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Chimeric antigen receptor engineered T (CAR T) cell therapy has developed rapidly in recent years, leading to profound
developments in oncology, especially for hematologic malignancies. However, given the pressure of immunosuppressive tumor
microenvironments, antigen escape, and diverse other factors, its application in solid tumors is less developed. Urinary system
tumors are relatively common, accounting for approximately 24% of all new cancers in the United States. CAR T cells have great
potential for urinary system tumors. This review summarizes the latest developments of CAR T cell therapy in urinary system
tumors, including kidney cancer, bladder cancer, and prostate cancer, and also outlines the various CAR T cell generations and their
pathways and targets that have been developed thus far. Finally, the current advantages, problems, and side effects of CAR T cell
therapy are discussed in depth, and potential future developments are proposed in view of current shortcomings.
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FACTS

● The latest progress of CAR T cell therapy in urinary system
tumors.

● The advantages, problems, and side effects of CAR T cell
therapy in urinary system tumors.

● Mechanism and clinical application of novel immunotherapies
in urinary system tumors.

● The various studies of CAR T generations and their pathways
and targets in urinary system tumors.

OPEN QUESTIONS

● How to ensure the specificity and personalization of CAR T cell
therapy in patients with urinary system tumors?

● What are the possible future directions of CAR T cell therapy in
urinary system tumors?

● How can the safety and efficacy of CAR T cell therapy be
improved through more extensive clinical trials and long-term
follow-up?

INTRODUCTION
According to statistics reported in the 2024 edition of CA, a Cancer
Journal for Clinicians, urinary system tumors are among the most
common malignancies in the United States, accounting for ~24%
of all new cancers [1], with a rising incidence recently. In addition

to surgery, some traditional treatment options, such as che-
motherapy for urothelial carcinoma (UC) or androgen deprivation
therapy (ADT) for prostate cancer (PCa), result in suboptimal
clinical outcomes. For example, even after radical treatment of
PCa, recurrence remains possible, especially for high-risk locally
progressive PCa, which has a biochemical recurrence rate of up to
50% within 3 years after surgery [2]. As a result, immunotherapy
approaches have gained increased attention in research.
At present, immunotherapy has been applied to multiple types

of urinary tumors. In high-risk, non-muscle invasive bladder cancer
(NMIBC), Bacille Calmette-Guérin (BCG) has been used to activate
the mucosal immune system locally, stimulating an inflammatory
response, which reduces recurrence risk [3]. In renal cell carcinoma
(RCC), systemic interleukin-2 (IL-2) treatment activates the
immune system, mainly by stimulating natural killer (NK) cells
and T cells to kill tumor cells [4]. In addition, immune checkpoint
inhibitors (ICIs), such as those impacting programmed death 1
(PD-1) and programmed death-ligand 1 (PD-L1), have been used
increasingly to treat urinary system tumors [5].
More recently, chimeric antigen receptor engineered T cell (CAR

T) therapy, a novel genetically based immunotherapy method, has
been applied increasingly in malignancy [6]. CAR T cell therapy has
achieved impressive results in treating a variety of hematologic
malignancies, including lymphoma, leukemia, and multiple
myeloma [7]. The availability of tumor-associated antigens in
urinary system tumors, such as prostate stem cell antigen (PSCA),
prostate specific membrane antigen (PSMA), and epidermal
growth factor receptor (EGFR), makes CAR T cell therapy possible
for urinary system tumors. However, the immunosuppressive
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tumor microenvironment (TME), antigen escape, tumor hetero-
geneity, and the diminished proliferation capacity, insufficient
migration ability, and short survival time of CAR T cells, limit their
impact for solid tumors [8].
In this manuscript, we systematically review the research

progress, potential value, and difficulties of utilizing CAR T cells
to treat urinary system tumors, to provide novel approaches for
urinary system tumor treatment.

CAR T CELL THERAPY IN TUMOR IMMUNOTHERAPY
Immunotherapy recently has developed rapidly for both cancer
and regenerative medicine. In oncology, multiple clinical trials of
autologous engineered T cells are underway, with the goal of
improving anti-tumor immune responses, and this approach may
change cancer treatment standards [9].
CAR T cell therapy is one type of adoptive cell therapy, with the

major advantages of not being restricted by the major histocom-
patibility complex, bypassing antigen presentation, priming and
activating T cells, which directly attack cancer cells, killing them
[10]. CAR T cell therapy has proven efficacious for treating
hematological malignancies, especially B-cell malignancies [11].
However, for solid tumors, such as UC, CAR T cell therapy requires
further development before it becomes widespread.
The engineered receptors of CAR T cells consist of three major

components: an extracellular domain specific for tumor antigens
[single chain fragment variable (scFv) fragment], a transmembrane
domain, and an intracellular signaling domain that activates T
lymphocyte responses (including costimulatory molecules) [12]
(Fig. 1). Initial in vivo testing of the first-generation of CAR T cells,
which had basic architecture, revealed poor activation and
persistence of the engineered T cells [13]. Further studies revealed
that full T cell activation requires the first signal be transmitted
upon binding of the extracellular antigen binding domain to the
antigen, as well as a second signal transmitted by the binding of
costimulatory molecule receptors to their ligands, but these

ligands are usually not expressed on the tumor cell surface.
Enhanced CAR T cells have come from optimizing T cell
proliferation and tumor kill by including intracellular costimulatory
molecules in the receptor. The design structure of the first-
generation of CAR T cells was relatively simple, with the CD3ζ
costimulatory domain as the only intracellular domain included,
with none of the costimulatory signals necessary to fully activate
the CAR T cells, and their effect in clinical trials was suboptimal.
Based on the design of the first generation of CAR T cells, the
costimulatory domains CD28 or 4-1BB were introduced in the
second generation of CAR T cells, significantly improving their
immune activation and durability [14, 15]. CD28 and 4-1BB
exhibited different anti-tumor properties. CD28-activated T cells
had a strong transient mortality, while 4-1BB-activated T cells had
better anti-tumor persistence [16].
Expanding on these results, the third-generation of CAR T cell

receptors contained two co-stimulatory domains, usually CD28
and 4-1BB, but also sometimes CD27, OX40, or ICOS [17–20]. In
preclinical models, third-generation anti-CD19 CAR T cells with
both CD28 and 4-1BB co-stimulatory domains provided better
therapeutic outcomes than did second-generation CAR T cells.
These cells showed balanced tumor-killing and increased persis-
tence, with an elevated CD8/CD4 ratio and decreased exhaustion
[21]. However, there are significant differences in cytokine
production and anti-tumor activity in these third-generation of
CAR T cells compared with the second-generation. This difference
may be due to impaired mitochondrial function caused by over-
stimulation of CAR T cells, leading to CAR T cell exhaustion [22].
Based on these observations, the fourth-generation of CAR

T cells added intracellular co-expressed cytokines (IL-7, IL-12, IL-18,
IL-21, CCL19, et al.) to positively regulate CAR T cells [23–27]. These
have an additional inducible domain responsible for transgenic
cytokine release upon CD3ζ-containing CARs engaging with their
specific target. The activation of these receptors leads to secretion
of the cytokine to improve CAR T cell persistence and antitumor
effects [28, 29]. For example, IL-12 is eventually produced and

Fig. 1 Structural comparison of different generations of CAR T. The first-generation of CAR T had only CD3ζ chains. The second-generation
of CAR T added co-stimulatory domain 1 (CD28 or 4-1BB) on the basis of the first-generation. The third-generation of CAR T added co-
stimulatory domain 2 (CD28, 4-1BB, CD27, OX40, and ICOS) on the basis of the second-generation. The fourth-generation of CAR T added co-
expressed cytokines on the basis of the second-generation. The next-generation of CAR T was also based on the second-generation, with the
addition of co-stimulatory domains for the activation of other signaling pathways, such as IL-2Rβ-JAK/STAT pathway.
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released in target-initiated CD3ζ-containing CAR T cells. IL-12
promotes T cell activation, modulates the immune and vascular
tumor environment, and recruits additional immune cells to attack
tumor cells not recognized by the CAR T cells [30, 31]. Therefore,
the fourth-generation of CAR T cells are also termed T cells
redirected for universal cytokine-mediated killing (TRUCKs).
The fifth-generation of CAR T cells, also based on the second-

generation, have added an additional intracellular IL-2 receptor
domain that enables antigen-dependent activation of the JAK/
STAT pathway [32, 33]. This induces the CAR T cells to produce
memory T cells, facilitating a more durable long-term response.
The fifth-generation of CAR T cells also have additional
intracellular domains with truncated cytokine receptor fragments,
such as IL-2R chain fragments, containing transcription factor
binding motifs. Therefore, these secreted signals not only drive
CAR T cell activity persistence and memory T cell generation, but
also reactivate and stimulate the immune system [32] (Fig. 1).
Naeem et al. [34] also tried to circumvent other challenges with
these cells by using clustered regularly interspaced short
palindromic repeats (CRISPR) genome editing technology to
inhibit dominant negative receptors (PD-1, TGF-β, and B2M),
reduce the risk of cytokine release syndrome (CRS), and regulate
CAR T cell function in the TME.

CAR T CELL THERAPY IN UROLOGIC NEOPLASMS
Given the impressive therapeutic effects of CAR T cells for multiple
hematological malignancies [7], investigations related to urinary
system tumors recently have been conducted with increasing
frequency. CAR T cell therapy is made possible by the expression
of tumor-associated antigens in urinary system tumors, permitting
a novel approach for the treatment of urinary system tumors,
including RCC, PCa, and bladder cancer (BCa) (Table 1).

CAR T cell therapy in RCC
In the United States, RCC is twice as common in men as in women,
with ~81,610 new cases and 14,390 deaths expected in 2024 [1].
The incidence of RCC has recently stabilized, rather than
improving, despite advances in surgical treatment, such as
robot-assisted surgical treatment, suggesting the need for new
treatments [35, 36]. Since RCC does not respond to radiotherapy
and chemotherapy, IL-2 and interferon-α are the traditional non-
specific immunotherapies used [37, 38], but multiple studies have
questioned their effectiveness [39]. More recently, for advanced
RCC, the current standard first-line immunotherapies include dual
ICIs and ICIs combined with vascular endothelial growth factor
receptor tyrosine kinase inhibitors [40]. Therefore, new immu-
notherapy has become an area of active interest.
CAR T cell therapy has been studied in RCC. Suarez et al. [41]

developed CAR T cells targeting human carbonic anhydrase IX
(CAIX) to secrete human anti-PD-L1 antibodies at the tumor sites
(Fig. 2A). In a humanized mouse model of RCC, tumor suppression
was evident after treatment with CAIX-CAR-T cells. Panowski et al.
generated a panel of anti-CD70 scFv-based CAR T cells [42]. In
their study, CD70 CAR T cells showed potent anti-tumor activity
against RCC cell lines and in patient-derived mouse xenograft
models (Fig. 2B). In addition, Mori et al. [43] found that cellular-
mesenchymal epithelial transition factor (c-Met) could be used as
a therapeutic target for RCC, creating anti-human c-Met targeted
CAR T cells (Fig. 2C) and studying their anti-tumor effects in an
orthotopic mouse model. They found that anti-c-Met CAR T cells
could infiltrate tumor tissues and inhibit tumor growth.
Multiple studies have found that CAR T cells combined with

targeted drugs may have an improved anti-tumor effect
compared with CAR T cells alone. Li et al. [44] constructed
second-generation CAR T cells that recognize the human RCC-
specific antigen, CAIX (Fig. 2D). In their investigation, the
combination of CAIX-CAR-T and sunitinib had a synergistic effectTa
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on lung metastasis in a mouse model of human RCC. The CAIX-
CAR-T cells in the combined treatment group had increased
proliferation and invasion compared to that observed in the single
treatment group. Mori et al. [43] had similar results. After the
construction of c-Met-specific CAR T cells, they studied these in
combination with axitinib, finding that axitinib synergistically
enhanced anti-tumor CAR T cell responses. These results suggest
that the combination of CAR T cells with targeted agents may also
be effective for solid tumor therapy.

CAR T cell therapy in BCa
In the United States, BCa, with ~83,190 new cases and 16,840
deaths expected in 2024, is more common in men [1], and BCa
treatment is mainly based on risk classification. With the
standardization of treatment, BCa prognosis has significantly
improved recently. For example, NMIBC has a 5-year survival rate
of up to 90%. However, outcomes for metastatic BCa (mBCa)
remain particularly poor, with a 5-year survival rate of <15%
[45, 46], with a median survival for various chemotherapy
regimens of only 13–15months [47, 48]. While ICIs have been
considered an optional first-line treatment for patients who are
not candidates for chemotherapy, the results remain unsatisfac-
tory [49], highlighting the need for new immunotherapies. BCa
expresses multiple tumor-associated antigens, suggesting favor-
able conditions for CAR T cell therapy.
Many pan-cancer tumor targets, including human epidermal

growth factor receptor 2 (HER2), mucin 1 (MUC1), and EGFR, are
also expressed at high levels in UCs and may serve as therapeutic
targets [50, 51]. One current ongoing clinical trial targets HER2
(NCT03740256). However, this is a basket trial, and BCa is just one
of several malignancies included. We look forward to learning the
specific results in BCa. Parriott et al. [52] developed CAR T cells
targeting PD-1, finding an anti-tumor effect for CHPD1-expressing
T cells in a variety of isogenic mouse solid cancer models,
including BCa (Fig. 2E). Yu et al. [53] produced second-generation
CAR T cells targeting MUC1 in vitro (Fig. 2F), finding a significant,

specific cytotoxic effect of MUC1-CAR-T on MUC1-positive tumors
such as BCa, further validating the feasibility of using MUC1-CAR-T
cells to treat BCa. In addition, Grunewald et al. [54] used
decitabine in combination with EGFR and CD44V6-specific CAR
T cells for anti-BCa studies (Fig. 2G), finding that the combination
was an attractive therapeutic approach to enhance tumor-specific
killing in BCa.

CAR T cell therapy in PCa
With an estimated 300,000 new cases and 35,250 deaths
anticipated in the United States in 2024, PCa is the most common
malignancy in men and the second leading cause of cancer
mortality [1]. The 5-year survival rate of PCa reaches 98%, but in
metastatic PCa (mPCa), survival drops to 30% [55]. After years of
experience, PCa treatment has become standardized. PCa growth
and development depend on androgens, so ADT is the
cornerstone of PCa treatment. Standard treatment for localized
PCa includes surgery, radiation, and active surveillance [56].
However, the poor prognosis of patients with mPCa, especially
castration-resistant PCa (CRPC), remains concerning. Diverse
treatment options exist for advanced PCa, including taxane
chemotherapy, Sipuleucel-T, androgen receptor (AR) pathway
inhibitors, and ICIs [57]. PCa is often described as a “cold” tumor
because of its limited sensitivity to ICIs [58]. The non-response to
ICIs spurs interest in novel immunotherapy methods, such as CAR
T cell therapy.
A variety of tumor specific antigens are expressed in PCa. In

addition to the well-known PSA, there are PSMA and PSCA, which
may serve as targets for CAR T cell therapy. PSMA is currently the
most studied target for CAR T cell therapy in PCa. For example,
Shanghai Changzheng Hospital has just registered a single-center,
single-arm, open-label, investigator-initiated clinical trial evaluat-
ing the safety and efficacy of enhanced autologous PSMA-specific
CAR T cells to treat refractory CRPC (NCT06228404). In addition,
multiple preclinical and clinical investigations found that PSMA-
specific CAR-T cells have an anti-PCa effect. Kloss et al. [59]

Fig. 2 Application of different types of CAR T cell therapy in urinary system tumors. A The fourth-generation of CAR T (CD28) targeted
CAIX to secrete anti-PD-L1 antibody to block T cells exhaustion in RCC. B The second-generation of CAR T (CD27) targeted CD70 in RCC. C The
third-generation of CAR T (CD28 and 4-1BB) targeted c-Met in RCC. D The second-generation of CAR T (4-1BB) targeted CAIX in RCC. E The
second-generation of CAR T (CD28) targeted PD-1 in BCa. F The second-generation of CAR T (CD28) targeted MUC1 in BCa. G The second-
generation of CAR T (CD28) targeted EGFR in BCa. H The second-generation of CAR T (4-1BB) targeted PSMA in PCa. I The second-generation
of CAR T (CD28) targeted PSMA in PCa. J The fourth-generation of CAR T (IL-23mAb-PSMA-CARs) was more effective in PCa. K The second-
generation of CAR T (4-1BB) targeted PSCA in PCa. (L). The second-generation of CAR T (4-1BB) targeted STEAP1 in PCa. M The second-
generation of CAR T (CD28) targeted B7-H3 in PCa.
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enhanced the effect of CAR T cells targeting PSMA by co-
expression of a dominant-negative TGF-βRII (dnTGF-βRII), which
further increased lymphocyte proliferation and cytokine secretion,
leading to killing of PCa cells (Fig. 2H). Subsequently, they
conducted a phase I trial (NCT03089203) consisting of 18 patients,
demonstrating that treatment with TGF-β-resistant CAR T cells is
feasible and generally safe [60]. Alzubi et al. [61] developed a
novel D7 single-chain antibody fragment-derived anti-PSMA CAR
that showed promising activity both in vitro and in vivo (Fig. 2I). In
addition, the combination of PSMA-CAR-T cells and non-ablative
low-dose chemotherapy, such as low-dose docetaxel, controlled
tumor growth. Wang et al. [62] constructed a group of IL-23 mAb-
PSMA-CARs and found that IL-23 mAb combined with PSMA-
specific CAR T cells were more effective in eradicating PCa than
were PSMA CAR T cells alone (Fig. 2J).
In addition to PSMA, other targets have been evaluated. Priceman

et al. [63] found the intracellular co-stimulatory signaling domain
can determine the sensitivity of CAR T cells to tumor antigen
expression. Inclusion of a 4-1BB intracellular co-stimulatory signal
domain provided better tumor killing than did a PSCA-CAR
containing a CD28 co-stimulatory signal domain (Fig. 2K). A phase
Ib clinical trial (NCT05805371) of PSCA-targeting CAR T cells to treat
metastatic CRPC is ongoing and will evaluate this question. The six
transmembrane epithelial antigen of the prostate 1 (STEAP1) can be
used as a target antigen for PCa therapy [64, 65]. Bhatia et al. [66]
designed a STEAP1-targeted CAR T cell therapy with high antigen
specificity (Fig. 2L), finding that STEAP1 CAR T cells showed
reactivity at low antigen density, anti-tumor activity in mPCa
models, and safety in human STEAP1 knock-in mouse models.
Furthermore, the addition of tumor-localized IL-12 in the form of a
collagen binding domain-IL-12 fusion protein enhanced the anti-
tumor effect of the STEAP1 CAR T cells. Zhang et al. [67] reported
that B7-H3 CAR T cells combined with fractionated irradiation (FIR)
was more effective than FIR or CAR T cells alone for radioresistant
PCa stem cells (PCSCs) (Fig. 2M).

ADVANCES AND CHALLENGES
Multiple CAR T cell therapies have proven effective for treating
even refractory B-cell malignancies, providing a new approach for
cancer treatment and leading to progress for treatment of other
malignancies. As mentioned earlier, tumor-associated antigens are
crucial for the application of CAR T cell therapy. Tumor-related
antigens commonly expressed in urinary system tumors and other
solid tumors have shown good anti-tumor activity in preclinical or
clinical studies, such as CAR T cells targeting PSMA, EGFR, MUC1,
etc. Therefore, the use of CAR T cell therapy in urologic tumors
may be more favorable, given the availability of target antigens
expressed more frequently than is observed in other solid tumors.
In addition, CAR T cells still require a certain process before

administration to patients, which creates challenges for delivering
CAR T cell therapy in a timely fashion. However, urologic tumors
progress relatively slowly compared to other malignancies, such as
those of hematological, respiratory, and digestive system cancers,
providing sufficient preparation time for specific and individua-
lized CAR T cells. To shorten the time to CAR T cell infusion and
reduce costs, researchers have evaluated using cells from healthy
donors, that is, allogeneic T cells, to produce CAR T cells. However,
two major problems exist when using allogeneic CAR T cells. First,
allogeneic T cells may cause fatal graft-versus-host disease
(GVHD). Second, these allogeneic T cells may be rapidly eliminated
by the host immune system, limiting their effectiveness [68].
Fortunately, several studies have shown that the GVHD from CAR
T cells is not a cause for concern. Studies of donor-derived CAR
T cells therapy have exhibited that alloreactive T cells expressing
CD28 co-stimulated CD19 CARs, thereby further significantly
reducing the incidence of GVHD [69–71]. Further study is needed
to confirm this observation.

CAR T cell therapy still has many shortcomings and faces serious
challenges. Firstly, the current use of CAR T cells for solid tumors,
including urological tumors, remains very limited. Secondly, from
a safety perspective, the side effects continue to be significant,
including CRS, immune effector cell-associated neurotoxicity
syndrome (ICANS), and the resulting organ dysfunction [72].
Although CAR T cell therapy offers many advantages for

urological tumors, its efficacy has not reached that of CAR T cells
for hematological malignancies. In addition, the heterogeneity of
the TME poses challenges for CAR T cells. The TME has multiple
anti-tumor effects, most notably on T cell activity [73]. A large
number of immunosuppressive cells, including regulatory T cells
(Tregs), myeloid-derived suppressor cells, and tumor-associated
macrophages, are usually present in the solid TME. Co-stimulatory
molecules, such as CD28, may facilitate CAR T cell activation and
survival at tumor sites [74, 75]. Various common cytokines also
affect the efficacy of immunotherapy for urological tumors. For
example, transforming growth factor-β (TGF-β), which is abun-
dantly expressed in the TME of BCa and PCa, downregulates CD8+

T cell function and promotes Treg maturation [76]. Future
investigations will examine how to overcome the inhibition of
TGF-β on CAR T cells [77, 78].
Conversely, cytokines such as IL-2 and IL-12 can enhance the

anti-tumor effects of CAR T cells [79]. IL-12, in particular, can alter
the TME and prolong T cell survival, improving immunotherapy
efficacy [30, 31, 80]. However, neither IL-2 nor IL-12 are normally
present in the TME of urological tumors, but intravesical therapy
with BCG after BCa surgery induces IL-2 and IL-12 in the TME,
implying that CAR T cells expressing these cytokines may be
advantageous for BCa [77]. Further studies evaluating the role of
the TME on CAR T cells in solid tumors, especially urological
tumors, are needed to improve the applicability of CAR T cells for
these malignancies.
The most popular immunotherapy currently uses ICIs, which are

also widely used in urological tumors and are coming to be
accepted as a first-line treatment for advanced RCC and BCa
[81, 82]. When ICIs prove ineffective, it is uncertain how impactful
CAR T cell therapy, as another immunotherapy, will be. This
question may be addressed by clinical trials that are currently
underway. For example, the inclusion criteria of the clinical trials
NCT05420519, targeting CD70, and NCT04969354, targeting CAIX,
both had patients with advanced RCC who have failed first-line
and second-line therapies (including ICIs). In addition, several
preclinical and clinical trials in other tumors have shown that ICIs
combined with CAR-T cell therapy can enhance anti-tumor
activity, offering hope for this combination in urological tumors
[83–85]. Ren et al. [86] also found that CAR T cells that use CRISPR
to knock down the PD-1 encoding gene, PDCD1, exhibited potent
anti-tumor activity both in vitro and in animal models, suggesting
that such CAR T cells lacking this checkpoint receptor might be
beneficial.
However, ICIs have limited utility for PCa, predominantly

because of the previously-mentioned immunosuppressive TME.
Beyond ongoing effort to enhance immune signals and remodel
the immunosuppressive “cold” TME, the success of ICIs in
combination with CAR T cells, especially PD-1 knockdown CAR
T cells, provides novel approaches for improvement. Another
possibility involves cancer-associated fibroblasts (CAFs), which are
the most abundant component of the PCa TME [87]. If CAR T cells
can be engineered to target the specific surface antigens of CAFs,
might this inhibit the growth and infiltration of PCa? All of these
ideas merit further exploration and validation.
Another challenge is CRS, a physiological inflammatory state

triggered by the interaction of inflammatory cytokines and
chemokines released by CAR T cells. These cytokines include
granulocyte-macrophage colony-stimulating factor, interferon-γ,
and tumor necrosis factor-α, and are released after T cells engage
with their corresponding target antigens [88, 89]. CRS has been
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observed in many patients receiving CAR T cell therapy [72, 88, 89]
and are the main side effect of CAR T cell therapy. Interestingly, CRS
is not the result of CAR T cells themselves, but inflammatory
cytokines released by macrophages in response to the activated
CAR T cells, such as IL-1, IL-2, IL-6, and especially IL-6. When these
inflammatory cytokines are released in large amounts, they cause an
inflammatory response in the vascular endothelium, which further
releases IL-6, leading to a positive feedback loop for CRS [89–92].
This effect disrupts vascular integrity in patients with CRS and leads
to hemodynamic instability, capillary leakage, and consumptive
coagulopathy [93, 94] (Supplementary Fig. S1). To predict CRS
occurrence in high-risk patients in advance, Hay et al. [95] performed
classification-tree modeling using data from 133 patients with CRS.
They found that the monocyte chemoattractant protein 1 may be a
useful prediction marker, and additional predictive markers with
good specificity and sensitivity are being explored. Further clinical
experience and practice are still needed for the management of CRS.
Neurotoxicity, another common acute side effect of CAR T cell

therapy, has been observed in 64% of clinical trials [72]. ICANS may
occur simultaneously with CRS, after resolution of CRS, or
independent of CRS. Clinical manifestations of ICANS can include
decreased consciousness, coma, seizures, motor weakness, and
cerebral edema [93]. The pathophysiological mechanism of ICANS
remains unclear, but hypotheses include the passive diffusion of
cytokines during the transport of CAR T cells in the central nervous
system, endothelial cell activation and blood-brain barrier destruc-
tion, and N-methyl-D-aspartate receptor agonists [93, 94, 96].
More extensive clinical trials and long-term follow-up are

needed to improve the safety and efficacy of CAR T cells.
Moreover, the high cost of CAR T cells are a barrier, highlighting
the need to improve affordability for patients. The fourth and
subsequent generations of CAR T cells are being designed to
enhance their lethality, extend persistence after infusion, and
enhance their ability to invade solid tumor tissues and regulate
the TME [97–99]. The ongoing development of CAR T cells should
also focus on optimizing target selection and construction
methods, reducing toxicity, stabilizing the construction system,
and improving invasiveness.

CONCLUSION
In conclusion, numerous studies have demonstrated the potential
utility of CAR T cells for urologic tumors. However, adoptive T cell
immunotherapy still faces many challenges, including the viability
of tumor cells, the complex regulatory mechanisms of the TME,
and side effects such as CRS and ICANS. The ongoing optimization
of CAR T cell therapy should focus on improving the role of CAR
T cells in solid tumors. Cytokines that improve the structure of CAR
T cells or certain pathways may achieve this goal. With the
development and progress of a multiple areas of investigation,
CAR T cells are poised to become increasingly useful for the
treatment of solid tumors, including urinary system tumors.
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