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Abstract

Human embryonic stem cells (WESCs) play an important role in regenerative medicine due to their potential to
differentiate into various functional cells. However, the conventional adherent culture system poses challenges to mass
production of high-quality hESCs. Though scientists have made many attempts to establish a robust and economical
hESC suspension culture system, there are existing limitations, including suboptimal passage methods and shear force
caused by dynamic stirring. Here, we report on an efficient large-scale culture system, which enables long-term, GMP
grade, single-cell inoculation, and serial expansion of hESCs with a yield of about 1.5 x 107 cells per 1.5-L culture, while
maintaining good pluripotency. The suspension culture system was enlarged gradually from a 100-mm dish to a 1.8-L
culture bag with methylcellulose involvement to avoid sphere fusion. Under the optimal experimental protocol, this
3D system resolves current problems that limit mass production and clinical application of hESCs, and thus can be

used in commercial-level hESC production for cell therapy and pharmaceutics screening in the future.

Introduction

Human embryonic stem cells (hESCs), one among the
pluripotent stem cells, can be induced into various types
of functional cells under a certain condition in vitro, and
play an important role in regenerative medicine'. hESC
isolation and expansion have been widely reported since
the first hESC line establishment in 1998>™. In most
previous reports, hESCs were expanded in adherent cul-
ture systems supported with feeder cells or matrices®”. A
large number of high-quality hESCs, as well as their
derivates, are needed for cell therapy. It must be men-
tioned that about 10°~10"° functional cells per patient are
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required to recover the function for solid organs such as
the liver, kidney, pancreas, and heart®’. However, con-
ventional two-dimensional (2D) adherent cultures occupy
a large space to scale up hESC production'®. Meanwhile,
functional cells derived from 2D differentiation systems
have shown the lack of maturity and functional defects by
which the conditions supplied are different from the
three-dimensional (3D) originals''. Consequently, 2D
culture platform is not suitable for large-scale expansion
and standard production of hESC, while 3D suspension
culture systems for expansion and differentiation bring
hope for cell therapy''**2,

At present, several suspension culture methods have
been established, such as cell aggregates'*, microcarriers
carrying cells,"> and microcapsules with cells embedded
in'®. Two-fold to four-fold higher hESC densities are
achieved on matrigel-coated microcarriers than those in
2D cultures'’. Afterwards, human pluripotent stem cells
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Fig. 1 Optimization of 3D human embryonic stem cell (hESC) suspension culture system. a Comparison of the average folds of hESC
proliferation suspended in different medium. b Morphology of hESC spheres with different initial cell seeding density. Scale bar, 100 um.
¢ Comparison of the average folds of hESC proliferation suspended in E8 medium with different initial cell seeding density. d Cell viability of spheres

(hPSCs) are cultured with single-cell inoculation in
spinner flasks for more than 10 passages to maintain
pluripotency'®. Another strategy is that of passage in a
mechanical way and supplementing functional polymers
to the suspension system, which produced a yield of up to
1.4 x 10® hPSCs in a 200-mL cell culture bag'®. Although
some progress has been made in hESC suspension cul-
ture, mass production of good manufacturing practices
(GMP)-grade hESCs for clinical application remains
challenging because of clump formation in static culture
systems, shear force damage in dynamic bioreactors,
and the low viability caused by suboptimal passage
methods'*™>!,

Here, based on the clinical-grade hESC lines our lab
derived®*, we provide a simple, economical, and robust
static suspension culture system for scaling up GMP-
grade hESC production. By utilizing ultra-low attache-
ment dish, which have low attachment for cells*, we
obtained optimized seeding density and culture medium,
established a 3D culture system with single-cell hESCs for
initial seeding, and produced cells in aggregates for pro-
liferation. Then we progressively scaled up the system to
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cell culture bags while employing methylcellulose to
prevent cell conglobation'®?*, and finally reached a yield
of 1.5x10° cells per 1.5-L culture system. Importantly,
hESCs maintained normal morphology and pluripotency
for more than 30 passages in the 3D culture system. In
addition, 3D-hESCs have the same differentiation ability
as 2D-hESCs during mesenchymal differentiation. More-
over, the system provides great possibility for hESC pro-
duction in future clinical cell therapy.

Results
Establishment of 3D-hESC suspension culture system
in ultra-low dish

To establish the massive 3D-hESC culture system, we
first optimized the cultivation conditions using a small
amount of hESCs in the ultra-low attachment dish. We
compared the cell proliferation of hESC spheres sus-
pended in different medium types, including conditioned
medium (CM)*?°, a suspension culture medium for
monkey embryonic stem cells (3:1)*/, conventional cul-
ture medium without bFGF (EB), and Essential 8™ (E8)
medium®® (Fig. 1a). Considering that CM and 3:1 culture
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medium both contain fetal bovine serum (FBS), an
animal-origin component, which was not recommended
for clinical hESC culture®®, E8 medium was chosen, a fully
defined culture medium for hESC suspension culture. We
tried to figure out the most suitable cell seeding density
for hESC expansion after the comparison of four gra-
dients, by observing sphere morphologies under the
microscope during the culture (Fig. 1b). Obviously, the
spheres in the groups with an initial density of 2 x 10°
cells/ml exhibited more homogeneity, while others with
higher seeding densities tended to form big clumps and
their spheres were darker in the center on D5 post culture
(Fig. 1b). Next, we detected cell proliferation and cell
viability by counting cell numbers and trypan staining,
respectively, for each seeding density group on D5 post
cell culture (Fig. 1c, d), and found that cell proliferation
rate declined with the increase of initial density (Fig. 1c).
Cell viability was >90% in different seeding density groups
(Fig. 1d). Therefore, the density of 2 x 10° cells/ml was
chosen for the following experiments.

Scaling up the hESC sphere culture system to a 1.8-L cell
culture bag

We next investigated the effects of large-scale culture by
suspending hESCs in a 1.8-L cell culture bag with 1.5-L
medium (Fig. 2a—c). Large size of hESC colonies would
induce differentiation® and the addition of 1% methyl-
cellulose in the culture medium can prevent clump for-
mation'®. The number of hESCs collected from a 1.5-L
cell suspension medium reached 1.5x10° on D5 post
culture, and spheres were maintained in good shape and
condition, which was similar to the ones cultured with
small scale (Fig. 2b). The bright figure revealed persistent
homogenous sphere distribution throughout the bag
(Fig. 2¢). Taken together, these data suggested that our 3D
culture system could be scaled up to a volume of 1.5-L,
which generated a large number of hESCs with high cell
viability in the form of cell aggregates with good micro-
scopic morphology.

Long-term stability is critical for the production of
clinical-grade hESCs. During the long-term subculturing
(over 30 passages), spheres maintained a normal mor-
phology, with an average diameter of about 208 um on
culture D5 (Supplementary Fig. 1A). The growth curve
showed a typical S type®', and cell number increased 15-
folds at the end of the subculturing (Supplementary
Fig. 1B). After being transferred back into 2D culture
system, single 3D-hESCs formed colonies with normal
morphology (Supplementary Fig. 2). Furthermore, the
hESC spheres exhibited normal karyotypes (Fig. 2d) and
no abnormal expression in oncogenes. The expression
level of MYC between 3D-hESCs and Hela showed sig-
nificant difference®?, while the level of p53 between
3D-hESCs and Hela showed no significant difference
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(Supplementary Fig. 3), which is the same as previously
reported by others®*?*, RT-qPCR results confirmed
comparable expression of pluripotent maker, OCT4, and
upregulation of SOX2 in 3D spheres compared to 2D
adherent colonies (Fig. 3a), which is consistent with pre-
vious reports®>*°. In addition, immunostaining with
confocal microscopy revealed cells within spheres;
expression of sections showed that all of the cells in a
sphere expressed pluripotency markers, OCT3/4, SOX2,
and SSEA4 (Fig. 3b). Ubiquitous expression of pluripotent
markers NANOG, OCT4, SOX2, and SSEA4 was
observed from flow cytometric analysis (Fig. 3c), while
flow cytometric analysis of 3D-hESCs from various gen-
erations showed the same results (Supplementary Fig. 4).
Live-dead cell staining results showed that most cells were
alive within the aggregates (Fig. 3d). Moreover, single cells
dissociated from hESC spheres could develop into ter-
atomas in SCID mice comprising the derivatives of all
three germ layers, which included the cartilage (meso-
derm), respiratory epithelium (endoderm), and brain tis-
sue (ectoderm) (Fig. 3e). Another hESC line, H7, could be
observed with similar results in the system (Supplemen-
tary Fig. 5). These results indicated the capacity to self-
renew and to differentiate into all three germ layers in the
3D culture system.

Derivation and characterization of mesenchymal stem cells
(MSCs) from hESCs (hESC-MSCs)

Consistent with being pluripotent, hESCs in 3D were
used for directed in vitro differentiation. MSCs have been
widely used in cell therapy clinical trials*’. There are
relatively few studies devoted to MSC differentiation from
3D-hESC spheres®®. Here, we tried the differentiation
using EB formation method (Fig. 4a, up)®. After 7-day
suspension culture, EBs were attached to the plate and
cultured in hESC-MSC derivation medium. Then cells
were passaged at a 70-80% confluency. After 6 passages,
both 2D- and 3D-hESC-MSCs exhibited similar mor-
phology with typical MSCs (Fig. 4a). Surface markers
of MSCs were analyzed, and maintained at high levels in
the MSCs (Fig. 4b). Moreover, 3D-hESC-MSCs can
be induced to differentiate into adipocytes, osteocytes,
and chondrocytes (Fig. 4c). These results suggested that
3D-hESCs had the same ability of MSC differentiation as
2D-hESCs.

Discussion

In this study, we have successfully developed a simple,
economical, and robust static suspension culture system
for large-scale hESC expansion yielding 1.5 x 10° cells per
1.5-L system while maintaining normal characteristics of
hESCs. To our knowledge, the hESC suspension culture
system we established has been the largest static one so
far and it is applicable in labs without employing
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expensive equipment. Compared with previous reports of
others*®, which showed hESC survival encapsulated in
PNIPAAm-PEG hydrogel, our work showed hESC survi-
val in liquid suspension culture system. Many studies have
indicated 3D conditions influencing stem cell fates*!. It is
still unclear whether PNIPAAm-PEG would induce or
contribute to PSC differentiation especially for neural
differentiation because the elastic modulus of PNIPAAm-
PEG (10%) is around 1000 pa, which is similar to the
modulus of native neural tissues*” and might tend to
initiate neural differentiation®’. The data of Lei et al. have
supported that PNIPAAm-PEG (8-10%) is softer than
some other normal hydrogels, but the risky still exists. To
support expansion for single-cell seeding, they treated the
system with ROCK inhibitor, Y27632, for 4 days (96 h).
However, long-term (over 96 h) addition of Y27632 may
reduce the stemness levels of hPSCs**. Also, the pro-
longed exposure of Y27632 during the suspension culture
of dissociated hPSCs promoted the inducing into retinal
progenitors and telencephalic precursors*>*®, Moreover,
our system is much cheaper and simpler because it is not
essential to refresh the media everyday and there is no
expansive biomaterials or devices involved.

Clump formation is the main concern in static sus-
pension cultures for causing cell apoptosis or unexpected
differentiation®”. We justified the optimal density of
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2.0x 10° cells/ml, with which hESCs spontaneously
formed round spheres with a uniform size of about 200
pum in diameter during culture (Supplementary Fig. 1A).
When cultured in ultra-low dishes, spheres rarely formed
big clumps, and, after being transferred to culture bags,
1% methylcellulose in the medium could prevent clump
formation by increasing viscosity’®**. Subculturing is also
an essential step for robust hESC expansion. Mechanical
passage through filters can improve the uniformity of
spheres, but will cause mechanical damages to hESCs*8.
Therefore, we chose Accutase to digest D5-spheres and
Dé6-spheres into single cells in a gentle manner, achieving
a cell viability of over 90% (Fig. 1d). Treatment of 10 uM
Y27632 further promoted cell survival for the first 48 h
after inoculation, which also contributed to the long-term
expansion, maintaining pluripotent features*®. hESCs
were passaged 30 times in series in this manner, and
maintained pluripotency and differentiation potential.
During the whole process, hESC spheres grew in a xeno-
free, fully defined E8 medium without the supplement of
other matrices or microcarriers, which was compliant
with GMP'**%,

So far, some progress has been made on 3D differ-
entiation systems. For example, Henning et al.’' gener-
ated 40—50 million hPSC-CMs at over 80% purity from a
100-mL bioreactor. However, most 3D differentiation
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systems were small scale®®>*, The system in the present
study can not only support hESC expansion in the static
platform, but also may be applied in dynamic bioreactor
systems. In fact, we have already started expanding hESCs
in a fully instrumented bioreactor (DASbox/eppendorf).
Though the parameters need to be further adjusted and
controlled, we have achieved preliminary success in
massive hESC proliferation. Meanwhile, we are making
attempts to establish differentiation platforms for various
cell lineages in our lab**. In summary, the system to
expand hESCs on a large scale represents a first important
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step and provides an unprecedented opportunity for
regenerative medicine.

Materials and methods
hESC line and medium

A clinical-grade hESC line, Q-CTS-hESC-2, which was
derived by our lab and had been reported®?, was used to
optimize and establish this 3D culture system. Q-CTS-
hES-2 colonies were stably cultured in the vitronectin-
supported adherent system before being transferred to
suspension culture. We also applied the established
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suspension culture system to a classic hESC line, H7> to
compare the cell proliferation of hESC spheres suspended
in different culture mediums, including embryonic body
culture medium (EB, KODMEM supplemented with 20%
KOSR, 1% nonessential amino acids, 2 mM L-glutamine,
and 0.1 mM B-mercaptoethanol), conditioned mediums
(CM, DMEM supplemented with 20% FBS, 1% non-
essential amino acids, 0.1 mM [B-mercaptoethanol co-
cultured with human feeder cells, collected after 24 h),
monkey embryonic culture medium (3:1, three parts of EB
and one part of commercially available media PSGro
(StemRD,YS000087, a fully defined, serum-and feeder-
free medium)), and E8 medium (Gibco, A151700).

Sphere culture of hESCs

To initiate suspension culture, hESC colonies in
vitronectin-supported adherent cultures were dissociated
into single cells by Accutase (Gibco, A11105-01). Diges-
tion was terminated by adding an equivalent amount of
E8 medium. We collected cell suspension, centrifuged and
removed the supernatant, then resuspended hESCs with
appropriate amount of E8 medium. After cell counting by
Countess combined with trypan blue staining, we took a
proper amount from the resuspension, and added it to the
E8 medium supplemented with Y27632 (Selleck, S1049,
final concentration was 10 uM), reaching a cell density of
2.0 x 10° cells/mL. In total, 10 mL of cell resuspension was
seeded into each 100-mm ultra-low dish (Corning, 3471),
then placed in 37°C incubators, and shaken well. The
medium was changed 48 h after inoculation for sphere
formation; afterwards, cultures were daily refreshed till
D5, and then underwent passage. Sphere morphology was
observed by microscopy. Cell counting and viability test
were carried out every time after a subculturing.

Scaling up to cell culture bags

For progressively scaling up, we employed cell culture
bags (TaKaRa, FU0O5 & GT-T610A). At least 1.0 x 107
hESCs (50-ml suspension) were needed for a 250-ml bag-
based culture platform, and at least 6.0 x 10’ hESCs
(300-ml suspension) were required for a 1.8-L bag-based
system. Seeding density, passage method, and medium
change were the same as for the dish-based culture sys-
tem; moreover, 1% of methylcellulose (R&D, HSC001)
was supplemented when the inoculation volume reached
100 ml in order to prevent clump formation. Sphere
morphology was observed by microscopy. Cell counting
and viability test were carried out every time after a
subculturing.

Characterization of hESCs in 3D

The diameters of the hESC spheres were measured and
analyzed using photographs, which were taken by
microscopy and processed with Image] software. Cells
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were counted with Countess and viability was examined
by trypan blue staining. The fold increase in cell number
was calculated using cell numbers on DO and D5 or D6,
according to the duration of the intervals. After hESCs
stably proliferated in 3D systems for more than 10 pas-
sages, karyotype analysis and G-binding were conducted
at the Chinese Academy of Medical Science & Peking
Union Medical College.

For pluripotency detection, hESC spheres were immu-
nostaining, flow cytometry analysis, and qRT-PCR. For
immunostaining, hESC spheres were fixed with 4% par-
aformaldehyde, rinsed in PBS, sequentially dehydrated
with 10%, 20%, and 30% sucrose, and embedded in opti-
mum cutting temperature compound for frozen section-
ing, and then samples were sectioned in 15-pm-thick
slices. Slices were permeabilized by 1% Triton-X100,
blocked with 2% BSA, and stained with primary anti-
bodies as follows: goat anti-OCT3/4 (Santa Cruz Bio-
technology, k0615) and mouse anti-NANOG (Santa Cruz
Biotechnology, k2811). The samples were incubated with
secondary antibodies followed by nuclear staining. Signals
were detected and photographed through fluorescence
microscopy.

For flow cytometry analysis, spheres were digested with
Accutase for 3 min, dissociated into single cells by pipette,
and then underwent fixation, permeation, and blocking as
described in immunostaining. For indirect labeling, sam-
ples were stained with diluted primary antibody solution,
followed by secondary antibody incubation. Data were
collected on the flow cytometry and analyzed using
Flow]o software. For direct labeling, samples were stained
with direct-label antibodies, and then analyzed.

For marker gene expression analysis, total RNA was
extracted using RNAprep pure Micro Kit (TIANGEN,
DP420). cDNA was then synthesized using the extracted
RNA and Prime Script'™ RT reagent kit. Quantitative
real-time PCR (qRT-PCR) was performed as previously
described. The details of the primers for hRESCs were listed
as follows: OCT4-s: GAGGAGTCCCAGGACATCA
AAG, OCT4-a: CAGATGGTCGTTTGGCTGAATA,
SOX2-s: ATGGCGAGCGGGGTTGG, SOX2-a: TCTG
CGAGCTGGTCATGGAGTT. P53-a: CAGCACATGAC
GGAGGTTGT, P53-s: TCATCCAAATACTCCACAC
GC, MYC-a: GGCTCCTGGCAAAAGGTCA, MYC-s:
CTGCGTAGTTGTGCTGATGT, GAPDH-s: AGGCAT
CCTCACCCTGAAGTA, GAPDH-a: CACACGCAGCT
CATTGTAGA.

Teratoma formation

For teratoma formation, D-5 hESC spheres were dis-
sociated into single cells as described in sphere culture of
hESCs, concentrated in PBS at a density of 5 x 10 cells/
ml. In total, 1.0 x 10° cells were injected into each testis of
6-week-old CB17 SCID male mice under a sterile stereo
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microscope. Teratomas were isolated after 2 months of
slice section and HE staining as described previously**.

Generation and characterization of MSCs from 2D- and 3D-
hESCs

Both 2D-hESC colonies and 3D-hESC spheres were
digested into single cells and seeded in ultra-low attach-
ment dish (Corning, 3471) for EB formation, respectively.
hESC-EBs were cultured in EB medium (77% KODMEM
+20% KOSR + 1% NEAA + 0.1% [B-mercaptoethanol +
1% glutamax + 1% penicillin/streptomycin) for 4 days and
then passaged on vitronectin. hMSC differentiation
medium (82% KODMEM + 15% FBS 4+ 1% NEAA + 0.1%
[B-mercaptoethanol + 1% glutamax + 1% penicillin/strep-
tomycin + 10 ng/ml  bFGF +5ng/ml  TGFb)*®  was
employed and the medium was changed every other day.
Pre-hESC-MSCs could be observed from D12 to D15, and
hESC-MSCs harvested after separation and
expansion.

For flow cytometry analysis, hESC-MSCs were digested
with Tryple (Gibco, A1285901) for 3 min, and then
underwent fixation, permeation, and blocking as descri-
bed before. For direct labeling, MSCs were stained with
FITC anti-CD44 (BD, 555478), PE anti-CD29 (Biolegend,
303004), PE anti-CD105 (Biolegend, 323206), PE anti-
CD34 (BD, 555822), FITC anti-CD19 (BD, 555412), FITC
anti-CD45 (eBioscience, 11-9459-42), and analyzed using
Flow]Jo software.

For adipogenic, osteogenic, and chondrogenic differ-
entiation, hESC-MSCs were digested by Tryple, resus-
pended by fresh MSC culture medium (MesenCult™
MSC Basal Medium + MesenCult™ MSC Stimulatory
Supplement, STEMCELL Technologies), and seeded
into four-well plates. MSC culture medium was then
replaced by Human Mesenchymal Stem Cell Functional
Identification Kit (R&D, SC006, prepared as instruction
manual told). For adipogenic differentiation, fat vesicles
could be observed 1-3 weeks later. For osteogenic dif-
ferentiation, calcium deposition could be observed
3 weeks later. Immunofluorescence staining was per-
formed as previously described. Samples were subse-
quently incubated with primary antibodies against FABP
(Pierce, PA5-30591, 1:200), osteocalcin (Pierce, PA5-
11849, 1:200), and aggrecan (Pierce, MA3-16888, 1:200)
at 4°C overnight, and then incubated with secondary
antibodies.

were

Statistical analysis

Statistical analyses were performed in IBM SPSS Sta-
tistics 22. All results were expressed as the mean + SD.
The unpaired two-tailed Student’s ¢-test was used to
compare the mean values of measurements. Differences
were considered significant for p < 0.05.
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