 0.93 (444/475) in the control to 9.3 (1939/209) in
post-MI hearts (Fig. 7c, and Supplementary Fig. S14b)
similar to findings from the flow cytometry analysis (Fig.
4a). While Mki67 was barely detectable in ACM nuclei
from the control, there was a significant increase of nuclei
expressing Mki67 in the GFP"BFP~ population in post-
MI hearts (Fig. 7d, and Supplementary Fig. S15).

In the GFP* ACM population, there were 2595 and
1499 DEGs between BFP~ and BFP" nuclei in control and
post-infarct hearts, respectively (Supplementary Fig. S16).
Compared to BFP" nuclei, BFP~ expressed significantly
lower levels of cardiac genes (e.g. Actn2, Cacnalc, Kcnj3,
Myh6, Scn5a, Tnnt2), with increases in genes associated
with dedifferentiation (Runx1 and Dab2; Fig. 8a)%”%1. The

genes upregulated during ACM in vitro dedifferentiation
(Fig. 4d) were also increased in BFP~ ACM nuclei com-
pared to BFP" ones, for example: S100a6 (5.37-fold; p =
0.000355), Tmsb10 (3.81-fold; p = 0.000786), Thbsl (3.45-
fold, p =0.0594). BFP~ CM nuclei also expressed higher
levels of active cell cycle genes, such as Ccnd3, Cdki4 (Fig.
8a). KEGG pathway enrichment analysis on DEGs in
BFP~ (versus BFPT) ACMs from post-infarct hearts
revealed a number of affected pathways with reduced gene
expression, such as those in pathways for cardiac muscle
contractile function (Fig. 8b), hypertrophic remodeling,
and calcium, adrenergic, and cAMP signaling pathways,
and cardiac rhythm (Supplementary Fig. S17a—e; Sup-
plementary Table S5). The expression of genes involved in
cardiac metabolic pathways (e.g. pyruvate, TCA cycles)
were also reduced in BFP~ ACMs. However, genes for
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Fig. 5 Increased cell cycling in dedifferentiated GFP™ cardiomyocytes in post-infarct hearts. a and b Percentages of BrdU™ CMs in (a) mature
myocytes (GFPTBFP"'I") or (b) dedifferentiated myocytes without BFP expression (GFP*BFP'®"). *p < 0.05. n = 3 mice (Sham or MI). ¢, d BrdU
incorporation (c) and Ki67 expression (d) in post-infarct ventricles. Arrows denote the BrdU or Ki67 positive GFP™ CM. Scale bar = 20 um. e Changes
in BFP signal in infarct/peri-infarct area, infarct border zone, and remote regions. Boxed regions are shown in middle and lower panels. White arrows
show weaker BFP signal in GFP™ cardiomyocytes in the infarct border zone. Scale bar = 100 um for the first row, and 15 um for other rows

several extracellular signaling pathways such as focal
adhesion assembly, extracellular matrix receptor interac-
tion, Rapl/Integrin, and survival/proliferation-related
PI3K-Akt pathways were up-regulated (Supplementary
Fig. 17f—i; Supplementary Table S5). These DEGs toge-
ther converged on cell survival, dedifferentiation, and
proliferation pathways®>*°. Therefore, the snRNA-seq
results indicate that BFP~ ACM populations were mole-
cularly ~dedifferentiated compared to the BFP"
counterparts.

As cycling and proliferative CMs were preferentially
found in BFP~ population (Figs. 5 and 6), we further
examined transcriptomic profiles of Mki67" ACM nuclei
in our snRNA-seq datasets. Among the 1939 GFP*BFP~
CM nuclei from post-infarct hearts, there were 165 (8.5%)
Mki67-expressing nuclei, which had 681 DEGs when
compared to Ki67~ ACM nuclei (Supplementary Fig.
S18). As expected, cell cycle genes such as Anln and the
less-studied KnlI and Kif families were significantly up-
regulated in MKi67" nuclei of dedifferentiated (BFP~)
CMs (Fig. 8c). Pathway enrichment and gene set enrich-
ment analyses revealed that most of the enriched path-
ways and processes were related to cell cycle activities,
particularly DNA replication, mitosis, cytokinesis, and cell
division (Fig. 8d; Supplementary Tables S6 and S7). Fur-
thermore, expression of dedifferentiation genes such as
S§100a6 and Tmsb10 was higher in BFP~ (compared to
BFP") ACM nuclei, which were also significantly
increased in cycling, Mki67" ACM nuclei as compared to
the Mki67  ones (1.47 and 1.46 fold, respectively; FDR p
< 0.05). Upstream transcription regulator analysis for the
DEGs indicates that S100a6 and Foxm1 are regulators of
the transcriptional reprogramming in dedifferentiated and
cycling ACMs (Supplementary Fig. S19).

Discussion

The reported discrepancies in new myocyte formation
in injured hearts likely stems from multiple factors. First,
the minuscule rate of new CM formation makes it chal-
lenging to measure accurately, and a small variance in
quantification can result in markedly different results.
Our data also confirmed that endogenous ACM cycling
and renewal (e.g. Ki67*, Anln*, or BrdU™) is at a low rate.
Second, significantly higher cycling rates of non-myocytes
in the adult heart can lead to inaccurately assigning events
to ACM, particularly when not using a genetic tracking

model or using one with the incomplete labeling of pre-
existing CMs. For instance, while MIMS is arguably the
most accurate methodology currently available, it relies
on the extrapolation of cell identity information derived
from adjacent tissue sections®. An additional caveat is that
conventional analyses dealing with limited numbers of
cells may not have the power to reveal the very small
number of scant events, i.e. proliferation of pre-existing
myocytes or differentiation from putative CPCs (if any).
Previous studies using direct genetic labeling of putative
rare CPCs, has failed to demonstrate a significant con-
tribution to ACM formation but have been criticized as
potential being too narrow in scope, missing a significant
contribution of non-myocyte to CM formation®'~** In
this study, we employed high-throughput and readily
implementable technologies, namely flow cytometry and
ImageStream, to analyze total cells or total nuclei pre-
pared from the whole ventricle. Conventional flow cyto-
metry is widely available in modern biomedical institutes,
enabling rapid data acquisition and analysis, although
careful optimization is required when dealing with highly
heterogeneous cells such as those in the heart. With
spectrum imaging-based flow cytometry, ImageStream,
we can capture the image of cell/nucleus, and ensure the
rigorous identification of true positives. Instead of focus-
ing on specific areas such as infarct or border zone that
can potentially overestimate the response to cardiac
injury, we used a non-biased total ventricular cell
approach to assess the overall CM cycling activity in mice.
Our results using these new transgenic models are the
first to provide real-time visualization of CM dediffer-
entiation and cell cycling. Our data suggest that increased
endogenous CM renewal in post-infarct hearts arise from
the dedifferentiation and proliferation of pre-existing
CMs and not by cardiac differentiation of putative
adult CPCs.

The Cre/LoxP system allows for genetic labeling of
cardiac and non-myocyte lineages by the use of condi-
tional gene recombination in a temporal and cell type-
specific manner. Many groups, including our own, pre-
viously utilized bi-transgenic cMHC-MCM;Z/EG mouse
model to track the fate of CMs that switch on GFP
expression after tamoxifen treatment®**~*°, However, this
transgenic model had an incomplete GFP labeling rate
(~78%) in pre-existing CMs. Incomplete genetic labeling
of cell population could lead to the assignment of events
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by t-test. Paired post-infarct hearts identified by connected lines

Fig. 6 Dedifferentiated cardiomyocytes (GFPTBFP'°") demonstrated higher rates of cell cycling. a ImageStream analysis of ventricular cells
from tri-transgenic mice. Images demonstrate GFP*BrdU™ myocytes in post-infarct hearts, with BFP and BrdU signals indicated by median pixel
intensity. Nuclear BFP signals were classified as no or low (BFP™") and high (BFPM9M) (see “Materials and methods” for details). b BrdU™ GFP CM in
post-infarct (MI) or sham hearts. *p < 0.05 by t-test. ¢ BrdU™ GFP CM in a population with high or low BFP signal (BFP™" and BFP'°", respectively). p >
0.05 by two-way ANOVA test. *p < 0.05 by post-hoc Bonferroni test. Connected line represents each mouse. d ImageStream analysis of anillin (Anln)™
CM. Nuclei (stained by Drag5) and Anlin (revealed by APC-Cy7-conjugated antibody) are shown in Ch05 and Ch06, respectively. Yellow arrows denote
the mid-body plane. Lower panels show the percentage of Anin™ GFP CM in post-MI or sham hearts (left), and in BFPM9" or BFP'® GFP CM
subpopulations from post-infarct hearts (right). *p < 0.001 by t-test. e ImageStream analysis of Ki67* CM. Lower panels show the percentage of Ki67"
GFP cardiomyocytes in post-infarct or sham hearts (left), and in the BFPM" or BFP'* GFP CM subpopulations from post-infarct hearts (right). *p < 0.05

to other cell types; such errors will affect the accuracy of
associated analyses. For a more precise and accurate
analysis of cellular activities that occur at such low rates,
we developed a more efficient model for CM genetic cell
fate mapping. Our data in bi-transgenic «sMHC-MCM,;
REPY/GFP mice demonstrated highly efficient Cre/LoxP
gene recombination that led to the switching of RFP
expression to GFP expression in ~99% pre-existing ACMs
when animals were fed with tamoxifen chow, a 27%
increase from the previous model. Furthermore, GFP
labeling of small, presumably non-myocyte cells in the
heart was minimal (<0.03%) and showed no significant
difference between sham and post-MI hearts (data not
shown), confirming the tight control of gene recombina-
tion. Thus, we believe the results from this transgenic
model more accurately reflect the cell sources of new CM
formation in response to pathophysiological stresses
such as ML

We took advantage of the bright BFP variant®®, and
engineered a transgenic mouse with a BFP reporter spe-
cific to CM nuclei. In contrast to the previous aMHC-
nLAC model expressing p-galactosidase specifically in
CM nuclei that requires X-gal staining for visualization®?,
the BFP reporter in our model can be detected with or
without immunostaining. This design allows greater
flexibility when used in conjunction with other reporter
models to detect CM events using standard high-
throughput assays such as flow cytometry or high con-
tent imaging analysis*®*". As cell cycle progression does
not affect the H2B-GFP reporter and the H2B/reporter
fusion protein exchanges at a fast rate*>*?, we postulated
that a reduction in BFP signal reflects lower aMHC
(Myh6) promoter activity in dedifferentiated CMs (Fig.
4d)*°. Combining both mouse models into a multi-
reporter tri-transgenic line allowed us for the first time
to characterize cycling and molecular changes associated
with dedifferentiation in vivo (Fig. 3a). The results from
both bi-transgenic and tri-transgenic model suggest that
pre-existing CM are the predominate resource of CM
renewal, and are consistent with reports from genetic cell
fate tracking of CPCs*'. More importantly, we found that
GFP'BFP'Y cells morphologically and molecularly

recapitulated the phenotype seen in dedifferentiated CMs.
While future studies will focus on the mechanisms to
control dedifferentiation, it is interesting to note that
many genes up-regulated in dedifferentiated CMs are
transcription factors, for example, Fosll, Myc, Sox4, and
Tmsb10. The Sox family of transcription factors may play
a role in the dedifferentiation of multiple cell types and
contribute to the reacquisition of primitive cell pheno-
types and an enhanced cell cycle activity®>**, Therefore,
we believe that dedifferentiation (similar to differentia-
tion) and cell cycle activity is a molecularly regulated
process in CMs.

Taking the advantages of single-cell transcriptomic
analysis, we performed massive parallel cardiac snRNA-
sequencing analysis that circumvented the issues asso-
ciated with the significant heterogeneity of adult heart
cells and the challenges in sorting a limited amount of
dedifferentiated and cycling ACMs. We were able to
identify specific cell populations in the heart using distinct
transcriptomic clusters, transgenic reporters for ACM
lineage and dedifferentiation, as well as cell cycle markers.
This data also reveals typical pathological responses in
post-infarct myocardium, including activation of fibrotic
and inflammatory remodeling that was reflected by a
panel of enriched signaling pathways and gene sets. The
results demonstrated that the dedifferentiation and cell
cycle progression of pre-existing CMs was augmented in
post-infarct hearts, consistent with flow cytometry and
ImageStream analyses. In the BFP™ myocyte population
there was expected down-regulations of genes controlling
of ACM phenotype and function; but we also discovered a
number of new signaling networks that may be potentially
specific to ACM dedifferentiation and cell cycle reacti-
vation. For example, the activation of Focal adhesion,
Integrin/ECM receptor interaction, Rapl signaling, and
actin cytoskeleton regulation, was seen in BFP~ ACMs
(Supplementary Fig. S17, and Supplementary Tables S5,
S6). These pathways play important roles in the ded-
ifferentiation and proliferation of chondrocytes*, and the
migration and proliferation of vascular smooth muscle
cells***”. We also discovered that a subset of up-regulated
genes in the BFP~ and MKi67" ACMs, such as Knll,
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Fig. 7 Single-nucleus RNA-seq reveals specific cell populations in the heart. a t-SNE plots showing graph clustering of heart cells in normal
control (Ctl) and post-infarct (MI) hearts. Top-ranked genes differentially expressed in clusters are bracketed. CM cardiomyocytes, CF cardiac

fibroblasts, Endo endothelial cells, SM smooth muscle cells, Mac macrophages. b Expression levels of positive expression level (low-gray, high-blue) of
markers in myocytes (Actn2), endothelial cells (PecamT; Cd31), cardiac fibroblasts (ColTaT), smooth muscle cells (Rerg), and macrophages (Ptprc; Cd45),
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There were 165 Ki67" nuclei among 1939 BFP~ ACM nuclei

Kifll, and Cdkli4, are known to promote cell cycle and
proliferation in other cells. While single-cell (or nucleus)
RNA-seq analysis can be limited by the sequencing depth

for each cell (nucleus), we found that at least some of the
DEGs identified with in vivo single-nucleus RNA-seq
analyses overlap with those identified from in vitro CM
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dedifferentiation including S100a6 and Tmsb10. Hence,
targeting the related S100a6/Foxml signaling pathways
may promote ACM dedifferentiation and cell prolifera-
tion. One caveat with cardiac single-nucleus analysis is the
assumption that the nuclei within bi-nucleated or tri-
nucleated myocytes are highly similar in their gene
expression. The tight clustering of myocyte nuclear
populations and their distinction from non-CM popula-
tions, suggests this is a reasonable assumption.

In summary, we believe that transcriptomic repro-
gramming, including the inactivation of gene networks
governing ACM phenotype and function, together with
the activation of de novo pathways and transcription
factors, ultimately lead to the dedifferentiation and cell
cycle progression in pre-existing CMs, giving rise to new
CM formation (Fig. 8e). Given that prolonged cardio-
myocyte dedifferentiation can adversely affect cardiac
function”’, knowledge of the specific regulators of both
dedifferentiation and cell cycle reactivation will be
required if this process is to be exploited therapeutically
to promote endogenous CM proliferation without
diminishing heart function.

Materials and methods

All animals were maintained and experiments were
performed in accordance with the guidelines outlined in
the Public Health Service Policy on the Humane Care and
Use of Laboratory Animals. Animal studies were per-
formed under the protocol approved by the Institutional
Animal Care and Use Committee at the University of
Washington.

All transcriptomic data have been made publicly avail-
able at Gene Expression Omnibus under SuperSeries
GSE129175, and at the ArrayExpress portal with acces-
sion number E-MTAB-3981, or from the corresponding
author upon request.

The detailed “Materials and methods” section is avail-
able in the online Supplementary Information.
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