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Abstract

prognosis biomarkers for MI.

Accumulating evidence has demonstrated that long non-coding RNAs (IncRNAs) acting as competing endogenous
RNAs (ceRNAs) play important roles in initiation and development of human diseases. However, the mechanism of
ceRNA regulated by IncRNA in myocardial infarction (MI) remained unclear. In this study, we performed a multi-step
computational method to construct dysregulated INcRNA-mRNA networks for Ml occurrence (DLMN_MI_OC) and
recurrence (DLMN_MI_Re) based on “ceRNA hypothesis”. We systematically integrated IncRNA and mRNA expression
profiles and miRNA-target regulatory interactions. The constructed DLMN_MI_OC and DLMN_MI_Re both exhibited
biological network characteristics, and functional analysis demonstrated that the networks were specific for M.
Additionally, we identified some INCRNA-MRNA ceRNA modules involved in Ml occurrence and recurrence. Finally, two
new panel biomarkers defined by four INcRNAs (RP1-239B822.5, AC135048.13, RP11-401.2, RP11-285F7.2) from
DLMN_MI_OC and three IncRNAs (RP11-363E7.4, CTA-29F11.1, RP5-894A10.6) from DLMN_MI_Re with high classification
performance were, respectively, identified in distinguishing controls from patients, and patients with recurrent events
from those without recurrent events. This study will provide us new insight into ceRNA-mediated regulatory
mechanisms involved in Ml occurrence and recurrence, and facilitate the discovery of candidate diagnostic and

Introduction

Myocardial infarction (MI) is one of the most serious
types of coronary artery disease, which often lead to
myocardial cell death due to prolonged ischemia®. It is a
leading cause of morbidity, mortality, and cost to society”.
The recurrence of MI following first-time occurrence will
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make coronary artery conditions more severely and
greatly increase the risk of death in patients®. Thus stra-
tegies for prediction of recurrent events will prolong
survival in post-MI patients*. Non-high-density lipopro-
tein cholesterol value was recently found to be a strong
predictor of recurrent MI°, and phospholipase A2
expression in coronary thrombus has been reported to be
related with recurrence of cardiac events after MIC.
Although some biochemical markers such as cardiac
troponins T and I, creatine kinase-MB are clinically used
for diagnosis of MI, they only indicate myocardial
damage, and the molecular mechanisms underlying MI
and recurrence of MI are not reflected.
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Fig. 1 An integrative pipeline to construct the dysregulated IncRNA-mRNA ceRNA network for Ml occurrence and recurrence. First, starting
from significantly differentially expressed (SDE) mRNAs and IncRNAs, experimentally verified miRNA-mRNA and miRNA-IncRNA interaction

relationships were integrated, and hypergeometric test (p-value < 0.05) was performed to identify candidate INcRNA-mRNA competing interactions.
Second, the Pearson correlation coefficient (PCC) was further utilized to screen mRNA-INcCRNA competing interactions by using expression profiles.
Finally, dysregulated IncRNA-mRNA ceRNA network for MI occurrence and recurrence were constructed by merging the dysregulated INcRNA-mRNA
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There have been numerous researches documented that
less than 2% of the human genome encodes protein-
coding genes, and non-coding RNAs (ncRNAs) constitute
most of the human transcriptome’. ncRNAs include short
ncRNAs and long ncRNAs. microRNAs (miRNAs) are a
class of important short ncRNAs with approximately 22
nucleotides in length, which have been extensively stu-
died. It mainly inhibit gene expression by binding to the 3’
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untranslated regions of target mRNAs®. miRNAs have
been reported to be implicated in numerous diseases” *°,
including MI''. While long non-coding RNAs (IncRNAs)
represent a major class of ncRNAs, with greater than 200
nucleotides in length, which could regulate genes at
transcriptional, post-transcriptional, and epigenetic
levels'”>. The dysregulation of IncRNA expression is
therefore associated with various diseases, including
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cancers'® '°, neurodegeneration diseases'®, and cardio-

vascular diseases'” '®, For example, knockdown of a novel
IncRNA, Mirtl, was recently reported to improved cardiac
functions, decreased cardiomyocytes apoptosis, and atte-
nuated inflammatory cell infiltration in cardiac fibroblasts
in acute MI mice'®. In rat cardiac muscle H9c2 cells,
downregulation of IncRNA KCNQ1OT1 has been found
to prevent myocardial ischemia/reperfusion injury fol-
lowing acute MI*°. However, little is known about
IncRNAs in ML

Theoretical and experimental studies have demon-
strated that a large number of miRNA-binding sites exist
on different types of RNA transcripts, indicating that
diverse RNA transcripts containing the miRNA-binding
sites can regulate each other through competing for
shared miRNAs, thus acting as competing endogenous
RNAs (ceRNAs)*'~**, Importantly, IncRNAs could com-
pete with miRNA target mRNAs for miRNA molecules,
and thus regulate miRNA-mediated target repression"
%2 This type of ceRNA crosstalk has been widely observed
in different biological processes and diseases. For exam-
ple, a IncRNA (Inc-mg) that is specifically enriched in
skeletal muscle was recently identified, and it was found
to promote myogenesis by acting as a ceRNA for miR-
125b to affect protein abundance of insulin-like growth
factor 2**. Additionally, IncRNA MIAT was demonstrated
to function as a ceRNA to upregulate DAPK2 by reg-
ulating miR-22-3p in diabetic cardiomyopathy®>. How-
ever, ceRNA mechanisms associated with MI have not
been investigated.

In this study, we systematically integrated regulatory
interactions among IncRNAs, miRNAs and mRNAs and
expression profile data, and identified IncRNA-mRNA
competing interactions in MI based on “ceRNA hypoth-
esis”. We then constructed dysregulated IncRNA-mRNA
networks for MI occurrence (DLMN_MI_OC) and
recurrence (DLMN_MI_Re). The pipeline of construction
the network was shown in Fig. 1. Based on the two con-
structed networks, we intended to investigate: (1) topo-
logical ~properties and biological functions of
DLMN_MI_OC and DLMN_MI_Re, (2) IncRNA-mRNA
ceRNA modules in DLMN_MI_OC and DLMN_MI Re,
(3) potential IncRNA biomarkers for MI occurrence and
recurrence.

Results
Differentially expressed mRNAs and IncRNAs

After pre-processing of the gene expression profiles,
expression profile data of 21,695 mRNAs and 1542
IncRNAs were retained for further studied. We
then compared the expression profiles of mRNAs
and IncRNAs between MI patients and controls using the
R “limma” package, and 1001 significantly differentially
expressed (SDE) mRNAs and 55 SDE IncRNAs
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were identified (p <0.01). Among these, 437 mRNAs
and 34 IncRNAs were upregulated and 564 mRNAs
and 21 IncRNAs were downregulated. The expression
profiles of mRNAs and IncRNAs between MI
patients with recurrent events and those without
recurrent events were also analyzed using the R “limma”
package. Considering the limited number of MI
patients with recurrent events, the mRNAs and IncRNAs
with p < 0.05 were selected as SDE mRNAs and IncRNAs.
Thus, 859 SDE mRNAs and 60 SDE IncRNAs were
obtained. Of these, 538 mRNAs and 39 IncRNAs were
upregulated and 321 mRNAs and 21 IncRNAs were
downregulated.

Construction of the DLMN_MI_OC and DLMN_MI_Re

The DLMN_MI_OC and DLMN_MI_Re were both
constructed based on ceRNA theory by integrating
expression profile data and regulatory relationships of
mRNAs, miRNAs, and IncRNAs. As described in “Mate-
rials and methods”, an IncRNA-mRNA competing
interaction pair was selected if the IncRNA and the
mRNA significantly shared common miRNAs, and the
expression of the IncRNA and the mRNA is positively
correlated. As a result, we identified 660 and 124 dysre-
gulated IncRNA-mRNA pairs for MI occurrence and
recurrence, respectively (Supplementary Table 1). By
merging  these  dysregulated interactions, the
DLMN_MI_OC and DLMN_MI_Re were constructed. As
demonstrated in Figs. 2a and 3a, the DLMN_MI_OC
included 251 nodes (235 mRNAs and 16 IncRNAs) and
660 ceRNA interactions, and the DLMN_MI_Re con-
tained 109 nodes (95 mRNAs and 14 IncRNAs) and 124
ceRNA interactions.

Topological and biological functional analysis of the
DLMN_MI_OC and DLMN_MI_Re

To investigate the global view of the DLMN_MI_OC
and DLMN_MI_Re, we computed degree and degree
distribution, which are basic topological features of bio-
logical networks, as shown in Figs. 2b, 3b, and Supple-
mentary Table 2. For the DLMN_MI_OC, the average
node degree of mRNAs and IncRNAs was 2.81 (range
from 1-9) and 41.25 (range from 1-120), respectively.
While in the DLMN_MI_Re, the average node degree of
mRNAs and IncRNAs was 1.31 (range from 1-3) and 8.86
(range from 1-34), respectively. Moreover, degree of
IncRNAs is signifcantly higher than that of mRNAs
(Wilcoxon rank-sum test) both in the DLMN_MI_OC
and DLMN_MI_Re. The degree distribution of the
DLMN_MI_OC and DLMN_MI_Re were both sig-
nificantly right-skewed, demonstrating that only a small
portion of nodes highly connected with other nodes, and
had a significantly higher degree. These nodes were
usually considered as hub nodes.
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Fig. 2 DLMN_MI_OC and its structural and functional features. a Global view of the DLMN_MI_OC for MI occurrence. The DLMN_MI_OC consists
of 660 edges between 235 mRNAs (green circles) and 16 INcRNAs (red circles). The size of nodes is proportional to the degrees of the nodes in the
network. b Degree distribution of nodes in the DLMN_MI_OC. Degree of IncRNAs is signifcantly higher than that of mRNAs. ¢ Significantly enriched
KEGG subpathways (cancer subpathways removed) of mRNAs in the network
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Fig. 3 DLMN_MI_Re and its structural and functional features. a Global view of the DLMN_MI_Re for Ml recurrence. The DLMN_MI_Re consists of
124 edges between 95 mRNAs (green circles) and 14 IncRNAs (red circles). The size of nodes is proportional to the degrees of the nodes in the
network. b Degree distribution of nodes in the DLMN_MI_Re. Degree of IncRNAs is significantly higher than that of mRNAs. ¢ Significantly enriched
KEGG subpathways (cancer subpathways removed) of mRNAs in the network
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We paid close attention to the hub nodes, which have
been demonstrated to play critical roles in maintaining
the overall connectivity of the network. According to
recent studies, the nodes with the highest (top 5%) degree
were selected as hubs®®~2%, As a result, 14 hub nodes in
the DLMN_MI_OC were obtained, including 11 IncRNAs
(HCG18, THUMPD3-AS1, LINCO01278, HCP5, RP4-
773N10.4, LINCO01355, HCG17, CTC-429p9.3, RP11-
285F7.2, AC007566.10, and AC135048.13) and 3
mRNAs (XPO1, TAF15, and GXYLT1). Among these 11
IncRNAs, RP11-285F7.2 has recently been reported to be
differentially expressed in induced pluripotent stem
cell cardiomyocytes following treatment with trastuzu-
mab”, and much of these IncRNAs have been found
to be associated with cancers. Similarly, six hub nodes in
the DLMN_MI_Re were identified, and they were all
IncRNAs (DLEU2, RP11-30506.3, RP11-588K22.2,
RP11-363E7.4, AC083843.1, and PVT1). Among them,
DLEU2 was found to be contained in a deletion at
chr13ql4.3 in an earthquake-associated stress cardio-
myopathy case, and this region including a gene play
important roles in regulating voltage-gated potassium
channel activity’®. PVT1 was shown to be differentially
expressed between MI and sham-operated mice in a
recently published study®’.

We further examined the biological function of the
DLMN_MI_OC and DLMN_MI_Re. Significantly enri-
ched KEGG biological subpathways were identified by
applying SubpathwayMiner®* using 235 mRNAs in the
DLMN_MI_OC and 95 mRNAs in the DLMN_MI Re.
Consequently, 36 and 43 significant subpathways were
obtained with a p-value of <0.05 (Supplementary Table 3).
To more clearly demonstrate the results, cancer pathways
were removed, as demonstrated in Figs. 2c and 3c. For the
DLMN_MI_OC, several pathways well known in MI were
significantly enriched, such as NOD-like receptor signal-
ing pathway, T cell receptor signaling pathway, PI3K-Akt
signaling pathway, NF«B signaling pathway, MAPK sig-
naling pathway, and apoptosis, indicating inflammation,
immune response, and cell apoptosis. Additionally, some
other pathways were also closely related with MI,
including mTOR signaling pathway and focal adhesion.
For the DLMN_MI_Re, we found that several pathways
were cardiovascular-related pathways, such as viral myo-
carditis and vascular smooth muscle contraction, and
some pathways played important roles in MI, including
MAPK signaling pathway, NOD-like receptor signaling
pathway, B cell receptor signaling pathway, and apoptosis.
Meanwhile, pathways associated with emotion and diet
were also significantly enriched, such as alcoholism
pathway and long-term depression pathway. It is note-
worthy that, among all the pathways, the p-value of
alcoholism pathway was the most significant. All these
enriched pathways will provide us important cellular
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process information for understanding molecular
pathology and recurrence of MI.

IncRNA-mRNA ceRNA modules in Ml occurrence and
recurrence

To further study ceRNA crosstalks between mRNAs
and IncRNAs in MI occurrence and recurrence, IncRNA-
mRNA ceRNA modules were identified. We performed
hierarchical ~ clustering on DLMN_MI OC and
DLMN_MI_Re using Cluster3 software by the city-block
distance and complete linkage method (shown by Java-
TreeView imaging software). As a result, three ceRNA
network modules were identified in DLMN_MI_OC and
DLMN_MI_Re, respectively.

IncRNA-mRNA ceRNA modules in DLMN_MI OC
were shown in Fig. 4 and Supplementary Table 4. In the
first module, IncRNA HCG18 competed with 14 mRNAs
and another IncRNA HCP5. In the second module, 2
IncRNAs (THUMPD3-AS1 and RP4-773N10.4) and 15
mRNAs competed with each other. While the third
module contained 31 ceRNAs including 2 IncRNAs
(CTC-429p9.3 and LINCO01355) and 29 mRNAs. We
further investigated the biological function of each mod-
ule, and significant enriched KEGG subpathways were
identified using mRNAs in each module (Supplementary
Table 4). In module 1, RNA transport and circadian
rhythm were significantly enriched. Experimental and
clinical evidences have suggested that the onset of MI,
infarct size, healing, and cardiac function after MI all
exhibited a similar time-of-day dependency®~*°. In
module 2, purine metabolism, one-carbon pool by folate
and sphingokupid metabolism were statistically enriched.
Simultaneously, metabolites involved in purine metabo-
lism has been reported to be potential pathological bio-
markers related to isoproterenol-induced MI*®. DNA-
methylation patterns in specific regions of the one-carbon
metabolism and the homocysteine pathway genes regu-
lated MI risk conferred by folate and B-vitamins low
intake®”. Additionally, sphingolipid-mediated cell signal-
ing played important roles in acute MI and heart failure®,
Module 3 is the largest one, and the enrichment results
were highly related to ML

IncRNA-mRNA ceRNA modules in DLMN_MI_Re
were shown in Fig. 5 and Supplementary Table 4. The first
module and the second module both included 20 ceRNAs
(19 mRNAs and 1 IncRNA), and the third module con-
tained 28 ceRNAs (27 mRNAs and 1 IncRNA). As can be
seen from the enrichment results, the pathways were
closely related to MI or MI recurrence. Alcoholism was
the most significantly enriched pathway in module 1, and
most pathways in this module were metabolism pathways,
such as lipid metabolism (arachidonic acid metabolism
and fatty acid elongation) and nucleotide metabolism
(purine metabolism and pyrimidine metabolism). MRNAs
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Table 1 The detailed information of the identified IncRNA biomarkers for Ml occurrence and recurrence

Ensembl ID Gene name Chromosomal location p-value  Known rearch

ENSG00000260196.1 RP1-239B22.5° chr11:17,380,649-17,383,531(+) 0.0002 Severe pre—edampsiar’6

ENSG00000261487.1 AC135048.13° chr16:30,948,386-30,956,511(+) 0.0042 No

ENSG00000259953.1  RP11-401.2° chr9:112,032,555-112,037,730(=)  0.0046 (1) Papillary thyroid carcinoma®’(2) Associated with height®
ENSG00000242861.1 RP11-285F7.2° chr1:225,840,883-225,846,522(—) 0.0099 M Cardiomyocyteszg(Z) Non-small cell lung cancer”®
ENSG00000260912.1 RP11-363E7.4° chr9:19,453,209-19,455,173(+) 0.0169 Gastric cancer®®

ENSG00000260708.1 CTA-29F11.1° chr22:46,761,894-46,762,563(—) 0.0231 Human adenovirus infected cells®'

ENSG00000270157.1 RP5-894A106°  chr7:141,662,922-141,663,846(—) 0.0298 Head and neck squamous cell carcinoma®’

@ Denotes the identified IncRNA biomarkers for Ml occurrence
® Indicates the identified IncRNA biomarkers for MI recurrence

in module 2 enriched the most pathways including viral
myocarditis, long-term depression, and vascular smooth
muscle contraction. The enrichment results of module 3
were also related to ML

Identification of candidate IncRNA biomarkers for Ml
occurrence and recurrence

To identify candidate IncRNA biomarkers for MI
occurrence and recurrence based on ceRNA mechanisms,
we examined 16 IncRNAs in the DLMN_MI_OC and 14
IncRNAs in the DLMN_MI Re. As described in the
“Materials and methods”, 7 and 6 IncRNAs mostly related
to MI occurrence and recurrence were, respectively,
selected using random forest supervised classification
algorithm in the training set. There were 2’—1 = 127 and
2°~1 =63 combinations of these remaining IncRNAs.
Finally, we computed classification accuracies for all these
combinations using support vector machine (SVM) clas-
sification model, and the optimal IncRNA biomarkers
were obtained. As a result, two panel biomarkers defined
by four IncRNAs (RPI1-239B22.5, AC135048.13, RP1I-
401.2, RP11-285F7.2) and three IncRNAs (RP11-363E7.4,
CTA-29F11.1, RP5-894A10.6), with the highest classifi-
cation accuracy, were identified for MI occurrence and
recurrence, respectively. Detailed information was shown
in Table 1. For the signature of four IncRNAs for MI
occurrence, an accuracy of 0.885 and an AUC value of
0.891 were obtained in the training set (Fig. 6a) by
applying leave-one-out cross-validation (LOOCYV). The
signature was further examined in an independent test set
including 50 healthy controls and 49 acute MI patients,
and an accuracy of 0.813 and an AUC value of 0.768 were
achieved (Fig. 6a). In the same way, for the signature of
three IncRNAs for MI recurrence, we obtained an accu-
racy of 0.889 and an AUC value of 0.891 in the training set
by performing LOOCYV (Fig. 6b). All the results demon-
strated that the signatures we identified were accurate and
reliable in distinguishing controls from patients, and
patients with from those without recurrent events.

Official journal of the Cell Death Differentiation Association

We further examined the significantly enriched sub-
pathways using mRNAs co-expressed with the IncRNA
biomarkers for MI occurrence and recurrence (Supple-
mentary Table 5). The results showed that several path-
ways responsing to wounding and inflammatory response,
such as mTOR signaling pathway, PI3K-Akt signaling
pathway, leukocyte transendothelial migration, were all
associated with MI occurrence. For MI recurrence, only
three subpathways were enriched. Among these, alco-
holism pathway was the most significant one, and its p-
value was much more smaller than the other pathways.
These results suggested that the IncRNA biomarkers we
identified played important roles in the process of
occurrence and recurrence of ML

Discussion

Recent studies have revealed that ceRNAs including
IncRNAs and mRNAs could mutually regulate each other
via competing for their shared miRNAs, which are
important for physiological and pathological processes of
diseases. In the present study, based on ceRNA mechan-
isms, we systematically constructed two networks of
DLMN_MI_OC and DLMN_MI_Re for MI ocurrence
and recurrence by integrating genome-wide IncRNA and
mRNA expression profile data and experimentally verified
miRNA-target interactions. The two networks were both
presented modular features and high functional specificity
for MI. From the networks, two candidate panel bio-
markers defined by four IncRNAs and three IncRNAs
were identified for MI occurrence and recurrence,
respectively.

Functional enrichment analysis using mRNAs co-
expressed with IncRNAs revealed biological pathways
associated with MI occurrence and recurrence. Interest-
ingly, for MI recurrence, alcoholism pathway was the
most significantly enriched one, and the p-value of this
pathway was much more smaller than the other ones.
This phenomenon was also observed when using three
IncRNAs biomarker for MI recurrence. Heavy
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consumption of alcohol increased the risk of acute MI in
the subsequent 24 h, particularly in older persons it
has been reported®. Cardioembolic stroke patients
with alcohol abuse increased the risk of early recurrent
systemic embolization®®, and alcoholism pathway
significantly enriched in chronic phase of MI was
found in our previous studies*'. These results suggested
that alcoholism might have relationships with MI
recurrence, and MI patients may be likely to make
dietary changes to prevent future infarcts. Simultaneously,
long-term  depression pathway was significantly
enriched, and depression after MI increased the risk of
mortality and cardiovascular events*>. In addition, we
found that cancer pathways were also significantly enri-
ched, suggesting relationships between MI and the can-
cers. As is already reported, tumor invasion to the heart
with tumor compression on the coronary arteries may
cause MI*,

The DLMN _MI _OC and DLMN_MI_Re were con-
structed by using experimentally verified miRNA-mRNA
and miRNA-IncRNA regulations. Here, we emphasized
the credibility rather than the coverage. Thus, we did not
employ predicted data. However, experimentally sup-
ported interactions were neither complete nor unbiased,
and further experimental confirmation was needed. With
an improvement of the quantity and quality of the
miRNA-mRNA and miRNA-IncRNA interactions and
sample matched expression profile data of mRNA,
miRNA, and IncRNA, the dysregulated IncRNA-mRNA
ceRNA pairs we identified for MI occurrence and recur-
rence will be more accurate.

In summary, our study provided a global view for
ceRNA crosstalks between mRNAs and IncRNAs in MI
occurrence and recurrence by constructing ceRNA net-
works, and we identified two candidate panel biomarkers
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defined by four IncRNAs and three IncRNAs for MI
occurrence and recurrence. All the results will improve
our understanding of molecular mechanisms underlying
MI pathology and recurrence from ceRNA perspective,
and help us to discover true biomarkers for MI occur-
rence and recurrence.

Materials and methods
Gene expression profiles

The Ml-related gene expression profiles of GSE48060
based on Affymetrix Human Genome U133 Plus 2.0
Array were downloaded from the publicly available Gene
Expression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE48060)*, which included
21 normal controls and 31 acute MI patients. All these
patients conducted a 18-month follow-up. As a result, five
patients with recurrent events and 22 without any
recurrent events.

Acquisition of IncRNA expression profiles

The microarray gene expression data was normalized
using the RMA algorithm and log2 transformed. To
obtain the corresponding IncRNA expression profile data,
we re-annotated the probes in the HG-U133_Plus_2.0
array to IncRNAs, according to previous studies'® *> %°,
First, we re-mapped the probes (probe sets) of Affymetrix
HG-U133_Plus_2.0 array to the human genome
(GRCh38) using SeqMap”’. The probes (probe sets) were
retained when they were uniquely mapped to the human
genome with no mismatch. Second, we matched the
chromosomal position of the above probes (probe sets) to
the chromosomal position of IncRNAs from the GEN-
CODE project (http://www.gencodegenes.org, release
25)’. Finally, we obtained IncRNA expression profiles
including 1542 IncRNAs.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48060
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48060
http://www.gencodegenes.org
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Expression profiles analysis

For mRNA expression profiles and IncRNA expression
profiles, if multiple probes mapping to the same gene, the
expression values were averaged. We then retained
protein-coding genes in mRNA expression profiles. SDE
mRNAs and IncRNAs between MI patients and control
subjects were identified using empirical Bayesian method
implemented in R “limma” package®®. The genes with p <
0.01 were considered as SDE genes. Considering the
limited number of MI patients with recurrent events, the
SDE mRNAs and IncRNAs between MI patients with
recurrent events and those without recurrent events were
selected with p < 0.05.

miRNA-mRNA and miRNA-IncRNA interaction data

The experimentally verified miRNA-mRNA interaction
relationships were downloaded from TarBase (version
6.0)*, miRTarBase (version 6.1)°°, and miRecords (ver-
sion 4)°' databases. By integrating the above three data-
bases, we obtained 359,591 non-redundant
miRNA-mRNA interactions. The experimentally vali-
dated miRNA-IncRNA interactions were extracted from
starBase v2.0°> and DIANA-LncBase v2.0°%, after remov-
ing  repeating miRNA-IncRNA  entries, 64,716
miRNA-IncRNA relationships were retained.

Hypergeometric test

To identify candidate mRNA-IncRNA competing
interaction pairs that shared the same miRNAs, a p-value
was calculated using cumulative hypergeometric test
based on the common miRNAs of any pair of mRNAs and
IncRNAs. The formula was as follows:

|NmRNA|> (TOtﬂl - |NmRNA|>

B Zmin(\NmRNA\,\MMD < i INine| — i

i=|Nyurna |O[Nin | ( Total >
|Nin|

where Ny rna is the number of miRNAs targeted a given
mRNA, while Ny, . is the number of miRNAs regulated a
given IncRNA and Total is the number of common
miRNAs between all human miRNAs targeted human
mRNAs and all human miRNAs regulated all human
IncRNAs. The mRNA-IncRNA competing pairs with a p-
value less than 0.05 were selected as significant pairs.

Dysregulated IncRNA-mRNA competing interactions

The dysregulated mRNA-IncRNA competing interac-
tions for MI occurrence and recurrence were identified
based on “ceRNA hypothesis”. This process comprised
two steps as follows (Fig. 1). First, starting from SDE
mRNAs and IncRNAs, experimentally verified regulatory
relationships of miRNA-mRNA and miRNA-IncRNA
were identified as described above. We then performed
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hypergeometric test to test the significance of shared
miRNAs between IncRNA and mRNA pairs. A miRNA
and an IncRNA pair was considered as a candidate
IncRNA-mRNA competing interaction if the p-value
of hypergeometric test was less than 0.05. Second,
we further screened mRNA-IncRNA competing interac-
tions using expression profiles. The Pearson correlation
coefficient (PCC) was utilized to evaluate expression
correlation between mRNAs and IncRNAs. An
mRNA-IncRNA competing interaction was defined if the
PCC of the mRNA and the IncRNA were positively cor-
related. In order to increase the reliability of the results,
we retained the top correlated IncRNA-mRNA pairs for
further analysis according to previous studies®® °*. The
PCC of these mRNA-IncRNA pairs are higher than the
threshold of the 95th percentile of the corresponding
overall correlation distribution (PCC>0.570 for MI
occurrence, and PCC > 0.564 for MI recurrence, Supple-
mentary Table 1).

Network generation, analysis, and functional evaluation

The dysregulated IncRNA-mRNA network based on
“ceRNA hypothesis” for MI occurrence (DLMN_MI_OC)
and recurrence (DLMN_MI_Re) was constructed by
merging the dysregulated IncRNA-mRNA interactions
identified above.

To assess network characteristics, we computed degree
of each node in the network, and analyzed their degree
distribution. Degree of a node is the most elementary
feature of network, and it is defined the number of edges
linked to it. If degree distribution of a given network
follows a power law, the network would have only a few
nodes with a large number of edges (i.e., hubs). Hub nodes
in a network were selected as the highest (top 5%) degree
according to previous studies®* %,

We implemented enrichment analysis of mRNAs in the
network to assess the biological function of a network.
Significantly enriched KEGG subpathways were identified
using the R “SubpathwayMiner” package®>. A KEGG
subpathway with p <0.05 was considered as significantly
enriched.

Classification of IncRNA biomarkers for Ml occurrence and
recurrence

To evaluate the classification efficiency of IncRNA
biomarkers in distinguishing controls from patients and
patients with recurrent events from those without recur-
rent events, a classification model based on SVM was
implemented using the R “e1071” package, and the per-
formance was estimated by classification accuracy and the
area under the receiving operating curve (AUC). An AUC
value ranges from 0 to 1, with 0.5 implying randomly
obtained performance and 1.0 indicating perfect pre-
dictive performance.
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First, IncRNAs mostly related to MI occurrence and
recurrence were selected using random forest supervised
classification algorithm, according to a recently published
study55. At each step, each IncRNA was estimated an
important score using the out-of-bag samples through
permutation test, and 1/3 less important IncRNAs were
discarded. Second, we reserved certain IncRNAs con-
sidering a balance between classification accuracy and the
number of IncRNAs. Finally, classification accuracy for all
combinations of the remaining IncRNAs was evaluated by
applying SVM, and the optimal IncRNA biomarkers were
selected.

The IncRNA profiles obtained by probe re-annotation
of GSE48060 were used as training set. On the same
microarray platform, we found another Ml-related gene
expression profile data of GSE66360, and the corre-
sponding IncRNA profiles were obtained by implementing
the same method. The dataset of GSE66360 included 50
healthy samples and 49 acute MI patients, but it did not
contain the information about recurrent event. Therefore,
the dataset was used as an independent test set for MI
occurrence.
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