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Single-cell transcriptome profiles the heterogeneity of tumor
cells and microenvironments for different pathological
endometrial cancer and identifies specific sensitive drugs
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Endometrial cancer (EC) is a highly heterogeneous malignancy characterized by varied pathology and prognoses, and the
heterogeneity of its cancer cells and the tumor microenvironment (TME) remains poorly understood. We conducted single-cell RNA
sequencing (scRNA-seq) on 18 EC samples, encompassing various pathological types to delineate their specific unique
transcriptional landscapes. Cancer cells from diverse pathological sources displayed distinct hallmarks labeled as immune-
modulating, proliferation-modulating, and metabolism-modulating cancer cells in uterine clear cell carcinomas (UCCC), well-
differentiated endometrioid endometrial carcinomas (EEC-I), and uterine serous carcinomas (USC), respectively. Cancer cells from
the UCCC exhibited the greatest heterogeneity. We also identified potential effective drugs and confirmed their effectiveness using
patient-derived EC organoids for each pathological group. Regarding the TME, we observed that prognostically favorable CD8+

Tcyto and NK cells were prominent in normal endometrium, whereas CD4+ Treg, CD4+ Tex, and CD8+ Tex cells dominated the
tumors. CXCL3+ macrophages associated with M2 signature and angiogenesis were exclusively found in tumors. Prognostically
relevant epithelium-specific cancer-associated fibroblasts (eCAFs) and SOD2+ inflammatory CAFs (iCAFs) predominated in EEC-I and
UCCC groups, respectively. We also validated the oncogenic effects of SOD2+ iCAFs in vitro. Our comprehensive study has yielded
deeper insights into the pathogenesis of EC, potentially facilitating personalized treatments for its varied pathological types.
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INTRODUCTION
Uterine corpus cancer ranks as the sixth most prevalent
malignancy among women, with 417,000 new cases and 97,000
deaths reported in 2020. The incidence rate of endometrial cancer
(EC) has increased by 132% over the past three decades, a rise that
mirrors the growing prevalence of risk factors, notably obesity and
an aging population [1]. Traditionally, according to Bokhman et al.
(1983), EC is classified into Type I (moderately to well-
differentiated EEC) and Type II based on clinical-pathological
characteristics and prognosis, which includes poorly differentiated
EEC (EEC-II), uterine serous carcinomas (USC), uterine clear cell
carcinomas (UCCC), and uterine carcinosarcoma [2]. Our research,
alongside other studies, has uncovered significant variations in
epidemiological characteristics, clinical parameters and prognosis
among EC samples of different pathological types [3–5]. In stark
contrast to the moderate or well-differentiated EEC (85%), the
5-year survival rates for USC (45.9%), uterine carcinosarcoma
(53.6%), and UCCC (63%) are notably lower, reflecting their
aggressive behavior, such as cervical involvement, peritoneal and

lymph-node metastasis, or distant organ metastasis [6, 7].
Currently, according to the National Comprehensive Cancer
Network (NCCN) guidelines, there is no specific or effective
treatment available to enhance prognosis by addressing such
aggressive behavior [8]. Immunotherapy brings a glimmer of hope
for treating malignant tumors, and the Food and Drug Adminis-
tration (FDA) has approved pembrolizumab and Dostarlimab-gxly
for advanced or recurrent EC in 2017 and 2021, respectively [9, 10].
However, the response rate of these treatments varies significantly
among patients with different pathological types or tumor
mutation burden (TMB) statuses. Thus, developing effective
therapeutic strategies for these uncommon pathological types
by thoroughly understanding their unique characteristics in
malignant cells and the tumor microenvironment (TME) is crucial.
Previous studies have identified specific mutation hotspots that

contribute to the development and progression of EC patients
across various pathological types [11]. Notably, mutations in PTEN,
PIK3CA, and PIK3R1 are associated with the progression of
endometrioid EC, while mutations in TP53 and/or p53 are
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associated with the early development of USC [12–14]. Addition-
ally, PTEN and TP53 mutations are common in uterine carcino-
sarcomas [15]. Moreover, approximately 30% of USC patients
exhibit HER2 overexpression, potentially benefiting from trastu-
zumab therapy [16]. However, these findings are derived from
bulk RNA/DNA/protein sequencing, which aggregates results from
multiple cellular components, thereby obscuring the heterogene-
ity across and within individuals. This complexity demands further
investigation using more precise techniques. With the advent of
single-cell RNA sequencing (scRNA-seq), exploring the hetero-
geneity of tumor cells and the TME in depth has become possible.
Several studies utilizing scRNA-seq technology have detailed the
dynamic transitions from normal endometrium to EC and the
remodeling of the TME following pembrolizumab treatment
[17–19]. Some key molecules involved in the process of
progression or recurrence have also been identified using the
scRNA-seq technology [19, 20]. For example, Lien et al. revealed
that reduced VIM in epithelial cells was significantly correlated
with distant metastasis and poorer prognosis in low-stage EC
samples [20]. Similarly, Cassier et al. demonstrated that Netrin-1
blockade significantly inhibits tumor growth and the epithelial-
mesenchymal transition (EMT) process in EC [19]. Nonetheless,
these studies predominantly focus on endometrioid adenocarci-
nomas, with a notable gap in research exploring the hetero-
geneity among EC of different pathological types via scRNA-seq,
highlighting an area for future investigation.
To thoroughly investigate the unique characteristics of patho-

genesis and the TME across various EC samples with different
pathological types, we conducted scRNA-seq on 18 patients,
including seven samples with well-differentiated endometrioid
endometrial carcinomas (EEC-I), three samples with EEC-II, four
samples with USC, three samples with UCCC, and one normal
sample with uterine leiomyoma. Our study comprehensively
elucidated the heterogeneity in percentage, functional status
and cell–cell communication among different cell subpopulations,
including identified malignant epithelial cells, NK_T cells, fibro-
blasts, macrophages and endothelial cells (ECs) using the single-
cell expression atlas and in vitro experimental methods. Collec-
tively, these findings offer valuable research resources for under-
standing EC pathogenesis and present novel insights for
developing personalized cancer treatment for EC patients.

RESULTS
The transcriptomic landscape of EC with different
pathological types at the resolution of single-cell
To elucidate the heterogeneity of various cellular components and
functional statues within the TME of EC across different
pathological types, we conducted scRNA-seq on 18 samples
(seven samples with EEC-I, three samples with EEC-II, four samples
with USC, three samples with UCCC, and one normal sample) as
shown in Fig. 1A. The clinical characteristics of the samples were
presented in Supplementary Table 1. Following standard data
processing procedures, including data quality control, filtering,
and doublet removal, a total of 146,332 single cells were identified
for subsequent analysis. We found an average of 2791 genes and
10,548 unique molecular identifiers (UMIs) per cell. Using the
Seurat package for unsupervised clustering analysis and uniform
manifold approximation and projection (UMAP) for visualization,
we distinguished 11 major cell clusters (Fig. 1B). According to the
expression of canonic marker genes, we annotated these clusters
as follows: fibroblasts (17,661 cells: COL1A1, FAP, MMP11 and
DCN), NK_T cells (42,362 cells: CD2, CD3D and GNLY), FCGR2A+

monocytes (19,659 cells: FCGR2A and CSF3R), epithelial cells
(21,408 cells: CDKN2A, CDH1, EPCAM and WFDC2), macrophages
(18,017 cells: CD14, CD68 and CD163), smooth muscle cells (9575
cells: ACTA2, RGS5 and MYH11), ECs (9259 cells: CDH5, EMCN and
PECAM1), plasma cells (3610 cells: JCHAIN and MZB1), B cells (3245

cells: MS4A1 and CD79B), dendritic cells (DCs) (1083 cells: CD1C
and LAMP3), mast cells (453 cells: CPA3 and TPSAB1) (Fig. 1C). The
identified differentially expressed genes (DEGs) for each anno-
tated cell cluster were listed in Supplementary Table 2 (|Log2FC| >
0.25, P-adj < 0.05, Wilcoxon Rank Sum Test). The distribution of
each annotated cell cluster across different pathological groups
was displayed (Fig. 1D), illustrating substantial inter-individual
heterogeneity in EC samples, as further evidenced by the varying
proportions of the 11 cell types across different pathological types
and individual samples (Fig. 1E, F and Supplementary Fig. 1A).
Furthermore, we employed multicolor immunohistochemistry
(mIHC) to confirm the presence of some cell clusters by scRNA-
seq in an EC sample (Fig. 1G).
We further assessed the heterogeneity within each annotated

cell type by examining the gene expression profiles, specifically
identifying DEGs (|Log2FC| > 0.25, P-adj < 0.05, Wilcoxon Rank
Sum Test) across each cell cluster from varying pathological types
and a normal sample. As depicted in Fig. 1H and Supplementary
Fig. 1B, the epithelial cells, fibroblasts, macrophages, NK_T cells,
and ECs from tumor samples were remarkably different from
those from the one normal sample. Subsequent analysis showed
that the epithelial cells and fibroblasts were the top two ranked
cell clusters with a high number of DEGs in EEC-I/EEC-II/UCCC
groups, with the exception of monocytes in the USC group (Fig. 1I
and Supplementary Fig. 1C). Consequently, we concentrated on
these cell types, which exhibited more DEGs, to further investigate
their heterogeneity across different pathological EC types.

Identification of malignant epithelial cells and specific
chemotherapy drugs in different pathological types of EC
Tumor cells constitute the primary component of tumor mass and
are pivotal in facilitating distant metastasis. In this study, we
investigated the heterogeneity of malignant epithelial cells by
analyzing their distinct transcriptional patterns across different
pathological groups. Initially, we employed the “InferCNV” R
Package to calculate the copy number variation (CNV) scores of
21,408 epithelial cells (Fig. 2A, B and Supplementary Fig. 1D).
Following the methodology outlined by Zhang et al., epithelial
cells within each pathological group were categorized into cancer
cells, others, and normal epithelial cells, based on the derived CNV
scores and correlation coefficients (see methods, Fig. 2C, D). The
calculated CNV scores for cancer cells were notably higher
compared to those for others and normal epithelial cells across
the pathological groups (Fig. 2E). Additionally, the distribution of
each identified epithelial cluster varied significantly among the
different pathological groups (Fig. 2F). Entropy analysis showed
that cancer cells from the UCCC group exhibited the lowest
entropy score, indicating a substantial heterogeneity level within
these cells (Fig. 2G), in contrast to the EEC-I group.
We identified DEGs in cancer cells across various pathological

groups (|Log2FC| > 0.25, P-adj < 0.05, Wilcoxon Rank Sum Test)
(Supplementary Table 3). Certain representative DEGs for identi-
fied cancer cells were displayed in Supplementary Fig. 1E: EEC-I
(SGCD, KIF26B, CXCL13, and CALCB); EEC-II (IGKC, YAP1, IGLC3, and
IGHG4), USC (AL357507.1, MUC4, MMP7, and AL079338.1), and
UCCC (ISG15, IGFBP5, S100A1, and PI3). These genes were further
validated by IHC (Fig. 2H). Functional enrichment analysis revealed
that cancer cells from UCCC samples mainly got involved in the
pathways of integrin-mediated signaling, NABA SECRETED FAC-
TORS, positive regulation of cell motility, and intracellular zinc ion
homeostasis. While the cancer cells from USC samples mainly got
involved in the pathways of antigen processing and presentation
of exogenous peptide antigen via MHC class II, NABA MATRISOME
ASSOCIATED, and innate immune response. Cancer cells from EEC-
I samples mainly participated in the pathway of cytokine-cytokine
receptor interaction, and the cancer cells from the EEC-II samples
mainly got involved in the pathways of cell junction organization,
gland morphogenesis, and actin filament-based process (Fig. 2I). It
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is acknowledged that tumor development is linked to abnormal
cells behavior acquiring cancer’s hallmarks. Gene set variation
analysis (GSVA), utilizing four modules derived from the top 50
cancer-related hallmarks, showed distinct pathway activities in

different pathological groups (Fig. 2J) [21, 22]. Metabolism
pathways (e.g., OXIDATIVE_PHOSPHORYLATION, CHOLESTEROL_-
HOMEOSTASIS, FATTY ACID_METABOLISM, HEME_METABOLISM,
ANDROGEN_RESPONSE) were active in USC cancer cells, termed
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metabolism-modulating cancer cells (Supplementary Fig. 2A).
Proliferation pathways (e.g., MYC_TARGETS_V2, MITOTIC_SPINDLE,
G2M_CHECKPOINT, E2F_TARGETS,) were enriched in EEC-I cancer
cells, termed proliferation-modulating cancer cells (Supplemen-
tary Fig. 2B). UCCC cancer cells, which engaged in immune-related
pathways (e.g., TNFA_SIGNALING_VIA_NFKB, INTERFERON_AL-
PHA_RESPONSE, IL6_JAK_STAT3_SIGNALING, COMPLEMENT,
INFLAMMATORY_RESPONSE), were deemed immune-modulating
(Supplementary Fig. 2D). The PI3K_AKT_MTOR_SIGNALING was
significantly activated in EEC-II cancer cells (Supplementary
Fig. 2C). Transcription factors (TFs) played crucial roles in
regulating gene expression, with key TFs showing high activity
and upregulated expression in cancer cells from each pathological
group (Supplementary Fig. 3A, B).
Distant metastasis significantly contributes to cancer mortality

globally, accounting for approximately 90% of cancer-related
deaths [23]. Prior research has shown that patients from different
pathological groups have varying potentials for metastasis, with
those diagnosed with USC exhibiting a higher propensity for
lymphatic space invasion, lymph node involvement, and micro-
scopic diffusion on the peritoneal surface [24]. Two critical
processes in metastasis, partial epithelial-to-mesenchymal transi-
tion (p-EMT) and epithelial-to-mesenchymal transition (EMT) have
been identified [25, 26]. Our findings indicate that the estimated
EMT and p-EMT scores in cancer cells of the USC group were
significantly elevated compared to those in the other three
pathological groups (Student’s t-test, Fig. 2K). Moreover,
Kaplan–Meier survival curve analysis of the TCGA cohort showed
that patients with high-EEC-I and low-EEC-II/USC/UCCC signatures
had the most favorable prognosis among the subgroups analyzed
(Fig. 2L).
The findings demonstrated that cancer cells across various

pathological groups exhibit diverse activities in cancer-related
pathways. This diversity was attributed to their different expres-
sion profiles, potentially paving the way for new avenues in
molecular pathogenesis research and the development of
targeted therapeutic strategies for EC. Consequently, we identified
specific chemotherapy drugs for each pathological type using the
“Beyondcell” R package, based on their unique single-cell
expression profiles [27]. The sensitive chemotherapy drugs
identified were listed in Supplementary Table 4 and Supplemen-
tary Fig. 1F, with the top 5 drugs displaying high sensitivity across
different pathological groups illustrated in Fig. 3A–D. Further
validation of drug sensitivity was conducted using cell lines, and
EC-derived organoids were created from collected samples
in vitro. As shown in Fig. 3E, three drugs (Docetaxel, Brefeldin A,
Securinine), common to each pathological group, were selected
for in vitro sensitivity measurement. The morphological changes in
an EC-derived organoid treated with these drugs were shown in
Fig. 3F. Four different pathological EC-derived organoids displayed
excellent sensitivity to Docetaxel (0.10–46.78 μmol), Brefeldin A
(0.01–1.51 μmol), Securinine (4.58–7.04 μmol), which indicated
their high tumor-killing ability in EC (Fig. 3E). Additionally, the half
maximal inhibitory concentration (IC50) values for Docetaxel
(0.02–17.90 μmol), Brefeldin A (0.22–1.67 μmol), Securinine
(10.62–19.2 μmol) in four EC cell lines were also low

(Supplementary Fig. 1F and Fig. 3G), underscoring the reliability
of our screened drugs as evidenced by all these findings.

Mapping the infiltration abundance and functional status of
different NK_T cells in the different pathological types of EC
NK_T cells are a critical component of the TME in EC, significantly
influencing the development, progression and response to therapy
of malignancies [28, 29]. We analyzed 42,362 NK_T cells, dividing
them into 14 subclusters to distinguish their inherent heterogeneity
among different pathological groups (Fig. 4A). Utilizing canonical
marker genes, these subclusters were initially categorized into four
major cell types: cluster 1/2/4/6/8/13 were CD8+ T cells (CD8A and
CD8B), cluster 0/3/5/7/9 were CD4+ T cells (CD4), cluster 11/12 were
NK cells (KLRF1), and cluster 10 was proliferation T cells (T-Pro)
(MKI67 and TOP2A) (Fig. 4B and Supplementary Fig. 4A) [30, 31].
Further analysis based on reported marker genes categorized all
CD8+ T cells into naïve CD8+ T cells (CD8+ naïve: TCF7, IL7R, and
CCR7), cytotoxic CD8+ T cells (CD8+ Tcyto: GZMA, GZMB, GZMK,
GNLY, and GZMH), exhausted CD8+ T cells (CD8+ Tex: PDCD1,
HAVCR2, and LAG3). Also, CD4+ T cells were classified as naïve CD4+

T cells (CD4+ naive: TCF7, IL7R, and CCR7), exhausted CD4+ T cells
(CD4+ Tex: PDCD1, HAVCR2, and LAG3), and regulatory CD4+ T cells
(CD4+ Treg: FOXP3, TNFRSF4, IKZF2, and IL2RA) (Fig. 4C, D) [17, 18].
Cytotoxic marker genes (GZMA, GZMB, GNLY, and GZMH) were also
prevalent in NK cells. Moreover, a combination of cytotoxic (GZMA.
GZMB, and GZMH) and exhausted (PDCD1, HAVCR2, and LAG3)
marker genes were observed in T-Pro cells, highlighting their
complexity in EC specimens (Fig. 4D). The identified DEGs for NK_T
subclusters were provided in Supplementary Table 5 (|Log2FC| >
0.25, P < 0.05, Wilcoxon Rank Sum Test). The proportions of each
NK_T subcluster varied significantly across individuals and patholo-
gical groups, demonstrating extensive intra- and inter-heterogeneity
in the TME (Fig. 4E, F and Supplementary Fig. 4B). Notably, NK cell
proportions gradually decreased from normal to UCCC group,
inverse to the trend observed in T-Pro cells. CD4+ Tex and CD8+ Tex
cells were exclusive to four tumor groups, with CD8+ Tcyto cells
being most prevalent in the normal sample.
We then explored the functional status of identified NK_T

subclusters based on the well-known gene signatures [32, 33]. We
found that CD8+ Tcyto, CD8+ Tex, and CD4+ Treg cells each
obtained the highest cytotoxicity/exhaustion/Treg score, which
was consistent with previous studies (Fig. 4G) [34]. We further
investigated the differences of cytotoxicity score in CD8+ Tcyto
cells, exhaustion score in CD8+ Tex cells, and Treg score in CD4+

Treg cells across different pathological groups (Supplementary
Fig. 4C). Some specific TFs were also identified for each NK_T
subcluster (Supplementary Fig. 4D, E). For example, KLF5 was
found to be active and upregulated in naïve T cells, which has
been proven to be mainly expressed in pro-T cells and is
responsible for mediating TCRβ germline transcription [35]. In
addition to the FOXP3, the BATF was also specifically expressed in
the CD4+ Treg cells, which has been proven to mediate the
differentiation and maturation of CD4+ Treg cells [36]. Functional
enrichment analysis revealed that different NK_T subclusters
played varied roles in functional regulation. For example, CD4+

naïve cells were involved in mononuclear cell differentiation,

Fig. 1 The transcriptomic landscape at the resolution of scRNA-seq from 18 EC patients with different pathological types. A The flowchart
of this study included sample collection, scRNA-seq, bioinformatic analysis and experimental validation. B Uniform Manifold Approximation
and Projection (UMAP) plots displayed 11 identified major cell types from 146,332 single cells. C Dot plots showed the normalized expression
levels of marker genes in each cell cluster. D The distribution of each annotated cell cluster in patients with different pathological types. E The
proportion of each annotated cell cluster in different pathological groups. F The comparison of the proportion of each annotated cell cluster
across different pathological types. The P-values were calculated by the Kruskal–Wallis test. G Validation of certain identified cell types using
the mIHC staining in one collected EC sample. H UMAP plots displayed the numbers of differentially expressed genes (DEGs) (|Log2FC| > 0.25,
adj-P < 0.05) in each annotated cell cluster in all samples. The P-values were calculated by the Wilcoxon Rank Sum Test. I The numbers of DEGs
(|Log2FC| > 0.25, adj-P < 0.05) in each annotated cell cluster from EEC-I, UCE-II, USC and UCCC groups, respectively. The P-values were
calculated by the Wilcoxon Rank Sum Test.

F. Ren et al.

4

Cell Death and Disease          (2024) 15:571 



Fig. 2 Identification of malignant epithelial cells. A The distribution of all epithelial cells in 18 EC samples with different pathological types.
B UMAP plots displayed the estimated CNV score of each epithelial cell. C Identification of cancer cells, normal epithelial cells and others in
different groups with different pathological types. D The distribution of cancer cells, normal epithelial cells and others in all the samples. E The
comparison of CNV scores of cancer cells, normal epithelial cells and others in different pathological groups. The P-values were calculated by
Student’s t-test. F The proportions of cancer cells, normal epithelial cells and others in different pathological groups, respectively. G Entropy
analysis of cancer cells identified from different pathological groups. The P-values were calculated by Student’s t-test. H mIHC staining of
MMP7, CXCL13, YAP1 and S100A1 in EC samples with different pathological types. I GO and KEGG pathway enrichment analysis of identified
DEGs in different pathological groups. J The estimated GSVA scores of certain cancer-related pathways. K The estimated EMT/pEMT score in EC
samples with different pathological types. The P-values were calculated by Student’s t-test. L Kaplan–Meier survival curves of samples with
different gene signatures in the TCGA cohort. The P-values were calculated by the Log-rank test.
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Fig. 3 Identification of sensitive chemotherapy drugs for EC patients with different pathological types. A Identification of certain sensitive
chemotherapy drugs for EEC-I group. B Identification of certain sensitive chemotherapy drugs for EEC-II group. C Identification of certain
sensitive chemotherapy drugs for USC group. D Identification of certain sensitive chemotherapy drugs for UCCC group. E IC50 values of
Securinine (left), Brefeldin (middle), and Docetaxel (right) in four EC-derived organoids. F The morphological changes of an EC-derived
organoid after being treated with Securinine (upper), Brefeldin (middle), and Docetaxel (lower). G IC50 values of Securinine (left), Brefeldin
(middle), and Docetaxel (right) in HEC1B, Ishikawa, RL95-2, and SPEC-2, respectively.
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Fig. 4 Characteristics and subpopulations of NK_T cells in EC samples with different pathological types. A UMAP plots displayed
14 subclusters of NK_T cells. B The expression levels of some marker genes in different cell clusters. C NK_T cells were annotated as eight
major immune cell types based on different marker genes. D The dot plots showed the relative expression levels of marker genes in each
annotated immune cell cluster. E The bar plot showed the cell proportion of each annotated immune cell cluster in different pathological
groups. F The comparison of the proportion of each annotated immune cell cluster across different pathological types. The P-values were
calculated by the Kruskal–Wallis test. G The estimated cytotoxicity score, exhaustion score and Treg score of each identified cell subcluster. The
P-values were calculated by Student’s t-test. H GO and KEGG pathway enrichment analysis of DEGs for each annotated immune cell cluster.
I The forest plot displayed the prognostic effects of each identified cell cluster on EC patients from the TCGA cohort regarding overall survival.
The P-values were calculated by univariate Cox regression model. J The pseudo-time of each CD8+ (top) and CD4+ (bottom) T cell,
respectively. K The pseudo-time heatmap displayed the dynamic changes of some involved genes in the developmental process of NK_T cells.
L The enrichment GO terms of gene sets for different subclusters involved in the developmental process of NK_T cells. M The dynamic
expression changes of some function-related genes (NKG7, HAVCR2, IL7R, MYO1E, MKI67, and TOX) during the pseudo-time.
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regulation of interleukin-12 production, and cellular response to
interleukin-4, while the pathways of cytokine signaling in the
immune system, IL-18 signaling, positive regulation of cytokine
production were active in CD8+ naïve cells (Fig. 4H). CD8+ Tcyto
cells mainly mediated the pathways of cell killing, regulation of
defense response and regulation of lymphocyte chemotaxis, while
the pathways of NF-kappa B signaling and RUNX1 and FOXP3
control the development of Tregs were active in CD4+ Treg. Cell
cycle-related pathways (e.g., cell cycle, mitotic, positive regulation
of cell cycle process) and natural killer cell-mediated cytotoxicity
were remarkably active in T-Pro cells and NK cells, respectively.
The pathways of PID CD8 TCR downstream and PID CXCR4 were
active in CD8+ Tex and CD4+ Tex, respectively. Further prognostic
analyses performed by univariate Cox regression revealed that
CD4+ naive cells (HR= 0.58, 95% CI= 0.38–0.89, P= 0.012), CD8+

Tcyto cells (HR= 0.52, 95% CI= 0.34–0.80, P= 0.003), CD4+ Treg
cells (HR= 0.65, 95% CI= 0.43–0.99, P= 0.045), CD8+ Tex cells
(HR= 0.48, 95% CI= 0.28–0.66, P < 0.001), and NK cells (HR= 0.39,
95% CI= 0.25–0.61, P < 0.001) were significantly correlated with
patients favorable overall survival (OS) in the TCGA cohort (Fig. 4I).
We further investigated the dynamic changes in gene expres-

sion and functions of CD4+ T and CD8+ T cells throughout their
development using the Monocle3 algorithm. As shown in Fig. 4J,
CD8+ naïve cells were identified in the early state, CD8+ Tcyto and
CD8+ Tex cells in the intermediate state, and T-Pro cells in the late
state. The genes that changed dynamically over pseudo-time were
classified into five subclusters. Genes in cluster 1/2/3/4 exhibited
gradual upregulation and mediated the pathways of PID PLK1,
positive regulation of the cell cycle process, and attachment of
spindle microtubules to kinetochore (Fig. 4K, L). Conversely, genes
in cluster 5 were gradually downregulated during the pseudo-
time, influencing pathways such as IL-17 signaling, negative
regulation of MAPK cascade, and regulation of T cell activation
(Fig. 4K, L). Certain representative marker genes were displayed in
Fig. 4M. For example, TOX, a crucial TF in regulating CD8+ Tex
cells, increased progressively over pseudo-time [37, 38]. Mean-
while, IL7R, vital for the differentiation, development, and
maturation of T cells, decreased steadily [39]. Additionally, CD4+

naïve cells were found in the early stage, whereas CD4+ Treg and
CD4+ Tex cells were distributed in the late stage (Fig. 4J). The
genes changing dynamically over pseudo-time were also categor-
ized into five subclusters. Genes in cluster 4/5 were down-
regulated, affecting pathways like positive regulation of receptor
signaling pathway via JAK-STAT and immune response enhance-
ment (Supplementary Fig. 5A, B), while those in cluster 1/2/3 were
gradually upregulated over pseudo-time, involving cytokine
signaling in the immune system, leukocyte activation regulation,
lipopolysaccharide response. CXCL13, which was discovered
predominantly at the end of Tex, exhibited a significant increase
in CD4+ Tex cells [40]. While costimulatory (TNFRSF4) and
inhibitory (CTLA4) immune checkpoints increased sharply in the
CD4+ Treg cells (Supplementary Fig. 5C). We measured the
expression of certain common immune checkpoints (CD47, CD96,
CTLA4, TNFRSF1B, HAVCR2, LAG3, PDCD1, and TIGIT) across
different annotated NK_T subclusters in various pathological
groups. As shown in Supplementary Fig. 5D, exhausted T cells
exhibited higher expression levels of these immune checkpoints,
with those in the UCCC group showing the highest expression. In
summary, we clearly annotated the subpopulations of NK_T cells
and revealed their differences in proportion and functional status
across different pathological groups, which could deepen our
understanding of the TME in EC.

Depicting the infiltration abundance and functional status of
different macrophage cells in the different pathological
types of EC
In our study, we re-clustered a total of 18,017 macrophages cells into
six subclusters (Fig. 5A). Based on marker gene expression, we

annotated each cluster as a specific cell type as follows: cluster 0 as
APOC1+ macrophage (APOC1, APOE and IFITM3), cluster 1 as
CXCL3+ macrophage (CXCL2, CXCL3 and CXCL1), cluster 2 as
S100A8+ macrophage (S100A8, S100A12, FCN1 and APOBEC3A),
cluster 3 as MKI67+ macrophage (MKI67, TOP2A and CENPF), cluster
4 as GZMA+ macrophages (NKG7, GZMA and GZMB), and cluster 5
as COL1A1+ macrophage (COL1A1, COL1A2, COL3A1, COL4A1 and
CALD1) (Fig. 5B, C). The estimated proportions of these macrophage
subclusters varied among different samples and pathological groups
(Fig. 5D, E and Supplementary Fig. 6A, B). Specifically, the
proportions of COL1A1+ macrophages and GZMA+ macrophages
deceased in tumor groups, while CXCL3+ macrophages appeared
exclusively in tumor samples. We confirmed these findings using
mIHC staining, which showed the presence of CXCL3+ macrophages
and GZMA+ macrophages in four pathological groups (Fig. 5F and
Supplementary Fig. 6D). The DEGs for each macrophage subcluster
were listed in Supplementary Table 6 and Supplementary Fig. 6C (|
Log2FC| > 0.25, P < 0.05, Wilcoxon Rank Sum Test). Functional
enrichment analysis for these DEGs demonstrated that each
macrophage subcluster engaged in distinct functional pathways
(Fig. 5G). For instance, APOC1+ macrophages were primarily
involved in interferon signaling and various immune response
regulation pathways, including positive regulation, activation, and
endocytosis. CXCL3+ macrophages primarily influenced cellular
responses to cytokine stimulus, inflammatory response, and MAPK
cascade regulation. GZMA+ macrophages were associated with
leukocyte activation and immunity. S100A8+ macrophages were
active in VEGFA-VEGFR2 signaling, cytokine production and external
stimulus response. Pathways related to the cell cycle (cell cycle,
mitotic, S phase, regulation of cell cycle process) and extracellular
matrix (ECM) (NABA CORE MATRISOME, ECM organization) were
predominant in MKI67+ and COL1A1+ macrophages, respectively.
Leveraging well-established gene signatures, we investigated

the functional status of each annotated macrophages cluster
[32, 41]. GSVA scores were calculated for different subclusters
(Fig. 5H), revealing that APOC1+ macrophages exhibited signifi-
cantly higher phagocytosis and M1 cores compared to other
macrophage clusters (Fig. 5I, J). Conversely, CXCL3+ macrophages
demonstrated the highest M2 and angiogenesis scores (Fig. 5J).
Additionally, the distribution of key marker genes associated with
M1 (TNF and CD40) and M2 (CD163, MMP19, MARCO, and MSR1)
signatures was illustrated (Fig. 5K, L). We further assessed the
prognostic impact of the identified macrophage clusters on the
TCGA cohort using univariate Cox regression analysis, finding a
significant correlation between GZMA+ Macrophages cluster and
patient OS (HR= 0.39, 95% CI= 0.25–0.60, P < 0.001) (Fig. 5M).
Specific TFs for each macrophage subcluster were also identified
(Supplementary Fig. 6E, F), enhancing our understanding of their
gene regulatory networks.
We utilized Monocle3 to investigate the dynamic shifts in gene

expression and functionality during the transition among various
macrophages subclusters. The findings indicated that the APOC1+

macrophage cluster was situated in the early state, whereas
GZMA+ macrophages, MKI67+ macrophages and COL1A1+

macrophages were in the intermediate state, and CXCL3+

macrophages and S100A8+ macrophages were in the late state
(Fig. 5N). Genes exhibiting dynamic changes throughout pseudo-
time were also identified and further divided into five subclusters
(Fig. 5O). Genes in cluster 1/2 underwent gradual downregulation,
influencing pathways linked to the positive regulation of immune
response, endocytosis and lysosome. In contrast, genes in cluster
3/4 displayed gradual upregulation, impacting pathways asso-
ciated with the regulation of MAPK cascade, neutrophil degranu-
lation, and the positive response to external stimulus (Fig. 5P).
Genes within cluster 5 exhibited upregulation at the intermediate
state during pseudo-time, influencing cell cycle, T cell activation
and the adaptive immune system pathways (Fig. 5P). Certain
representative changed genes were displayed in Fig. 5Q. For
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instance, CENPF, an important regulator of the G2 phase of the cell
cycle, exhibited a marked upregulation in MKI67+ macrophages
[42]. Meanwhile, VCAN, a key mediator of cell adhesion,
proliferation, migration, and angiogenesis, showed gradual
upregulation through pseudo-time [43].

Charting the fibroblasts landscape in the TME of EC with
different pathological types
Cancer-associated fibroblasts (CAFs) constitute a significant
element of the TME, playing a crucial role in promoting tumor
progression and remodeling immunosuppression [44].
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Consequently, we scrutinized the gene expression profiles and
associated functions of various fibroblast subsets within EC
specimens at single-cell resolution. In total, 17,661 fibroblast cells
were collected, and further classified as eight subclusters (Fig. 6A).
The distribution of each subcluster across different pathological
groups was presented in Fig. 6B. The fibroblasts from the normal
sample were distinctly segregated from those of the tumor
groups, illustrating their considerable inherent heterogeneity.
Based on established marker genes and tissue origins, eight
subclusters were annotated as follows: cluster 0 was defined as
cancer-associated myofibroblasts (myoCAFs) with high expression
of MMP11, ITGA1, TNC, and MMP2 [45]; cluster 1 (IGF1, SFRP4, and
HPSE2) was defined as normal fibroblasts because most of them
originated from the normal sample; cluster 2 was defined as
CXCL12+ inflammatory CAFs (iCAFs) with high expression of
CXCL12, IGKC, and CEBPD [46]; cluster 3 was defined as vascular
CAFs (vCAFs) with high expression of MYH11, ACTA2, and
KCNMA1 [18, 47]; cluster 4 was defined as epithelium-specific
CAFs (eCAFs) with high expression of CST1, EPCAM, KRT8 and
KRT18 [48]; cluster 5 was defined as developmental CAFs (dCAFs)
with high expression of developmentally related genes (NOTUM,
FRAS1, and ROBO2) [49, 50]; cluster 6 was defined as antigen-
presenting CAFs (apCAFs) with high expression of CD74, HLA-DRA,
HLA-DRB1, and CD47 [48]; cluster 7 was defined as SOD2+ iCAFs
with high expression of SOD2, CXCL1, S100A4, PTX3, and MUC16
(Fig. 6C) [46]. The relative proportions of these fibroblast
subclusters varied greatly across individual samples and patholo-
gical groups, highlighting extensive intra- and inter-tumoral
heterogeneity in the tumor stroma (Fig. 6D, E and Supplementary
Fig. 7A). For instance, myoCAFs and CXCL12+ iCAFs were
predominantly abundant in four tumor groups, and SOD2+ iCAFs
were exclusively found in the UCCC group. The DEGs for each
annotated fibroblast cluster were documented in Supplementary
Table 7 and Supplementary Fig. 7B (|Log2FC| > 0.25, P < 0.05,
Wilcoxon Rank Sum Test). Further GO enrichment analysis
revealed that myoCAFs were primarily involved in the pathways
of ECM organization, NABA CORE MATRISOME, and regulation of
collagen metabolism. CXCL12+ iCAFs predominantly mediated the
pathways of PID IL6_7 and PID FRA. Pathways involving innate
immune response, IL-17/18 signaling, and neutrophil degranula-
tion were markedly active in SOD2+ iCAFs. Additionally, smooth
muscle (e.g., vascular smooth muscle contraction, smooth muscle
contraction, muscle system process) and development (e.g.,
kidney development, embryonic morphogenesis, cell morphogen-
esis, and heart development) related signaling pathways were
active in vCAFs and dCAFs, respectively. apCAFs were largely
associated with pathways of antigen processing and presentation
of peptide antigen, positive regulation of immune response, and
interferon signaling. eCAFs primarily enhanced cell–cell adhesion,
appendage development, hair follicle development, and epider-
mis development (Fig. 6F). Notably, within the TCGA cohort,
patients exhibiting a higher SOD2+ iCAFs signature correlated

with unfavorable OS (HR= 1.75, 95% CI= 1.15–2.68, P= 0.01),
while eCAFs (HR= 0.56, 95% CI= 0.37–0.86, P= 0.008) signifi-
cantly correlated with patient favorable OS (Fig. 6G). Here, we also
utilized the mIHC to confirm the existence of SOD2+ iCAFs in one
UCCC sample, and the proportion of eCAFs (EPCAM+/COL1A1+)
did not seem to show significant differences between the EEC-I
group and other pathological groups, which requires further
validation with more samples (Fig. 6H and Supplementary Fig. 7C).
To examine the diversity within fibroblast cells, we identified

certain specific TFs with high activities and expression for each
subpopulation. As shown in Supplementary Fig. 7D, E, BCL6 was
found specifically expressed in SOD2+ iCAFs, which was essential
for the development of follicular helper T cell (Tfh) [51]. JDP2,
more prominent in apCAFs, has been shown to impede tumor
growth by modulating SDF-1 transcription in CAFs [52]. Consider-
ing the divergence of CAFs from typical fibroblasts triggered by
surrounding factors, we investigated the evolutionary trajectory of
CAFs in the TME [53]. As shown in Supplementary Fig. 7F, the
estimated pseudo-time of each fibroblast cell was measured. The
developmental trajectory was separated into two branches
(Supplementary Fig. 7G), with normal fibroblasts and CXCL12+

CAFs positioned at the start and intermediate states of the
respective branches, respectively (Supplementary Fig. 7H). In
branch 1, myoCAFs and vCAFs were situated at the terminal stage.
Genes with dynamic expression throughout pseudo-time in
branch 1 were grouped into five clusters. Cluster 1 showed
diminishing expression, while cluster 2/3 exhibited upregulation
over the pseudo-time (Supplementary Fig. 7I). Functional enrich-
ment analysis indicated that the pathways of NABA MATRISOME
ASSOCIATED, NABA ECM GLYCOPROTEINS, and ECM organization
were active in cluster 1. Cluster 2/3 mainly got involved in the
pathways of smooth muscle contraction, burn wound healing, and
blood vessel development. Meanwhile, cluster 4/5 mainly
mediated the pathways of response to hypoxia and negative
regulation of the immune system process (Supplementary Fig. 7J).
Certain presentative dynamically changed genes were presented
in Supplementary Fig. 7K. For instance, MFAP4, known to enhance
vascular smooth muscle migration and proliferation, showed an
increasing trend over the pseudo-time [54]. In branch 2,
encompassing eCAFs, dCAFs, apCAFs and SOD2+ CAFs at the late
stage, genes were also sectioned into five clusters (Supplementary
Fig. 7H). While the expression of cluster 5 genes declined, cluster
2/3/4 saw a progressive rise throughout pseudo-time (Supple-
mentary Fig. 7L). Functional enrichment analysis revealed that
genes in cluster 2/3/4 mainly mediated the pathways of tissue
morphogenesis, malignant pleural mesothelioma, and cellular
response to growth factor stimulus. While genes in cluster 5
mainly mediated the pathways of NABA MATRISOME ASSOCIATED,
ECM organization, and cell junction organization (Supplementary
Fig. 7M). Certain presentative dynamically changed genes in
branch 2 were displayed in Supplementary Fig. 7N. For instance,
CST1, associated with tumor progression, and the fibroblast

Fig. 5 Characteristics and subpopulations of macrophage cells in EC samples with different pathological types. A UMAP plots displayed
six subclusters of macrophage cells. B The expression levels of certain specific marker genes in each annotated macrophage cell cluster.
C UMAP plots displayed the six annotated macrophage cell clusters in all samples. D The bar plots showed the cell proportion of each
annotated macrophage cell subcluster in different pathological groups. E The comparison of the proportion of each annotated macrophage
cell cluster across different pathological groups. The P-values were calculated by the Kruskal–Wallis test. F mIHC staining of CXCL3+

macrophages in different pathological groups. G GO and KEGG pathway enrichment analysis of DEGs in each annotated macrophage cell
cluster. H The heatmap showed the estimated GSVA scores for different functions in each annotated macrophage cell cluster. I, J The
comparison of GSVA scores for different functions across different macrophage cell clusters. The P-values were calculated by Student’s t-test.
K The UMAP plots displayed the expression of certain marker genes (TNF and CD40) of M1-related signatures. L The UMAP plots displayed the
expression of some marker genes (CD163, MMP19, MARCO, and MSR1) of M2-related signatures. M The forest plot displayed the prognostic
effects of each annotated macrophage subcluster on the patients from the TCGA cohort regarding overall survival. The P-values were
calculated by univariate Cox regression model. N The estimated pseudo-time of each macrophage cell. O Pseudo-time heatmap displayed the
dynamic changes of certain involved genes in the developmental process of macrophage cells. P The enrichment GO terms of different gene
sets involved in the developmental process of macrophage cells. Q The dynamic expression changes of certain function-related genes (CENPF,
CXCL3, VCAN, and S100A8) during the pseudo-time.
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growth factor 4 (FGF4), imperative for embryonic development,
both markedly upregulated in eCAFs and dCAFs, respectively
[54, 55].
Given the adverse prognostic implications and distinctive

presence of SOD2+ iCAFs in EC, we sought to delve into their
oncogenic role in vitro. We initially extracted the primary SOD2+

iCAFs (MUC16+/FAP+CAFs) from two UCCC samples by flow

cytometry (Fig. 6I) and further validated them using the multicolor
immunofluorescence (mIF) staining (Fig. 6J). Transwell assay
indicated that the conditioned medium (CM) from SOD2+ iCAFs
could significantly promote the migrative abilities of EC cell lines
(Ishikawa, SPEC-2, and RL95-2) (Fig. 6K–M). After treatment with
CM from primary SOD2+ iCAFs, the angiogenic ability in primary
human umbilical vein endothelial cell (HUVEC) cells also increased

Fig. 6 Characteristics and subpopulations of fibroblast cells in EC samples with different pathological types. A UMAP plots displayed the
eight cell clusters of fibroblasts. B UMAP plots displayed the eight cell clusters of fibroblasts in different pathological groups. C The expression
levels of certain specific marker genes in each annotated fibroblast cluster. D The bar plot showed the cell proportion of each annotated
fibroblasts cluster in different pathological groups. E The comparison of the proportion of each annotated fibroblasts cluster across different
pathological groups. The P-values were calculated by the Kruskal–Wallis test. F GO and KEGG pathway enrichment analysis of DEGs for each
annotated fibroblasts cluster. G The forest plot displayed the prognostic effects of each annotated fibroblasts cluster on the patients from the
TCGA cohort regarding overall survival. The P-values were calculated by univariate Cox regression model. H mIHC staining of SOD2+ iCAFs in
one EC sample diagnosed with UCCC. I Extraction of SOD2+ iCAFs (MUC16+/FAP+) from two UCCC samples by flow cytometry.
J Immunofluorescence staining of SOD2+ iCAFs sorted by flow cytometry from two UCCC samples. K Transwell migration assay of different EC
cell lines treated with condition medium from primary SOD2+ iCAFs. Transwell assay had three independent biological replicates.
L, M Statistical analysis of migration assay in Ishikawa, SPEC-2, and RL95-2, respectively. **P < 0.01; ***P < 0.001. The P-values were calculated
by Student’s t-test. N Angiogenesis experiment of HUVEC treated with different condition medium from primary SOD2+ iCAFs or Con group. ∗

P < 0.05. Angiogenesis experiment had three independent biological replicates. O Statistical analysis of angiogenesis experiment in HUVEC.
*P < 0.05. The P-values were calculated by the Kruskal–Wallis Test. P Bubble plots showed the communication probability of identified ligand-
receptor pairs between SOD2+ iCAFs and other cellular components.
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(Fig. 6N, O). Cell–cell communication analysis indicated that the
L-R pairs of EFNA1-EPHA2/4, EFNA5-EPHA2/4, EFNB2-EPHA4, and
EFNB2-EPHB1/2 were particularly enriched in SOD2+ iCAFs and
other cell types, which are known to facilitate metastasis in
malignant tumors (Fig. 6P) [56].

Profiling different ECs subpopulations and their
corresponding functions in different pathological types of EC
ECs play an important role in angiogenesis, a fundamental
characteristic of tumor development and progression [57]. We
divided ECs into five subclusters (Fig. 7A). Based on marker genes,
we identified each subcluster as a distinct cell type: Tip ECs (ESM1,
COL4A1 and COL4A2), Arterial ECs (FAM107A, GLUL, TSPAN2 and
GJA5), Lymphatic ECs (PROX1, CCL21 and COLEC12), Vein ECs
(APOE) and Capillary ECs (RGS5) (Fig. 7B, C) [58]. Each pathological
group contained all five EC clusters, through their relative
proportions varied across the different pathological groups
(Fig. 7D, E). The identified DEGs of each annotated ECs cluster
were detailed in Supplementary Table 8 (|Log2FC| > 0.25, P < 0.05,
Wilcoxon Rank Sum Test). Functional enrichment analysis of DEGs
within each ECs cluster indicated that different ECs subclusters
served varied functions (Fig. 7F). For instance, Tip ECs were

enriched in pathways involved in the positive regulation of cell
motility, response to growth factors, and VEGFA-VEGFR2 signaling.
Arterial ECs were implicated in pathways related to cytokine
signaling in the immune system and the positive regulation of cell
migration. Lymphatic ECs were engaged in pathways associated
with hemostasis and signaling by Rho GTPases. The NABA CORE
MATRISOME pathway was active in capillary ECs. Additionally,
pathways involved in immune regulation (e.g., leukocyte activa-
tion, positive regulation of immune response, alpha-beta T cell
activation) were active in vein ECs.
To investigate the functional status of each annotated ECs

cluster, we calculated the GSVA scores for various known gene
signatures with different functions (Fig. 7G). Results demon-
strated that Tip ECs exhibited the highest angiogenesis scores
(Fig. 7H). Moreover, Capillary ECs, Vein ECs, and Arterial ECs
each exhibited the highest scores in immune activation,
immunoregulation, and lipid metabolism respectively. Lympha-
tic ECs displayed significantly higher MHC-I scores compared to
other ECs subclusters (Fig. 7I). Further, univariate Cox regression
prognostic analyses showed a significant association between
the Vein ECs cluster and favorable OS (HR= 0.58, 95%
CI= 0.38–0.89, P= 0.012) in the TCGA cohort (Fig. 7J). This

Fig. 7 Characteristics and subpopulations of ECs in EC samples with different pathological types. A UMAP plots displayed five cell clusters of
ECs in all samples. B The expression levels of certain specific marker genes in each annotated ECs cluster. C UMAP plots showed five annotated ECs
clusters. D The bar plot showed the cell proportion of each annotated ECs cluster in different pathological groups. E The comparison of the
proportion of each annotated ECs cluster across different pathological groups. The P-values were calculated by the Kruskal–Wallis test. F GO and
KEGG pathway enrichment analysis of DEGs for each annotated fibroblasts cluster. G The heatmap showed the estimated GSVA score of different
gene sets in each annotated ECs cluster. H, I The comparison of GSVA score for different functions in each annotated ECs cluster. The P-values were
calculated by Student’s t-test. J The forest plot displayed the prognostic effects of each annotated ECs cluster on the patients from the TCGA cohort
regarding overall survival. The P-values were calculated by univariate Cox regression model.
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may be attributed to its heightened immunoregulatory activity,
facilitating lymphocyte infiltration in the TME [59].

Cell–cell interactions of epithelial cells with other major
components in the TME
To examine the diversity of cell–cell communications among
various cellular components across different pathological groups,
the CellChat database was employed to predict potential ligand-
receptor (L-R) pairs. As shown in Fig. 8A, B, the total number of L-R
pairs in each annotated cell type and the interaction weights
between different cell types in each pathological group varied. As
the epithelial cells (cancer cells and normal epithelial cells) were
the major components of tumor mass and played pivotal roles in
the regulation of distant metastasis and drug treatments, we
mainly focused on the specific L-R pairs between cancer cells and
other cellular components for subsequent analysis. As shown in
Fig. 8C, cancer cells from EEC-I, EEC-II, USC groups obtained more
L-R pairs than normal epithelial cells, while normal epithelial cells
obtained more L-R pairs than cancer cells in UCCC group. We
further identified the specific L-R pairs for each pathological
group, and 25, 12, 27 and 50 L-R pairs were identified for EEC-I,
EEC-II, USC and UCCC groups, respectively (Fig. 8D). As shown in
Fig. 8E, we found the L-R pair of THBS3-CD47 specifically existed in
EEC-I group, which is highly expressed in cancer stem cells and
promotes EMT transition in malignant tumors [60, 61]. The L-R pair
of IL7-(IL7R+ IL2RG) was enriched between cancer cells and
immune cells in EEC-II group, which plays a crucial role in the
survival and differentiation of lymphocytes via IL7 receptor
(Fig. 8F) [62]. The L-R pairs of BMP family proteins were remarkably
enriched in UCCC group, which belong to the TGFβ family of
cytokines (Fig. 8G) [63]. The L-R pairs of PTN/MDK-ALK shared the
highest communication probability in USC group, which has been
proven to be closely related to the occurrence of various tumors
(Fig. 8H) [64]. At present, many targeted drugs have been
developed for the above-specific L-R pairs, such as lemzoparlimab
for CD47, and aletinib for ALK. The heterogeneity in cell–cell
communication combined with specific expression profiles could
provide insights into developing more specific and effective
treatments for different pathological patients.

DISCUSSION
In this study, we presented an unprecedented transcription map
of EC by conducting scRNA-seq on 18 EC samples, including some
rare pathological types (poorly differentiated EEC, USC, and UCCC).
This marks our study as the first to include EC samples with these
rare pathological types using the scRNA-seq technology, offering
an excellent resource for exploring the extensive heterogeneity of
carcinogenesis and the TME across different pathological types.
We systematically described the heterogeneity in proportion and
functional status of cancer cells and other cellular components
(macrophages, NK_T cells, fibroblasts, ECs) in the TME among
different pathological groups. Furthermore, we employed various
experimental methods in vitro (e.g., mIF, transwell migration assay,
angiogenesis experiment, construction of EC-derived organoids,
etc.) to validate our findings.
EC has increasingly become one of the most prevalent

gynecological malignancies, attributed to lifestyle modification
and improvements in living standards in developed countries [65].
Most patients with EC obtain favorable prognoses due to early
diagnosis and timely treatment. Nonetheless, a minority of EC
patients, particularly those with rare pathological types such as
UCCC, USC, or uterine mixed carcinoma, tend to develop
recurrence or distant metastasis due to the inherent character-
istics of these types. Our research has shown that patients with
these rare pathological types are older, present with a more
advanced clinical stage, and have a higher incidence of
myometrial infiltration, cervical involvement, lymph node

metastasis, and positive ascites cytology in comparison to those
with EEC-I [4, 5]. Consequently, there is a clinical necessity for an
in-depth investigation into the heterogeneity of carcinogenesis.
Intra-tumoral heterogeneity presents a significant global research
challenge, mainly because of its genetic variations that propel the
advancement of human cancer and contribute to drug resistance
development, thus being a critical factor in the failure of drug
treatments [66]. In our study, we performed the Entropy analysis
to assess the homogeneity of cancer cells within pathological
groups. We found that cancer cells from the UCCC or USC groups
showed significantly lower Entropy scores than those from the
EEC-I group, suggesting greater heterogeneity among cancer cells.
High heterogeneity may impair the immune system’s ability to
combat cancer and facilitate tumor cell immune escape,
eventually leading to tumor progression (recurrence or distant
metastasis) [67]. Therefore, patients with UCCC or USC have a
significantly worse prognosis than those with EEC-I [4, 5].
Cancer cells from different pathological groups also displayed

different activities in cancer hallmarks. We found that the
pathways related to proliferation were significantly enriched in
the cancer cells of the EEC-I group. In previous studies, Liu et al.
also conducted GSEA analysis on EC samples and identified five
significant pathways that may affect EC progression, including E2F
targets, G2M checkpoint, mTORC1 signaling, MYC targets v1 and
MYC targets v2. Among them, the G2M checkpoint was a part of
the cell cycle pathway and has been proven to be most relevant to
EC prognosis. Moreover, certain related genes on the cell cycle
pathway were also associated with EC prognosis [68]. The
PI3K_AKT_MTOR_SIGNALING pathway was significantly activated
in the cancer cells from the EEC-II group in our study. Studies have
shown that in type II EC, phosphorylation-dependent oncogenic
signaling in the phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K) pathway was found to be most frequently altered in type II
ECs [69]. Increased PI3K/AKT/mTOR signaling was associated with
disease progression and poor prognosis in patients, and may play
a role in targeted therapy [70]. The GLYCOLYSIS pathway related
to metabolism was found to be active in the cancer cells of the
USC group. Glucose metabolism may be associated with acquired
resistance paclitaxel in USC, suggesting that changes in metabolic
pathways may influence the progression and treatment of USC
[71]. Previous studies have also shown genes involved in immune
response have been found to be highly expressed in UCCC
samples, which was consistent with our results that the immune-
related pathways were active in the cancer cells from the UCCC
group [72]. In our study, we further predicted the sensitivity of
chemotherapy drugs based on cancer cells expression profiles for
each pathological group. We validated the sensitivities of potential
drugs using EC cell lines and EC-derived organoids. Together,
these findings may indicate that different pathological EC types
have different regulatory mechanisms in disease initiation and
progression, and our findings may contribute to the development
of targeted treatments for specific tumor cells in each
pathological group.
The cellular composition of stromal and immune cells within the

TME plays a critical role in the onset and progression of EC.
Elucidating their interplay may enhance the effectiveness of tumor
immunotherapy [17]. Immunotherapy has provided promising
treatment strategies for various solid tumors, including EC, with
significant advancements following the approval of pembrolizumab
for advanced or recurrent EC [73, 74]. Yet, the proportion of EC
patients deriving benefit from immunotherapy is far from satisfac-
tory, underscoring the need for a more profound understanding of
TME regulation across different EC pathologies. In our study, the
abundance of fibroblasts was reduced in tumor samples compared
to the normal tissue, with the UCCC group exhibiting the lowest
proportion. We also observed effector cells (e.g., NK cells and CD8+

Tcyto) significantly correlated with EC favorable prognosis were
plentiful in the normal sample, whereases the level of exhausted
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Fig. 8 Identification of specific communication patterns between cancer cells and other cellular components in different pathological
groups. A Interaction weights in EEC-I, EEC-II, USC, and UCCC groups, respectively. The color of lines represented the cell types. B Bar plot
displayed the number of significant cell–cell interactions among each annotated cell type of 18 EC samples. C Interaction numbers of normal
epithelial cells and cancer cells in EEC-I, EEC-II, USC, and UCCC groups. D Venn plot displayed the numbers of specific cell–cell interactions in
EEC-I, EEC-II, USC, and UCCC groups, respectively. E Bubble plots displayed the specific interaction in EEC-I group. F Bubble plots displayed the
specific interaction in EEC-II group. G Bubble plots displayed the specific interaction in USC group. H Bubble plots displayed the specific
interaction in UCCC group.
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(CD8+ Tex and CD4+ Tex) and Treg cells (CD4+ Treg) increased in
tumor samples. This suggests that immune exhaustion and escape
are inevitable during EC carcinogenesis. Moreover, the specific
proportions and functional statues of NK_T cell subpopulations
significantly varied across different pathological EC types, indicating
distinct regulatory mechanisms in the TME. For example, the higher
proportions of exhausted cells in the ECC-II and UCCC groups
indicated the acquiring state of T cell exhaustion under chronic
tumor stimulation within the TME. In addition, the estimated
exhaustion score of CD8+ Tex cells and Treg score of CD4+ Treg
cells were significantly lower in EEC-I group than in the other
pathological groups, which may indicate a more active anti-tumor
activity. In fact, CD8+ Tex cells at different periods (e.g., pre-
treatment, early on-treatment, late on-treatment) have different
indications for immunotherapy [75]. Also, certain key immune
checkpoints (including HAVCR2, CTLA-4, and PDCD1) also exhibited
uneven distribution among the pathological groups. These differ-
ences in the TME characteristics imply that immunotherapy may
differ among various EC pathologies, supporting the development of
more personalized treatment plans.
CAFs, as pivotal cellular components within the TME, exhibit

significant heterogeneity in terms of origin, phenotype and function
across various subtypes [76]. Beyond the normal fibroblasts, our
study distinctly annotated seven CAFs subtypes. Some of these
subtypes (e.g., SOD2+ iCAFs, eCAFs, dCAFs) were not identified in
prior single-cell databases of EC samples, potentially due to the
inclusion of broader array of pathological types in our sequencing
cohort [17, 18, 77]. Notably, certain CAFs subtypes demonstrated
significant tissue specificity, for example, eCAFs and dCAFs were
exclusively identified in the EEC-I group, whereas SOD2+ iCAFs were
uniquely present in the UCCC group, which was further confirmed by
mIHC in clinical samples. Additionally, eCAFs and SOD2+ CAFs
exhibited contrasting prognostic impacts on OS in the EC cohort
from the TCGA database. Through a series of in vitro experiments, we
validated the cancer-promoting effects of SOD2+ iCAFs on EC,
aligning with the functions of previously described iCAFs [78]. The
intricate functional mechanisms and cell–cell communication net-
works between specific CAFs subtypes and other EC components
warrant further investigation in vitro and in vivo. Moreover, our
insights into CAFs subtypes could pave the way for the comprehen-
sive development of CAFs targeted therapies.
Our study comprehensively maps the transcriptome landscape

and provides detailed annotations, offering a valuable resource for
further investigation into the carcinogenesis of EC, particularly in
rare pathological types. However, several limitations were
identified that require future address. First, additional EC samples
of rare pathological types need to be included for scRNA-seq and
subsequent validation. Second, the regulatory networks among
different cellular components warrant further exploration and
validation. Third, it is imperative to delve deeper into the primary
causes of intra-tumoral heterogeneity at the transcriptional level
across various pathological groups, such as driver mutations or
epigenetic alterations. Lastly, the potential benefits of these
findings for EC patients through the development of target-
specific drugs need confirmation, supported by more extensive
model validation both in vitro and in vivo.
In summary, this study thoroughly characterized transcriptome

heterogeneity in tumor cells and the TME across various
pathological types of EC samples. This has enriched our under-
standing of EC pathogenesis and progression, potentially aiding in
the development of personalized treatments for diverse
pathological types.

METHODS
Ethical approvement and EC samples collection
This study was approved by the Medical Ethics Committee of First
Affiliated Hospital of Zhengzhou University (Approved number: 2022-KY-

1173-002). All the tumor tissues were collected from those patients
diagnosed with different pathological types of EC who underwent
comprehensive surgical staging of EC in the Department of Obstetrics
and Gynecology of First Affiliated Hospital of Zhengzhou University. One
normal tissue was collected from a patient diagnosed with uterine
adenomyosis. All patients were treatment-naïve prior to undergoing
surgical treatment. The detailed clinical characteristics of the included
patients are provided in Supplementary Table 1.

Preparation of single-cell suspensions from EC and normal
tissues
The fresh ex vivo tissues were stored in sCelLiveTM Tissue Preservation
Solution (Singleron, China) at 4 °C. After the specimen was transported
to the laboratory, it was first washed with pre-cooling 1x phosphate-
buffered saline (PBS) buffer (Servicebio, China), then cut into 2–4 mm
pieces using the sterile equipment, and digested with a mixed
digestive solution containing collagenase I/II (ThermoFisherScientific,
USA) and DNase (Sigma, USA) for 30 min at 37 °C. Subsequently, we
used a 70 μm cell filter (Biosharp, China) to obtain the single-cell
suspensions, which were further lysed with the red blood cell lysis
buffer (Servicebio, China) and washed with pre-cooling 1x PBS buffer
(Servicebio, China) twice.

Construction of gene expression library and scRNA-seq
The detailed methods were provided by 10x Genomics, and the used
scRNA-seq data was provided by BerryGenomics (Beijing, China). Briefly,
single-cell suspensions were mixed with gel beads containing barcodes,
enzymes and separated oil beads containing label information to form gel
beads-in-emulsion (GEMs) using the Chromium Single Cell Library, Gel
Bead & Multiplex Kit (10× Genomics). In each GEM, the mRNA released by
the ruptured cells was reverse-transcribed into cDNA with a barcode. Then,
the oil droplets burst, and the cDNA was further collected for purification,
amplification, fragment screening, and quality inspection. Finally, the cDNA
was interrupted and sequenced, allowing for the construction of a second-
generation sequencing library. Once the constructed library passed the
quality inspection, PE150 sequencing was performed using the Illumina
NovaSeq 6000 platform, with 150 bp on each end. Among them, Read1
contained Barcode and UMI double label sequences, while Read2 was the
transcriptional sequence.

scRNA-seq data preprocessing
The raw reads were aligned to the genome (Human, GRCh38.p12) using
Cell Ranger (v7.0.0) for gene quantification. Subsequent data quality
control, dimensionality reduction, clustering, and annotation analysis were
performed using the “Seurat” R package (v4.0) [79].

Quality control, batch effect correction, and doublet remove
of scRNA-seq data
First, cells with low quality need to be removed to ensure the reliability of
subsequent analyses, which contained the following characteristics: (1) less
than 200 or more than 7500 genes; (2) >10% of mitochondrial genes; (3)
more than 100,000 reads. Then, doublet removal was carried out using the
“DoubletFinder” R package [80]. Finally, all cells from included samples
were integrated using the IntegrateData function in Seurat” R package,
which was used to correct the batch effect. In summary, a dataset
containing 146,332 cells and 33,415 genes was obtained after the above
processing. To ensure that all features contribute equally to subsequent
analysis, the dataset was further scaled, and the SCTransform function was
applied to perform data standardization.

Unsupervised clustering and dimensionality reduction
Principal Component Analysis (PCA), a dimensionality reduction technique,
was performed using the 2000 highly variable genes selected by
FindVariableFeatures function. Thirty principal components (PCs) were
calculated and used for UMAP, a powerful technique for non-linear
dimensionality reduction and visualization. To further refine the under-
standing of cell relationships, the FindNeighbors function was employed to
establish a weighted graph of cellular proximity in the reduced-dimensional
space. Subsequently, the FindClusters function was applied to perform
unsupervised clustering analysis based on the calculated neighbors. The
clusters were determined with a specified resolution parameter of 0.5, which
adjusts the granularity of cluster assignments.
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Cell type annotation based on marker genes
The process of cell type annotation was conducted with a meticulous
approach, leveraging not only the identification of 23 distinct cell clusters,
including 146,332 cells and 33,415 genes but also incorporating additional
details for a comprehensive understanding. The annotation was achieved
through an examination of marker gene expression patterns, as well as
distinctive features observed in the UMAP visualization. The detailed
marker genes used in our study were as follows: fibroblasts (COL1A1,
MMP11, FAP and DCN), NK_T cells (CD2, CD3D and GNLY), FCGR2A+

monocytes (FCGR2A and CSF3R), epithelial cells (CDKN2A, CDH1, EPCAM
and WFDC2), macrophages (CD14, CD68 and CD163), smooth muscle cells
(ACTA2, RGS5 and MYH11), ECs (CDH5, EMCN and PECAM1), plasma cells
(JCHAIN and MZB1), B cells (MS4A1 and CD79B), DCs (CD1C and LAMP3),
mast cells (CPA3 and TPSAB1). The spatial distribution of cells within the
UMAP plots offered additional insights into the relationships and
similarities among different clusters.

Calculation of CNV and identification of malignant
epithelial cells
The methods of identifying malignant epithelial cells from all epithelial
cells have been well described in the previous study [81]. Initially, a
reference set comprising 2000 randomly sampled NK_T cells was used, and
all epithelial cells were collected to determine their CNV scores. The
process of measuring CNV was conducted using the “InferCNV” R package
(v1.6.0 https://github.com/broadinstitute/inferCNV) with a refined strategy.
Second, the average expression characteristics of the top 5% cells in each
pathological group based on the CNV scores were also separately
calculated. The correlation coefficients between each other epithelial cell
and the top 5% epithelial cells within each subgroup were then calculated.
Finally, all epithelial cells were categorized as “cancer cells”, “normal
epithelial cells”, or “others” based on the CNV scores and correlation
coefficients. The cutoff values were set as follows: CNV score greater than
0.005, and correlation coefficient greater than 0.45. In summary, this
method rigorously compared the expression intensity of genes at various
chromosomal positions. This detailed evaluation significantly enhanced
the accuracy and precision of CNV analysis, thus facilitating a compre-
hensive identification and description of CNV features within the
epithelial cells.

Identification of DEGs and functional enrichment of identified
cell clusters
The DEGs of each identified cell cluster were generated by FindAllMarker
and FindMarkers function in Seurat” R package. The genes were identified
as DEGs according to the following cutoff: adjusted P-value < 0.05 and
|Log2FC| > 0.25. Functional enrichment analysis of identified DEGs was
performed using the Metascape (https://metascape.org) [82]. Some
functional gene sets of NK_T cells, macrophages and ECs were displayed
in Supplementary Table 9 [32, 41].

Survival analysis
Transcriptome expression profiles and clinical data of EC samples were
downloaded from the TCGA database (https://www.cancer.gov/tcga) using
the “TCGAbiolinks” R packages. The estimated score for each patient based
on the identified DEGs was calculated by the GSVA, and patients were
further stratified into high and low groups based on the median GSVA
score. The Kaplan–Meier method was used to generate survival curves, and
the Log-rank test was used to test whether the difference was significant.
The univariate Cox proportional hazards regression model was used to
calculate the HR. The endpoint was OS. Survival curves were drawn using
the “survival” (https://github.com/therneau/survival) and “survminer” R
packages (https://github.com/kassambara/survminer). The detailed clinical
characteristics of included EC from the TCGA cohort were provided in
Supplementary Table 10.

Pseudo-time trajectory
The pseudo-time trajectory analysis was performed using the Monocle3
algorithm [83]. The Seurat object was translated for compatibility with
“Monocle3” R package using the seurat_to_monocle3 function. The
pseudo-time trajectory was learned using the learn_graph function, while
cell ordering was performed with order_cells function. Monocle-specific
genes were identified using the graph_test function. A subset of genes
exhibiting dynamic changes during the process were selected, with
q-value less than 0.05 and Moran’s I value exceeding 0.3. The pseudo-time

heatmaps displayed the dynamic changes of genes were drawn by
“ClusterGVis” R package.

Identification of sensitive drugs
The potential sensitive drugs were identified by the “Beyondcell” R
package for Perturbation Sensitivity (PSc) analysis [27]. In brief, the
Perturbation Sensitivity scores were calculated by the bcScore function
based on the gene expression matrix. After the PSc analysis, UMAP was
applied to visualize cellular relationships, which was performed by
bcUMAP function. The spatial distribution of cells was understood
according to their gene expression profiles. To further characterize the
dataset and pinpoint potential therapeutic targets, condition-based
statistics and un-extended therapeutic cluster-based statistics were
obtained. Specifically, the bcRanks function was used to conduct inter-
group differential analysis with default parameters. Subsequently, the
bc4Squares function showcased the analysis outcomes, emphasizing the
top five drugs with the highest average variance. Additionally, a heatmap
was employed to illustrate the Beyondcell scores of the top 20 resistant
genes’ residuals within each group across various cells.

Analysis of TFs activity and expression
PySCENIC was used to perform the single-cell regulatory network inference
and clustering (SCENIC), which identified the specific assessment of TFs
activity by the co-expression patterns of genes [84]. Essentially, within
pySCENIC, TFs activity was evaluated by analyzing gene co-expression
patterns within individual cells, particularly focusing on genes associated
with TFs. This process identified genes co-expressed with specific TFs
within individual cells, allowing inference on the activity status of these
TFs. This analytical approach utilized correlations and expression patterns
of genes to infer potential activity and regulatory networks of TFs within
individual cells. PySCENIC used the count matrix of expression levels as
input to calculate the co-expression modules and evaluated the weight
between TFs and their target genes, in which GRNBoost algorithm was
chosen. Then, TFs with direct targets (regulons) were identified using the
RcisTarget and the activity of each regulon in each cell was evaluated using
AUCell. Outputs of pySCENIC were input to calculate the average regulon
activity (AUC) scores using “AUCell” and “SCENIC” R packages.

Construction of cell–cell communication networks
In order to investigate the intricate communication network among
various cell types, a comprehensive cell–cell communication analysis was
performed using the “CellChat” R package [85]. The estimation of
communication probabilities was achieved by integrating the gene
expression matrix with existing knowledge regarding interactions among
signaling ligands, receptors, and their cofactors. The interactions of ligand-
receptor pairs with P-value less than 0.05 were retained. This integrated
approach provided a holistic understanding of the intricate communica-
tion landscape between different cell types within the biological system.

Culture of cell lines and preparation of CM
EC cell lines Ishikawa, RL95-2, and SPEC-2 were obtained from the
American Type Culture Collection (ATCC). Primary HUVEC cell was
purchased from the company of iCell Bioscience Inc (#h110). All cells
were cultured with different medium (Ishikawa and SPEC-2: DMEM; RL95-2:
DMEM/F-12; HUVEC: ECM) containing 10% FBS and 1% penicillin-
streptomycin at the cell incubator with 37 °C and 5% CO2.
The detailed methods of collected CM have been well described in our

previous study [33]. In brief, primary SOD2+ iCAFs obtained from cell
sorting were cultured with complete DMEM for 48 h. Then the supernatant
was collected and centrifuged at 1000×g for 5 min and filtered with
0.45 μm filters. All collected CM was stored at −80 °C for future use.

IC50
First, 2000 EC cells were seeded into each well of the 96-well plate for 24 h.
Then, various drugs with different solubility levels to be tested were added
for 48 h, and the cell viability was measured using the Cell Counting Kit-8
(CCK-8, Dojindo Laboratories, #CK04). The IC50 value of each drug was
calculated using the GraphPad Prism (version 6). The details of used drugs
were as follows: Docetaxel (MCE, H-B0011), Brefeldin A (MCE, HY-16592),
Securinine (MCE, HY-N2079).
We employed the same methods used for cervical cancer to construct

EC-derived organoids in this study, which had been well described in our
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previous manuscript [33]. Once the first-generation organoids were
successfully constructed, they were further collected and digested into
single cells. For this, 2000 single cells were seeded into the 96-well plate
and cultured for 72 h. Then, different concentrations of testing drugs
(Docetaxel, Brefeldin A, and Securinine) were added for 120 h. Finally, the
metabolic APT levels were calculated using the CellTiter-Glo 3D Viability
Assay (Promega, #G9683) according to the manufacturer’s instructions. The
morphological changes of organoids were measured using an inverted
fluorescence microscope after being treated with different drugs.

Flow-sorting for specific primary fibroblasts
The primary fibroblasts were extracted from two patients diagnosed with
EC, and the method has been well described in our previous study [33]. We
further performed cell sorting to collect SOD2+ iCAFs. The details of the
used flow cytometry antibodies were as follows: anti-FAP (Abcam,
ab317555), and anti-MUC16 (Abcam, ab134093).

Transwell migration assay
For this, 40,000 EC cells (Ishikawa, RL95-2, and SPEC-2) suspended with
200 μl serum-free medium were added to the upper chamber, and 500 μl
CM or complete medium was added to the lower chamber. After co-
cultivating for 24 h, the lower chamber was subjected to paraformalde-
hyde fixation for 10min and crystal violet staining for 30min. The number
of migrated cells was then measured using ImageJ software.

mIF
mIF staining was performed to measure the purity of SOD2+ iCAFs sorted
by the flow cytometry. First, the cell slides were fixed with 4%
paraformaldehyde for 30min, and the membrane was broken with 0.1%
Triton100 and incubated at room temperature for 20min. Then the cell
slides were incubated with 3% BSA at room temperature for 30min, and
the primary antibodies were added and incubated at 4 °C overnight. On
the next day, the secondary antibody was added and cell slides were
incubated at room temperature for 1 h. Finally, DAPI staining solution was
added at room temperature in the dark for 10min. The details of used
antibodies were as follows: COL1A1 (CST, #72026, 1:100), and SOD2
(Proteintech, #CL594-66474, 1:100) (Supplementary Table 11).

Angiogenesis experiment
For this, 50 μl Matrigel (Corning, #356243) was added to each well of the
96-well plate and stored in the cell incubator at 37 °C for 30min. After that,
20,000 HUVEC cells suspended with 100 μl complete DMEM or CM were
added. The vascular microtubule was recorded at different time points and
further measured using the ImageJ software.

Hematoxylin and eosin staining (HE), and mIHC
We utilized HE staining for histopathological evaluation. Briefly, the
paraffin-embedded sections went through a series of procedures,
including dewaxing, dehydration, and hematoxylin and eosin staining.
The detailed methodologies of mIHC and mIF have been thoroughly
explained in our previous manuscript [33]. All the images were obtained by
the 3D panoramic scanner (DANJIER, HISHTECH Pannoramic 250, Jinan,
China) and further visualized using the CaseViewer software. The detailed
information of primary antibodies used in our study was as follows: EPCAM
(Abcam, ab223582, 1:500), CD68 (Abcam, ab955, 1:1000), CD4 (Abcam,
ab133616, 1:600), COL1A1(CST, #72026, 1:100), CD31 (Abcam, ab28364,
1:50), CXCL1 (Proteintech, #12335-1-AP, 1:100), GZMA (Proteintech,
#11288-1-AP, 1:100) (Supplementary Table 11).

Statistical analysis
Statistical analyses were performed using the R statistical software version
4.1.0 including Wilcoxon’s rank sum test, Wilcoxon signed-rank test, and
Student’s t-test. All statistical tests were two-sided. P < 0.05 was considered
statistically significant.

DATA AVAILABILITY
The scRNA-seq data of included samples has been uploaded to the Genome
Sequence Archive (GSA) of the National Genomics Data Center (Access Link: https://
ngdc.cncb.ac.cn/gsa-human/browse/; ID: HRA006322).
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