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Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) acting as competing endogenous
RNAs (ceRNAs) play important roles in initiation and development of human diseases. However, the mechanism of
ceRNA regulated by lncRNA in myocardial infarction (MI) remained unclear. In this study, we performed a multi-step
computational method to construct dysregulated lncRNA-mRNA networks for MI occurrence (DLMN_MI_OC) and
recurrence (DLMN_MI_Re) based on “ceRNA hypothesis”. We systematically integrated lncRNA and mRNA expression
profiles and miRNA-target regulatory interactions. The constructed DLMN_MI_OC and DLMN_MI_Re both exhibited
biological network characteristics, and functional analysis demonstrated that the networks were specific for MI.
Additionally, we identified some lncRNA-mRNA ceRNA modules involved in MI occurrence and recurrence. Finally, two
new panel biomarkers defined by four lncRNAs (RP1-239B22.5, AC135048.13, RP11-4O1.2, RP11-285F7.2) from
DLMN_MI_OC and three lncRNAs (RP11-363E7.4, CTA-29F11.1, RP5-894A10.6) from DLMN_MI_Re with high classification
performance were, respectively, identified in distinguishing controls from patients, and patients with recurrent events
from those without recurrent events. This study will provide us new insight into ceRNA-mediated regulatory
mechanisms involved in MI occurrence and recurrence, and facilitate the discovery of candidate diagnostic and
prognosis biomarkers for MI.

Introduction
Myocardial infarction (MI) is one of the most serious

types of coronary artery disease, which often lead to
myocardial cell death due to prolonged ischemia1. It is a
leading cause of morbidity, mortality, and cost to society2.
The recurrence of MI following first-time occurrence will

make coronary artery conditions more severely and
greatly increase the risk of death in patients3. Thus stra-
tegies for prediction of recurrent events will prolong
survival in post-MI patients4. Non-high-density lipopro-
tein cholesterol value was recently found to be a strong
predictor of recurrent MI5, and phospholipase A2
expression in coronary thrombus has been reported to be
related with recurrence of cardiac events after MI6.
Although some biochemical markers such as cardiac
troponins T and I, creatine kinase-MB are clinically used
for diagnosis of MI, they only indicate myocardial
damage, and the molecular mechanisms underlying MI
and recurrence of MI are not reflected.
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There have been numerous researches documented that
less than 2% of the human genome encodes protein-
coding genes, and non-coding RNAs (ncRNAs) constitute
most of the human transcriptome7. ncRNAs include short
ncRNAs and long ncRNAs. microRNAs (miRNAs) are a
class of important short ncRNAs with approximately 22
nucleotides in length, which have been extensively stu-
died. It mainly inhibit gene expression by binding to the 3′

untranslated regions of target mRNAs8. miRNAs have
been reported to be implicated in numerous diseases9, 10,
including MI11. While long non-coding RNAs (lncRNAs)
represent a major class of ncRNAs, with greater than 200
nucleotides in length, which could regulate genes at
transcriptional, post-transcriptional, and epigenetic
levels12. The dysregulation of lncRNA expression is
therefore associated with various diseases13, including

Fig. 1 An integrative pipeline to construct the dysregulated lncRNA-mRNA ceRNA network for MI occurrence and recurrence. First, starting
from significantly differentially expressed (SDE) mRNAs and lncRNAs, experimentally verified miRNA–mRNA and miRNA–lncRNA interaction
relationships were integrated, and hypergeometric test (p-value < 0.05) was performed to identify candidate lncRNA–mRNA competing interactions.
Second, the Pearson correlation coefficient (PCC) was further utilized to screen mRNA–lncRNA competing interactions by using expression profiles.
Finally, dysregulated lncRNA-mRNA ceRNA network for MI occurrence and recurrence were constructed by merging the dysregulated lncRNA–mRNA
ceRNA interactions, respectively
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cancers14, 15, neurodegeneration diseases16, and cardio-
vascular diseases17, 18. For example, knockdown of a novel
lncRNA, Mirt1, was recently reported to improved cardiac
functions, decreased cardiomyocytes apoptosis, and atte-
nuated inflammatory cell infiltration in cardiac fibroblasts
in acute MI mice19. In rat cardiac muscle H9c2 cells,
downregulation of lncRNA KCNQ1OT1 has been found
to prevent myocardial ischemia/reperfusion injury fol-
lowing acute MI20. However, little is known about
lncRNAs in MI.
Theoretical and experimental studies have demon-

strated that a large number of miRNA-binding sites exist
on different types of RNA transcripts, indicating that
diverse RNA transcripts containing the miRNA-binding
sites can regulate each other through competing for
shared miRNAs, thus acting as competing endogenous
RNAs (ceRNAs)21–23. Importantly, lncRNAs could com-
pete with miRNA target mRNAs for miRNA molecules,
and thus regulate miRNA-mediated target repression21,
22. This type of ceRNA crosstalk has been widely observed
in different biological processes and diseases. For exam-
ple, a lncRNA (lnc-mg) that is specifically enriched in
skeletal muscle was recently identified, and it was found
to promote myogenesis by acting as a ceRNA for miR-
125b to affect protein abundance of insulin-like growth
factor 224. Additionally, lncRNA MIAT was demonstrated
to function as a ceRNA to upregulate DAPK2 by reg-
ulating miR-22-3p in diabetic cardiomyopathy25. How-
ever, ceRNA mechanisms associated with MI have not
been investigated.
In this study, we systematically integrated regulatory

interactions among lncRNAs, miRNAs and mRNAs and
expression profile data, and identified lncRNA–mRNA
competing interactions in MI based on “ceRNA hypoth-
esis”. We then constructed dysregulated lncRNA-mRNA
networks for MI occurrence (DLMN_MI_OC) and
recurrence (DLMN_MI_Re). The pipeline of construction
the network was shown in Fig. 1. Based on the two con-
structed networks, we intended to investigate: (1) topo-
logical properties and biological functions of
DLMN_MI_OC and DLMN_MI_Re, (2) lncRNA-mRNA
ceRNA modules in DLMN_MI_OC and DLMN_MI_Re,
(3) potential lncRNA biomarkers for MI occurrence and
recurrence.

Results
Differentially expressed mRNAs and lncRNAs
After pre-processing of the gene expression profiles,

expression profile data of 21,695 mRNAs and 1542
lncRNAs were retained for further studied. We
then compared the expression profiles of mRNAs
and lncRNAs between MI patients and controls using the
R “limma” package, and 1001 significantly differentially
expressed (SDE) mRNAs and 55 SDE lncRNAs

were identified (p < 0.01). Among these, 437 mRNAs
and 34 lncRNAs were upregulated and 564 mRNAs
and 21 lncRNAs were downregulated. The expression
profiles of mRNAs and lncRNAs between MI
patients with recurrent events and those without
recurrent events were also analyzed using the R “limma”
package. Considering the limited number of MI
patients with recurrent events, the mRNAs and lncRNAs
with p < 0.05 were selected as SDE mRNAs and lncRNAs.
Thus, 859 SDE mRNAs and 60 SDE lncRNAs were
obtained. Of these, 538 mRNAs and 39 lncRNAs were
upregulated and 321 mRNAs and 21 lncRNAs were
downregulated.

Construction of the DLMN_MI_OC and DLMN_MI_Re
The DLMN_MI_OC and DLMN_MI_Re were both

constructed based on ceRNA theory by integrating
expression profile data and regulatory relationships of
mRNAs, miRNAs, and lncRNAs. As described in “Mate-
rials and methods”, an lncRNA–mRNA competing
interaction pair was selected if the lncRNA and the
mRNA significantly shared common miRNAs, and the
expression of the lncRNA and the mRNA is positively
correlated. As a result, we identified 660 and 124 dysre-
gulated lncRNA-mRNA pairs for MI occurrence and
recurrence, respectively (Supplementary Table 1). By
merging these dysregulated interactions, the
DLMN_MI_OC and DLMN_MI_Re were constructed. As
demonstrated in Figs. 2a and 3a, the DLMN_MI_OC
included 251 nodes (235 mRNAs and 16 lncRNAs) and
660 ceRNA interactions, and the DLMN_MI_Re con-
tained 109 nodes (95 mRNAs and 14 lncRNAs) and 124
ceRNA interactions.

Topological and biological functional analysis of the
DLMN_MI_OC and DLMN_MI_Re
To investigate the global view of the DLMN_MI_OC

and DLMN_MI_Re, we computed degree and degree
distribution, which are basic topological features of bio-
logical networks, as shown in Figs. 2b, 3b, and Supple-
mentary Table 2. For the DLMN_MI_OC, the average
node degree of mRNAs and lncRNAs was 2.81 (range
from 1–9) and 41.25 (range from 1–120), respectively.
While in the DLMN_MI_Re, the average node degree of
mRNAs and lncRNAs was 1.31 (range from 1–3) and 8.86
(range from 1–34), respectively. Moreover, degree of
lncRNAs is signifcantly higher than that of mRNAs
(Wilcoxon rank-sum test) both in the DLMN_MI_OC
and DLMN_MI_Re. The degree distribution of the
DLMN_MI_OC and DLMN_MI_Re were both sig-
nificantly right-skewed, demonstrating that only a small
portion of nodes highly connected with other nodes, and
had a significantly higher degree. These nodes were
usually considered as hub nodes.
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Fig. 2 DLMN_MI_OC and its structural and functional features. a Global view of the DLMN_MI_OC for MI occurrence. The DLMN_MI_OC consists
of 660 edges between 235 mRNAs (green circles) and 16 lncRNAs (red circles). The size of nodes is proportional to the degrees of the nodes in the
network. b Degree distribution of nodes in the DLMN_MI_OC. Degree of lncRNAs is signifcantly higher than that of mRNAs. c Significantly enriched
KEGG subpathways (cancer subpathways removed) of mRNAs in the network
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Fig. 3 DLMN_MI_Re and its structural and functional features. a Global view of the DLMN_MI_Re for MI recurrence. The DLMN_MI_Re consists of
124 edges between 95 mRNAs (green circles) and 14 lncRNAs (red circles). The size of nodes is proportional to the degrees of the nodes in the
network. b Degree distribution of nodes in the DLMN_MI_Re. Degree of lncRNAs is significantly higher than that of mRNAs. c Significantly enriched
KEGG subpathways (cancer subpathways removed) of mRNAs in the network
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Fig. 4 lncRNA-mRNA ceRNA modules in DLMN_MI_OC. a Hierarchical clustering of the DLMN_MI_OC for MI occurrence. b Three identified
lncRNA-mRNA ceRNA modules in the DLMN_MI_OC. c Subpathway enrichment analysis of the three ceRNA modules

Zhang et al. Cell Death Discovery  (2018) 4:35 Page 6 of 13

Official journal of the Cell Death Differentiation Association



We paid close attention to the hub nodes, which have
been demonstrated to play critical roles in maintaining
the overall connectivity of the network. According to
recent studies, the nodes with the highest (top 5%) degree
were selected as hubs26–28. As a result, 14 hub nodes in
the DLMN_MI_OC were obtained, including 11 lncRNAs
(HCG18, THUMPD3-AS1, LINC01278, HCP5, RP4-
773N10.4, LINC01355, HCG17, CTC-429p9.3, RP11-
285F7.2, AC007566.10, and AC135048.13) and 3
mRNAs (XPO1, TAF15, and GXYLT1). Among these 11
lncRNAs, RP11-285F7.2 has recently been reported to be
differentially expressed in induced pluripotent stem
cell cardiomyocytes following treatment with trastuzu-
mab29, and much of these lncRNAs have been found
to be associated with cancers. Similarly, six hub nodes in
the DLMN_MI_Re were identified, and they were all
lncRNAs (DLEU2, RP11-30506.3, RP11-588K22.2,
RP11-363E7.4, AC083843.1, and PVT1). Among them,
DLEU2 was found to be contained in a deletion at
chr13q14.3 in an earthquake-associated stress cardio-
myopathy case, and this region including a gene play
important roles in regulating voltage-gated potassium
channel activity30. PVT1 was shown to be differentially
expressed between MI and sham-operated mice in a
recently published study31.
We further examined the biological function of the

DLMN_MI_OC and DLMN_MI_Re. Significantly enri-
ched KEGG biological subpathways were identified by
applying SubpathwayMiner32 using 235 mRNAs in the
DLMN_MI_OC and 95 mRNAs in the DLMN_MI_Re.
Consequently, 36 and 43 significant subpathways were
obtained with a p-value of <0.05 (Supplementary Table 3).
To more clearly demonstrate the results, cancer pathways
were removed, as demonstrated in Figs. 2c and 3c. For the
DLMN_MI_OC, several pathways well known in MI were
significantly enriched, such as NOD-like receptor signal-
ing pathway, T cell receptor signaling pathway, PI3K-Akt
signaling pathway, NFκB signaling pathway, MAPK sig-
naling pathway, and apoptosis, indicating inflammation,
immune response, and cell apoptosis. Additionally, some
other pathways were also closely related with MI,
including mTOR signaling pathway and focal adhesion.
For the DLMN_MI_Re, we found that several pathways
were cardiovascular-related pathways, such as viral myo-
carditis and vascular smooth muscle contraction, and
some pathways played important roles in MI, including
MAPK signaling pathway, NOD-like receptor signaling
pathway, B cell receptor signaling pathway, and apoptosis.
Meanwhile, pathways associated with emotion and diet
were also significantly enriched, such as alcoholism
pathway and long-term depression pathway. It is note-
worthy that, among all the pathways, the p-value of
alcoholism pathway was the most significant. All these
enriched pathways will provide us important cellular

process information for understanding molecular
pathology and recurrence of MI.

lncRNA-mRNA ceRNA modules in MI occurrence and
recurrence
To further study ceRNA crosstalks between mRNAs

and lncRNAs in MI occurrence and recurrence, lncRNA-
mRNA ceRNA modules were identified. We performed
hierarchical clustering on DLMN_MI_OC and
DLMN_MI_Re using Cluster3 software by the city-block
distance and complete linkage method (shown by Java-
TreeView imaging software). As a result, three ceRNA
network modules were identified in DLMN_MI_OC and
DLMN_MI_Re, respectively.
lncRNA-mRNA ceRNA modules in DLMN_MI_OC

were shown in Fig. 4 and Supplementary Table 4. In the
first module, lncRNA HCG18 competed with 14 mRNAs
and another lncRNA HCP5. In the second module, 2
lncRNAs (THUMPD3-AS1 and RP4-773N10.4) and 15
mRNAs competed with each other. While the third
module contained 31 ceRNAs including 2 lncRNAs
(CTC-429p9.3 and LINC01355) and 29 mRNAs. We
further investigated the biological function of each mod-
ule, and significant enriched KEGG subpathways were
identified using mRNAs in each module (Supplementary
Table 4). In module 1, RNA transport and circadian
rhythm were significantly enriched. Experimental and
clinical evidences have suggested that the onset of MI,
infarct size, healing, and cardiac function after MI all
exhibited a similar time-of-day dependency33–35. In
module 2, purine metabolism, one-carbon pool by folate
and sphingokupid metabolism were statistically enriched.
Simultaneously, metabolites involved in purine metabo-
lism has been reported to be potential pathological bio-
markers related to isoproterenol-induced MI36. DNA-
methylation patterns in specific regions of the one-carbon
metabolism and the homocysteine pathway genes regu-
lated MI risk conferred by folate and B-vitamins low
intake37. Additionally, sphingolipid-mediated cell signal-
ing played important roles in acute MI and heart failure38.
Module 3 is the largest one, and the enrichment results
were highly related to MI.
lncRNA-mRNA ceRNA modules in DLMN_MI_Re

were shown in Fig. 5 and Supplementary Table 4. The first
module and the second module both included 20 ceRNAs
(19 mRNAs and 1 lncRNA), and the third module con-
tained 28 ceRNAs (27 mRNAs and 1 lncRNA). As can be
seen from the enrichment results, the pathways were
closely related to MI or MI recurrence. Alcoholism was
the most significantly enriched pathway in module 1, and
most pathways in this module were metabolism pathways,
such as lipid metabolism (arachidonic acid metabolism
and fatty acid elongation) and nucleotide metabolism
(purine metabolism and pyrimidine metabolism). MRNAs
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Fig. 5 lncRNA-mRNA ceRNA modules in DLMN_MI_Re. a Hierarchical clustering of the DLMN_MI_Re for MI recurrence. b Three identified lncRNA-
mRNA ceRNA modules in the DLMN_MI_Re. c Subpathway enrichment analysis of the three ceRNA modules
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in module 2 enriched the most pathways including viral
myocarditis, long-term depression, and vascular smooth
muscle contraction. The enrichment results of module 3
were also related to MI.

Identification of candidate lncRNA biomarkers for MI
occurrence and recurrence
To identify candidate lncRNA biomarkers for MI

occurrence and recurrence based on ceRNA mechanisms,
we examined 16 lncRNAs in the DLMN_MI_OC and 14
lncRNAs in the DLMN_MI_Re. As described in the
“Materials and methods”, 7 and 6 lncRNAs mostly related
to MI occurrence and recurrence were, respectively,
selected using random forest supervised classification
algorithm in the training set. There were 27−1= 127 and
26−1= 63 combinations of these remaining lncRNAs.
Finally, we computed classification accuracies for all these
combinations using support vector machine (SVM) clas-
sification model, and the optimal lncRNA biomarkers
were obtained. As a result, two panel biomarkers defined
by four lncRNAs (RP1-239B22.5, AC135048.13, RP11-
4O1.2, RP11-285F7.2) and three lncRNAs (RP11-363E7.4,
CTA-29F11.1, RP5-894A10.6), with the highest classifi-
cation accuracy, were identified for MI occurrence and
recurrence, respectively. Detailed information was shown
in Table 1. For the signature of four lncRNAs for MI
occurrence, an accuracy of 0.885 and an AUC value of
0.891 were obtained in the training set (Fig. 6a) by
applying leave-one-out cross-validation (LOOCV). The
signature was further examined in an independent test set
including 50 healthy controls and 49 acute MI patients,
and an accuracy of 0.813 and an AUC value of 0.768 were
achieved (Fig. 6a). In the same way, for the signature of
three lncRNAs for MI recurrence, we obtained an accu-
racy of 0.889 and an AUC value of 0.891 in the training set
by performing LOOCV (Fig. 6b). All the results demon-
strated that the signatures we identified were accurate and
reliable in distinguishing controls from patients, and
patients with from those without recurrent events.

We further examined the significantly enriched sub-
pathways using mRNAs co-expressed with the lncRNA
biomarkers for MI occurrence and recurrence (Supple-
mentary Table 5). The results showed that several path-
ways responsing to wounding and inflammatory response,
such as mTOR signaling pathway, PI3K-Akt signaling
pathway, leukocyte transendothelial migration, were all
associated with MI occurrence. For MI recurrence, only
three subpathways were enriched. Among these, alco-
holism pathway was the most significant one, and its p-
value was much more smaller than the other pathways.
These results suggested that the lncRNA biomarkers we
identified played important roles in the process of
occurrence and recurrence of MI.

Discussion
Recent studies have revealed that ceRNAs including

lncRNAs and mRNAs could mutually regulate each other
via competing for their shared miRNAs, which are
important for physiological and pathological processes of
diseases. In the present study, based on ceRNA mechan-
isms, we systematically constructed two networks of
DLMN_MI_OC and DLMN_MI_Re for MI ocurrence
and recurrence by integrating genome-wide lncRNA and
mRNA expression profile data and experimentally verified
miRNA–target interactions. The two networks were both
presented modular features and high functional specificity
for MI. From the networks, two candidate panel bio-
markers defined by four lncRNAs and three lncRNAs
were identified for MI occurrence and recurrence,
respectively.
Functional enrichment analysis using mRNAs co-

expressed with lncRNAs revealed biological pathways
associated with MI occurrence and recurrence. Interest-
ingly, for MI recurrence, alcoholism pathway was the
most significantly enriched one, and the p-value of this
pathway was much more smaller than the other ones.
This phenomenon was also observed when using three
lncRNAs biomarker for MI recurrence. Heavy

Table 1 The detailed information of the identified lncRNA biomarkers for MI occurrence and recurrence

Ensembl ID Gene name Chromosomal location p-value Known rearch

ENSG00000260196.1 RP1-239B22.5a chr11:17,380,649-17,383,531(+) 0.0002 Severe pre-eclampsia56

ENSG00000261487.1 AC135048.13a chr16:30,948,386-30,956,511(+) 0.0042 No

ENSG00000259953.1 RP11-4O1.2a chr9:112,032,555-112,037,730(−) 0.0046 (1) Papillary thyroid carcinoma57(2) Associated with height58

ENSG00000242861.1 RP11-285F7.2a chr1:225,840,883-225,846,522(−) 0.0099 (1) Cardiomyocytes29(2) Non-small cell lung cancer59

ENSG00000260912.1 RP11-363E7.4b chr9:19,453,209-19,455,173(+) 0.0169 Gastric cancer60

ENSG00000260708.1 CTA-29F11.1b chr22:46,761,894-46,762,563(−) 0.0231 Human adenovirus infected cells61

ENSG00000270157.1 RP5-894A10.6b chr7:141,662,922-141,663,846(−) 0.0298 Head and neck squamous cell carcinoma62

a Denotes the identified lncRNA biomarkers for MI occurrence
b Indicates the identified lncRNA biomarkers for MI recurrence
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consumption of alcohol increased the risk of acute MI in
the subsequent 24 h, particularly in older persons it
has been reported39. Cardioembolic stroke patients
with alcohol abuse increased the risk of early recurrent
systemic embolization40, and alcoholism pathway
significantly enriched in chronic phase of MI was
found in our previous studies41. These results suggested
that alcoholism might have relationships with MI
recurrence, and MI patients may be likely to make
dietary changes to prevent future infarcts. Simultaneously,
long-term depression pathway was significantly
enriched, and depression after MI increased the risk of
mortality and cardiovascular events42. In addition, we
found that cancer pathways were also significantly enri-
ched, suggesting relationships between MI and the can-
cers. As is already reported, tumor invasion to the heart
with tumor compression on the coronary arteries may
cause MI43.
The DLMN_MI_OC and DLMN_MI_Re were con-

structed by using experimentally verified miRNA-mRNA
and miRNA-lncRNA regulations. Here, we emphasized
the credibility rather than the coverage. Thus, we did not
employ predicted data. However, experimentally sup-
ported interactions were neither complete nor unbiased,
and further experimental confirmation was needed. With
an improvement of the quantity and quality of the
miRNA–mRNA and miRNA–lncRNA interactions and
sample matched expression profile data of mRNA,
miRNA, and lncRNA, the dysregulated lncRNA-mRNA
ceRNA pairs we identified for MI occurrence and recur-
rence will be more accurate.
In summary, our study provided a global view for

ceRNA crosstalks between mRNAs and lncRNAs in MI
occurrence and recurrence by constructing ceRNA net-
works, and we identified two candidate panel biomarkers

defined by four lncRNAs and three lncRNAs for MI
occurrence and recurrence. All the results will improve
our understanding of molecular mechanisms underlying
MI pathology and recurrence from ceRNA perspective,
and help us to discover true biomarkers for MI occur-
rence and recurrence.

Materials and methods
Gene expression profiles
The MI-related gene expression profiles of GSE48060

based on Affymetrix Human Genome U133 Plus 2.0
Array were downloaded from the publicly available Gene
Expression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE48060)44, which included
21 normal controls and 31 acute MI patients. All these
patients conducted a 18-month follow-up. As a result, five
patients with recurrent events and 22 without any
recurrent events.

Acquisition of lncRNA expression profiles
The microarray gene expression data was normalized

using the RMA algorithm and log2 transformed. To
obtain the corresponding lncRNA expression profile data,
we re-annotated the probes in the HG-U133_Plus_2.0
array to lncRNAs, according to previous studies14, 45, 46.
First, we re-mapped the probes (probe sets) of Affymetrix
HG-U133_Plus_2.0 array to the human genome
(GRCh38) using SeqMap47. The probes (probe sets) were
retained when they were uniquely mapped to the human
genome with no mismatch. Second, we matched the
chromosomal position of the above probes (probe sets) to
the chromosomal position of lncRNAs from the GEN-
CODE project (http://www.gencodegenes.org, release
25)7. Finally, we obtained lncRNA expression profiles
including 1542 lncRNAs.
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Expression profiles analysis
For mRNA expression profiles and lncRNA expression

profiles, if multiple probes mapping to the same gene, the
expression values were averaged. We then retained
protein-coding genes in mRNA expression profiles. SDE
mRNAs and lncRNAs between MI patients and control
subjects were identified using empirical Bayesian method
implemented in R “limma” package48. The genes with p <
0.01 were considered as SDE genes. Considering the
limited number of MI patients with recurrent events, the
SDE mRNAs and lncRNAs between MI patients with
recurrent events and those without recurrent events were
selected with p < 0.05.

miRNA–mRNA and miRNA–lncRNA interaction data
The experimentally verified miRNA–mRNA interaction

relationships were downloaded from TarBase (version
6.0)49, miRTarBase (version 6.1)50, and miRecords (ver-
sion 4)51 databases. By integrating the above three data-
bases, we obtained 359,591 non-redundant
miRNA–mRNA interactions. The experimentally vali-
dated miRNA–lncRNA interactions were extracted from
starBase v2.052 and DIANA-LncBase v2.053, after remov-
ing repeating miRNA-lncRNA entries, 64,716
miRNA–lncRNA relationships were retained.

Hypergeometric test
To identify candidate mRNA–lncRNA competing

interaction pairs that shared the same miRNAs, a p-value
was calculated using cumulative hypergeometric test
based on the common miRNAs of any pair of mRNAs and
lncRNAs. The formula was as follows:

p ¼
XminðjNmRNAj;jNln cjÞ

i¼jNmRNAj\jNln cj

jNmRNAj
i

� �
Total � jNmRNAj

jNln cj � i

� �

Total

jNln cj

� � ;

where NmRNA is the number of miRNAs targeted a given
mRNA, while NIn c is the number of miRNAs regulated a
given lncRNA and Total is the number of common
miRNAs between all human miRNAs targeted human
mRNAs and all human miRNAs regulated all human
lncRNAs. The mRNA-lncRNA competing pairs with a p-
value less than 0.05 were selected as significant pairs.

Dysregulated lncRNA–mRNA competing interactions
The dysregulated mRNA–lncRNA competing interac-

tions for MI occurrence and recurrence were identified
based on “ceRNA hypothesis”. This process comprised
two steps as follows (Fig. 1). First, starting from SDE
mRNAs and lncRNAs, experimentally verified regulatory
relationships of miRNA-mRNA and miRNA-lncRNA
were identified as described above. We then performed

hypergeometric test to test the significance of shared
miRNAs between lncRNA and mRNA pairs. A miRNA
and an lncRNA pair was considered as a candidate
lncRNA–mRNA competing interaction if the p-value
of hypergeometric test was less than 0.05. Second,
we further screened mRNA–lncRNA competing interac-
tions using expression profiles. The Pearson correlation
coefficient (PCC) was utilized to evaluate expression
correlation between mRNAs and lncRNAs. An
mRNA–lncRNA competing interaction was defined if the
PCC of the mRNA and the lncRNA were positively cor-
related. In order to increase the reliability of the results,
we retained the top correlated lncRNA-mRNA pairs for
further analysis according to previous studies28, 54. The
PCC of these mRNA-lncRNA pairs are higher than the
threshold of the 95th percentile of the corresponding
overall correlation distribution (PCC > 0.570 for MI
occurrence, and PCC > 0.564 for MI recurrence, Supple-
mentary Table 1).

Network generation, analysis, and functional evaluation
The dysregulated lncRNA-mRNA network based on

“ceRNA hypothesis” for MI occurrence (DLMN_MI_OC)
and recurrence (DLMN_MI_Re) was constructed by
merging the dysregulated lncRNA–mRNA interactions
identified above.
To assess network characteristics, we computed degree

of each node in the network, and analyzed their degree
distribution. Degree of a node is the most elementary
feature of network, and it is defined the number of edges
linked to it. If degree distribution of a given network
follows a power law, the network would have only a few
nodes with a large number of edges (i.e., hubs). Hub nodes
in a network were selected as the highest (top 5%) degree
according to previous studies26–28.
We implemented enrichment analysis of mRNAs in the

network to assess the biological function of a network.
Significantly enriched KEGG subpathways were identified
using the R “SubpathwayMiner” package32. A KEGG
subpathway with p < 0.05 was considered as significantly
enriched.

Classification of lncRNA biomarkers for MI occurrence and
recurrence
To evaluate the classification efficiency of lncRNA

biomarkers in distinguishing controls from patients and
patients with recurrent events from those without recur-
rent events, a classification model based on SVM was
implemented using the R “e1071” package, and the per-
formance was estimated by classification accuracy and the
area under the receiving operating curve (AUC). An AUC
value ranges from 0 to 1, with 0.5 implying randomly
obtained performance and 1.0 indicating perfect pre-
dictive performance.
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First, lncRNAs mostly related to MI occurrence and
recurrence were selected using random forest supervised
classification algorithm, according to a recently published
study55. At each step, each lncRNA was estimated an
important score using the out-of-bag samples through
permutation test, and 1/3 less important lncRNAs were
discarded. Second, we reserved certain lncRNAs con-
sidering a balance between classification accuracy and the
number of lncRNAs. Finally, classification accuracy for all
combinations of the remaining lncRNAs was evaluated by
applying SVM, and the optimal lncRNA biomarkers were
selected.
The lncRNA profiles obtained by probe re-annotation

of GSE48060 were used as training set. On the same
microarray platform, we found another MI-related gene
expression profile data of GSE66360, and the corre-
sponding lncRNA profiles were obtained by implementing
the same method. The dataset of GSE66360 included 50
healthy samples and 49 acute MI patients, but it did not
contain the information about recurrent event. Therefore,
the dataset was used as an independent test set for MI
occurrence.
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