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Diverse functions of cytochrome c in cell death and disease
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The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death.
Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution
can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the
mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis,
regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into
the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent
apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of
drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome
assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes,
highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of
cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c
(e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and
nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest
advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein.
These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a
wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
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FACTS

● Cytochrome c acts beyond its traditional role in electron
carrier in the electron transport chain and caspase-dependent
apoptosis, engaging in chromatin remodeling, pyroptosis and
the persister phenotype.

● Post-translational modifications, including phosphorylation, acet-
ylation, and nitration, intricately modulate its functions in electron
transport, redox regulation, cell death pathways, and cell survival.

● The translocation of cytochrome c to different cellular compart-
ments, such as the cytosol, nucleus, and extracellular space,
underscores its multifaceted role in cell death, cellular signaling,
and immune responses.

OPEN QUESTIONS

● What are the precise molecular mechanisms through which
cytochrome c interacts with other proteins in both apoptotic
and non-apoptotic pathways to determine cell fate decisions?

● How does the structure of cytochrome c contribute to its
multifaceted roles in cellular biology across both physiological
and pathological processes?

● How do specific post-translational modifications of cyto-
chrome c regulate its diverse function under both physiolo-
gical conditions and in response to certain pathological
contexts?

● What are the current and emerging techniques for detecting
cytochrome c, and how can these approaches contribute to
understanding and addressing various diseases?

● Could targeting the activity of cytochrome c offer therapeutic
approaches for mitigating dysregulated cell death pathways in
diseases such as neurodegenerative disorders, cardiovascular
diseases, and cancer?

INTRODUCTION
Cytochromes were first described as respiratory pigments by
Charles A. MacMunn in 1884 [1]. In the 1920s, David Keilin named
these heme proteins “cytochromes” or “cellular pigments” [2].
Cytochromes are categorized into four major groups based on
heme type and binding patterns: cytochrome a, cytochrome b
group, cytochrome c group, and cytochrome d group [3].
Additionally, there are other types of cytochrome proteins such
as cytochrome P450 and cytochrome f, each playing unique roles
primarily in electron transport and metabolic reactions.
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Cytochrome c belongs to the cytochrome c group and possesses a
unique heme c moiety that forms covalent bonds with cysteine
residues of the protein scaffold [4]. The CYCS gene encodes its
somatic form, essential for cellular respiration and cell death in
most cells. The testis-specific variant, encoded by the CYCT gene,
plays a unique role in spermatogenesis, adapting to the specific
metabolic needs of sperm cells [5, 6]. Cytochrome c protein
typically refers to the somatic form of the protein. However,
humans only have a single ubiquitously expressed cytochrome c
gene [7]. It is a highly conserved globular protein found in various
organisms, including bacteria, plants, and animals, including
humans. It is composed of 94–114 amino acids. In humans,
cytochrome c is a single-chain protein consisting of 104 amino
acid residues [8].
Under physiological conditions, cytochrome c primarily resides

within the mitochondria, acting as an electron carrier in the
electron transport chain. It facilitates electron transfer from
coenzyme Q-cytochrome c reductase (complex III) to cytochrome
c oxidase (complex IV), aiding in generating a proton gradient
across the inner mitochondrial membrane, which is utilized for
adenosine triphosphate (ATP) synthesis [9]. The indispensability of
cytochrome c is underscored in cytochrome c-knockout mice
studies, where global knockout leads to embryonic lethality
during mid-gestation as the fetus transitions from glycolysis to
aerobic energy production [10]. Additionally, selective cytochrome
c elimination in adult forebrain neurons triggers severe behavioral
abnormalities and premature death [11], highlighting its vital role
in maintaining tissue homeostasis.
In response to numerous apoptotic stimuli, cytochrome c

translocates from mitochondria to the cytosol primarily through
mitochondrial outer membrane permeabilization (MOMP), a
process largely controlled by the BCL2 family of proteins
[12, 13]. Once in the cytosol, cytochrome c binds to apoptotic
peptidase activator 1 [14] (APAF1; initially named apoptotic
protease activator 1) and triggers the formation of an apopto-
some, a multimeric protein complex composed of cytochrome c
and APAF1, which mediates the activation of the initiator caspase,
caspase 9 (CASP9), leading to activation of the effector CASP3/7
and ultimately apoptosis [15–18]. The CYCS K72A mutant, while
retaining normal electron transfer function, fails to activate APAF1
[19, 20]. This mutant in knock-in mice exhibits embryonic or
perinatal lethality due to central nervous system defects and
disrupted lymphocyte homeostasis [21].
Upon stimuli that induce mitochondrial permeability transition

(MPT), cytochrome c is released into the cytosol along with ATP,
facilitating the assembly of pyroptosomes, comprising APAF1 and
CASP4/11, and CASP4 activated in the APAF1 pyroptosome
proceeds to cleave CASP3 and thereby GSDME to induce pyroptosis
[22]. MPT refers to the abrupt loss of integrity of the inner
mitochondrial membrane, which allows the free permeability of
small molecules, leading to a loss of osmotic balance [23]. This
process is mediated by the formation of the mitochondrial
permeability transition pore (MPTP), a multiprotein complex pore
whose composition, although still a matter of debate, includes
adenine nucleotide translocator (ANT), cyclophilin D (CYPD), the
voltage-dependent anion channel (VDAC), the mitochondrial
phosphate carrier, and ATP synthase [24–29]. Mitochondrial F1FO
(F)-ATP synthase dimers, monomers, or the c-subunit ring alone
have also been implicated in MPTP formation, adding complexity to
our understanding of MPTP’s structure and function [30].
Cytochrome c, when translocated from the mitochondria to the

cytosol in the context of sublethal MOMP induction, can enhance
the survival of drug-resistant cells upon exposure to pro-apoptotic
compounds known as BH3 mimetics [31]. Upon its translocation to
the nucleus, cytochrome c contributes to chromatin assembly and
remodeling, and it plays a role in regulating the accessibility of
nucleolar proteins through liquid-liquid phase separation pro-
cesses [32, 33]. In addition, upon release into the extracellular

space, cytochrome c regulates immune responses [34, 35]. These
findings underscore the central role of cytochrome c in maintain-
ing homeostasis, governing cell death and survival pathways, and
participating in immune responses (Fig. 1).
In this review, we provide an overview of the structure and

function of mammalian cytochrome c, with an emphasis on
human cytochrome c, and discuss its role in determining cell fate
through posttranslational modifications, cellular localization, and
interactions with multiple binding proteins. Moreover, we outline
techniques for detecting cytochrome c and its aberrant alterations,
highlighting its potential as a biomarker, along with methodolo-
gies for cytochrome c-targeted therapy. These strategies hold
promise for personalized medicine in the realms of neurodegen-
erative disorders, cardiovascular diseases, and cancer.

STRUCTURES AND FUNCTIONS OF CYTOCHROME C
The structural characteristics of cytochrome c have been
elucidated since the 1960s [8, 36, 37]. Cytochrome c consists of
five α-helices interconnected by extended omega (Ω) loops and a
two-strand β-sheet structure [38, 39]. Fifteen amino acid residues
of human cytochrome c (Fig. 2), have been conserved throughout
evolution to support important functional roles [40]. Four highly
conserved residues (Cys14, Cys17, His18 [constitutes a conserved
cysteine-any-any-cysteine-histidine (CXXCH) motif], and Met80)
are responsible for the tight binding of the heme molecule
through covalent thioether linkages [41, 42]. His18 and Met80 act
as a ligand to the heme iron and coordinate the heme axially,
enabling redox potential and electron transfer to cytochrome c
oxidase in the respiratory chain.
A docking simulation of the cytochrome c-ATP complex

demonstrated that the amine group and the phosphate groups
of ATP bind with Glu62, Lys88, and Arg91 of cytochrome c through
electrostatic interactions [43] (Fig. 2). Additionally, interactions
between APAF1 and cytochrome c involve several residues of
cytochrome c, including 7, 25, 39, 62–65, and 72 [19], further
elucidating its apoptotic function. High-resolution X-ray crystal
structures of human cytochrome c have been unveiled, providing
detailed insights into its molecular architecture [44, 45]. Further-
more, the atomic structure of a complete mammalian apopto-
some, resolved at a resolution of 3.8 Å through single-particle
cryo-electron microscopy, revealed the mechanism by which
cytochrome c facilitates the release of APAF1’s autoinhibition,
primarily via interactions between specific amino acids (56, 72, 76,
and 81) of cytochrome c and APAF1 [46] (Fig. 2). The key residues
of cytochrome c important for binding to the respiratory
complexes include lysines 8, 13, 27, 72, 86, and 87, which engage
in electrostatic interactions to facilitate the formation of com-
plexes with cytochrome c1 [47]. In the interaction with cytochrome
c oxidase, Lys8, Gln12, Lys13, and Lys87 form critical hydrogen
bonds and salt bridges near the exposed heme edge, facilitating
electron transfer in the mitochondrial electron transport chain [48]
(Fig. 2). In 2017, advancements in cryo-electron microscopy
studies further expanded our understanding of cytochrome c’s
role in cellular respiration. One study demonstrated the precise
positioning of two cytochrome c molecules on the surface of the
cytochrome c1 subunits of the complex III dimer in the human
respiratory chain megacomplex [49]. It highlighted a difference in
cytochrome c binding sites between reduced and oxidized states,
with a structural shift bringing cytochrome c closer to the heme c1
in human complex III. The study challenges previous assumptions
by demonstrating that both electron transfer pathways in the
complex III homodimer are active, allowing simultaneous electron
transfer from ubiquinol to two cytochrome c molecules. This
underscores a complex interplay within the respiratory chain for
efficient electron transport. All these structural studies highlight
cytochrome c’s multifunctionality in both apoptosis and cellular
respiration.
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At physiological pH, cytochrome c carries a total charge of +8
(isoelectric point around 10) [50, 51], facilitating its interaction
with negatively charged molecules such as cardiolipin at specific
sequence positions, namely 72, 73, 86, and 87 [52]. Oxidized
cardiolipin has a reduced affinity for cytochrome c, leading to an
increase of free cytochrome c in the intermembrane space. This
accumulation facilitates cytochrome c release into the cytoplasm
upon MOMP [51].
The alkaline transition phenomenon refers to pH-dependent

ligand exchange, involving the deprotonation of alternative ligands
and the breaking of the iron-methionine ligation bond [53]. This
transition is influenced by the flexibility of the Ω loops (70–85 and
40–57, with a particular emphasis on the epsilon-amino groups of
Lys79 and Lys73) and the axial ligands (Met80 and Tyr67), which
impact electron transfer and conformational changes in cyto-
chrome c, thereby regulating its functions [54, 55]. These alterations
can lead to the disruption of the iron-Met80 bond and increased
accessibility of H2O2 to the heme center, thereby enhancing
cytochrome c’s peroxidase activity. This increased peroxidase

activity is indicative of cytochrome c’s altered state [51], and once
MOMP occurs, triggered by various pro-apoptotic signals and
events, it allows the nonmembrane-associated cytochrome c to be
released into the cytosol. In the cytosol, cytochrome c can then
participate in apoptosome formation and the activation of down-
stream caspases, leading to apoptosis.
In addition, the functional diversity of cytochrome c is

influenced by various posttranslational modifications, which will
be further discussed below.

POSTTRANSLATIONAL MODIFICATIONS OF CYTOCHROME C
Posttranslational modifications of cytochrome c, such as phos-
phorylation, acetylation, glycosylation, glycation, deamidation,
homocysteinylation, carbonylation, nitration, and sulfoxidation of
specific amino acids, have been identified in various species and
reviewed elsewhere [56–58]. In this section, we will primarily focus
on discussing the posttranslational modifications observed in
mammalian cytochrome c (Table 1 and Table 2).

1880

1900

1980
1990

2000

2010

2020

1884
MacMunn describes “respiratory pigments” (cytochromes). 

1925
Keilin gives cytochromes their modern name.
  
1989
Nomenclature is created for electron transfer proteins.
1996
Cytochrome c is found to induce apoptosis in cell-free extract.

2000
CYCS global knockout mice are developed.

2003
Cytochrome c is found to bind with ITPR1.
2004
Discovery of cytochrome c nuclear translocation.

2005

2008
CYCS G41S-mutant is found to be associated with thrombocytopenia.

2022
Sublethal cytochrome c is found to generate drug-tolerant persister cells. 

2017
Architecture of human mitochondrial respiratory megacomplex is defined through cryo-electron microscopy.

2020
Pyroptosomes consisting of APAF1/cytochrome c/CASP4/11 are discovered.

Its essential roles in development and tissue homeostasis are revealed. 

Its new role in pyroptosis is revealed.

Its new role in drug resistance is revealed.

1999
Antioxidant functions of cytochrome c are discovered.

Its role in apoptosis is revealed.  

2006
First discovery and characterization of mammalian cytochrome c phosphorylation site.

Translocation of cytochrome c to the nucleus regulates nucleolar liquid-liquid phase separation and the 
accessibility of nucleolar proteins.

Apoptotic functions of cytochrome c are ablated in neurons.
Electron transfer from cytochrome c to p66Shc triggering mitochondrial apoptosis via reactive oxygen species.

2023
Lysine 39 acetylation of cytochrome c enhances porcine skeletal muscle's cellular respiration and resilience 
to ischemia-reperfusion injury.

Fig. 1 Timeline in cytochrome c research. The timeline of cytochrome c research highlights significant milestones that have contributed to
our current understanding of its function and biology. Many discoveries couldn’t be included here due to space limitations. These milestones,
among others, have paved the way for further investigations. 1884 MacMunn describes “respiratory pigments” (cytochromes) [1]. 1925 Keilin
gives cytochromes their modern name [2]. 1989 Nomenclature is created for electron transfer proteins [3]. 1996 Cytochrome c is found to
induce apoptosis in cell-free extract [212]. 1999 Antioxidant functions of cytochrome c are discovered [95]. 2000 CYCS global knockout mice
are developed [10]. 2003 Cytochrome c is found to bind with ITPR1 (inositol 1,4,5-trisphosphate receptor type) [133]. 2004 Discovery of
cytochrome c nuclear translocation [142]. 2005 Electron transfer from cytochrome c to p66Shc triggering mitochondrial apoptosis via reactive
oxygen species [98]. 2005 Apoptotic functions of cytochrome c are ablated in neurons [21]. 2006 First discovery and characterization of
mammalian cytochrome c phosphorylation site [63]. 2008 CYCS G41S-mutant is found to be associated with thrombocytopenia [150]. 2017
Architectures of human mitochondria respiratory megacomplex is defined through cryo-electron microscopy [49]. 2020 Pyroptosomes
consisting of APAF1/cytochrome c/CASP4/11 are discovered [22]. 2022 Sublethal cytochrome c is found to generate drug-tolerant persister
cells [31]. 2022 Translocation of cytochrome c to the nucleus can regulate the liquid-liquid phase separation within the nucleolus, resulting in
the release of proteins sequestered by nucleophosmin [32]. 2023 Lysine 39 acetylation of cytochrome c enhances porcine skeletal muscle’s
cellular respiration and resilience to ischemia-reperfusion injury [78].
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Fig. 2 The structure of human cytochrome c. The structure of human cytochrome c exhibits conserved amino acid sites across various
species. It is a heme protein that undergoes alkaline transition and has specific binding sites for ATP, APAF1, cytochrome c1, cytochrome c
oxidase, and cardiolipin. In addition, cytochrome c can undergo modifications such as phosphorylation, acetylation, nitration, oxidation, and
mutations associated with thrombocytopenia, including the variants G41S (PDB entry 3NWV), Y48H (PDB entry 5EXQ), and A51V (PDB entry
6DUJ). The 3D structure of cytochrome c, with highlighted residues, is displayed at the top (PDB entry 3ZCF).
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Nitration
Nitration impacts cytochrome c’s five tyrosine residues (Tyr46,
Tyr48, Tyr67, Tyr74, Tyr97). Cytochrome c can act as a catalyst and
a target for nitrite-hydrogen peroxide–dependent protein nitra-
tion [59]. In general, in vitro nitration lowers cytochrome c’s
midpoint redox potential and hinders caspase activation. While
nitration of Tyr46 and Tyr48 does not affect electron transfer, it
obstructs apoptosome formation [60]. Nitration of Tyr46 and Tyr48
might trigger cytochrome c degradation when heme iron state
shifts to a high spin state [61]. Nitration of Tyr74 boosts peroxidase
activity and inhibits apoptosis [62]. Notably, in vivo, only nitration
of Tyr67, Tyr74, and Tyr97 has been observed, hinting at potential
discrepancies in cytochrome c nitration effects between in vivo
and in vitro conditions [57]. Although nitration sites can be
mapped via sensitive methods such as mass spectrometry, no
study has yet quantitatively shown any significant in vivo nitration

of cytochrome c affecting a significant part of the cytochrome c
pool to elicit biological effects.

Phosphorylation
Mass spectrometry identified five phosphorylation sites in
mammalian cytochrome c. Tyr97, first found in bovine heart [63]
and inducible by insulin treatment in the brain [64], was the initial
site recognized and functionally analyzed. Its phosphomimetic
mutant Y97-pCMF (p-carboxy-methyl-l-phenylalanine) impairs
mitochondrial ROS production and reduces CASP3 activation
activity without altering cytochrome c’s overall structure [65]. The
second site, Tyr48 from bovine liver [66], inhibits mitochondria
respiration and CASP3 activity [67], disrupts electron transfer, and
alters electron transport chain flux [68], switching cytochrome c’s
function from apoptotic to anti-apoptotic [67, 69]. The phospho-
mimetic mutants Y48E or Y48pCMF lower alkaline transition and

Table 1. The functions of posttranslational modifications of cytochrome c.

Site Modification Species Primary functional effect

Tyr67 Nitration Human Increased cardiolipin peroxidase activity and suppressed CASP9 activity [199].

Tyr74 Nitration Human Increased cardiolipin peroxidase activity and suppressed CASP9 activity [199].

Tyr46 Nitration Human This site has a negligible effect on the rate of electron transfer but impairs the ability of the
heme protein to activate CASP9 by assembling a nonfunctional apoptosome [60].

Tyr48 Nitration Human This site impairs the ability of the heme protein to activate apoptosis [60].

Tyr97 Phosphorylation Human/cow A phosphomimetic cytochrome c mutant of this site shifts the kinetics in the reaction with
cytochrome c oxidase from hyperbolic to sigmoidal [63] but does not alter the overall folding
and heme environment of cytochrome c [65].

Tyr48 Phosphorylation Human/cow Cytochrome c phosphorylation at position Y48 inhibits respiration and acts as an anti-apoptotic
switch [66, 67].

Thr28 Phosphorylation Human/cow/rat Lower respiration, membrane potential, and ROS [71].

Ser47 Phosphorylation Human/pig/rat It was first identified in phosphoproteomic studies of human skeletal muscle biopsies [71].
Phosphorylated cytochrome c at Ser47 shows a lower oxygen consumption rate and lower
CASP3 activity [73].

Thr58 Phosphorylation Rat Thr58 phosphorylation controls mitochondrial respiration and apoptosis [75].

Lys8 Acetylation Human Lys8 acetylation leads to a reduction in cytochrome c oxidase activity [80].

Lys53 Acetylation Human Lys53 acetylation inhibit cytochrome c oxidase activity and apoptosis [81].

Lys39 Acetylation Pig Acetylation of lysine 39 increase cytochrome c oxidase activity while inhibiting apoptosis [78].

Table 2. A list of functional effects of cytochrome c mutations.

Mutation Species Type Primary functional effect

G41S Human Naturally occurred The G41S mutant increases apoptotic activity, enhancing the peroxidase activity in
thrombocytopenia [150, 157].
Backbone amide chemical shift differences in the ferric state reveals significant changes
around the mutation site [200].

Y48H Human Naturally occurring Y48H exhibits a reduction in oxygen consumption of 30%-40%, and an increase in apoptotic
activity [151].

A51V Human Naturally occurring The A51V variant has greater accessibility of non-native conformers with increased peroxidase
activity [153].

M80A Human Laboratory construct M80A-cytochrome c has increased peroxidase activity and is spontaneously released from
mitochondria, translocating to the cytoplasm and nucleus in the absence of apoptosis [201].
M80A exhibits similar changes upon dimerization, indicating that Met80 does not affect the
oligomerization process significantly [202].

K72A Human Laboratory construct cytochrome c K72 is critical in interacting with APAF1 [203, 204].
K72A increases peroxidase activity [205].

Y97-pCMF Human Laboratory construct This mutant impairs mitochondrial supercomplex-mediated ROS production and exhibits
lower CASP3 activation activity than the wild-type cytochrome c [65].

S47E Rat Laboratory construct This mutant decreases cardiolipin peroxidase activity and promotes cell survival in the rat
brain [73].

V83G Human Laboratory construct V83G has similar peroxidase activity to wild-type cytochrome c [206].

I81 A Human Laboratory construct I81A substitution influences the thermodynamics and kinetics of access to alternate
conformers of human cytochrome c and has increased peroxidase activity [206].
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midpoint redox potential while compromising caspase activation
[69, 70].
Later, cytochrome c Thr28 and Ser47 phosphorylations were

found in human skeletal muscle and brain tissue respectively but
weren’t functionally characterized [71]. Phosphorylation of Ser47,
identified in the brain, was then shown to be mediated by Akt,
downregulating respiration and inhibiting apoptosis [72]. This
phosphorylation is lost during ischemia and its loss was proposed
to drive cell death during reperfusion [73]. Thr28 phosphorylation
was identified in the kidney, mediated by AMPK, partially inhibits
cytochrome c oxidase reaction without affecting CASP3 activity
[74]. Thr58 was reported in rat kidney [75].
These modifications regulate cytochrome c functions across

different tissues and reflect each tissue’s unique metabolic
demands and regulatory needs. All identified phosphorylations
inhibit respiration, with some also interfering with apoptosome
formation and caspase activation. Under physiological conditions,
cytochrome c phosphorylations modulate electron transport chain
flux, preventing excessive mitochondrial membrane potentials
and ROS generation [76]. During stress conditions like ischemic
stroke, loss of cytochrome c phosphorylations triggers ROS burst
during reperfusion, leading to cell death [77].
As discussed above, in most publications, quantitation of a

given cytochrome c posttranslational modification is not provided,
and the modifications may often occur at very low levels, such as
in the case of nitration, questioning their biological importance.
Future work should take this point into consideration because one
can argue that a significant fraction of a protein must be modified
to have a functional effect. Notably, for some cytochrome c
phosphorylation, quantitative information is available and indi-
cates that a significant cytochrome c fraction carries the
modification. Reported numbers range from 35% for S47
phosphorylation in the brain [72] to 83% for T28 phosphorylation
in kidney [74], or the number was indirectly inferred based on
functional studies, indicating that cytochrome c from liver to be at
least 50% phosphorylated on Y48 [66]. It should also be noted that
depending on the method used, contrasting results can be
obtained, as was the case for K39 acetylation discussed below,
where mass spectrometry suggested low occupancy while X-ray
crystallography and functional experiments suggested that the
major fraction of the protein carried the modification [78].
Tissue-specific cytochrome c phosphorylation seems highly

complex but may be interpreted in light of the energy demand
and susceptibility to apoptosis of a tissue or organ. For example,
we propose that Tyr 48 phosphorylation maintains an optimal
intermediate mitochondrial membrane potential by partially
inhibiting electron transport chain flux. In addition, this modifica-
tion blocks apoptosis, protecting an organ that is tasked with the
function to detoxify compounds an organism takes up as food or
inhales through the lung. In contrast, Tyr97 phosphorylation in the
heart only shows small kinetic differences in the reaction with
cytochrome c oxidase compared to the unphosphorylated protein,
likely because the heart is constantly working and fully dependent
on aerobic energy production. Similar consideration may apply to
other posttranslational modifications, including acetylation.

ACETYLATION
Recent studies have explored cytochrome c acetylation. Initially, a
proteomics study reported Lys8 acetylation [79], which, although
not functionally characterized, was later found to reduce
cytochrome c oxidase activity [80] similar to phosphorylation,
when studied using lysine to acetylmimetic glutamine replace-
ment. Lys53 acetylation, discovered in human prostate cancer
specimens, also inhibits cytochrome c oxidase activity and
apoptosis, providing a potential mechanism that drives Warburg
metabolism and apoptosis evasion in cancer [81]. In contrast to
cytochrome c phosphorylation, which is lost during ischemia,

lysine 39 acetylation is the first example of a posttranslational
modification that is gained during ischemia. It was identified in
ischemic porcine tibialis anterior skeletal muscle, enhanced
cytochrome c oxidase activity and inhibited apoptosis [78]. It
was then proposed that the gain of this posttranslational
modification allows skeletal muscle to meet increased energy
demand while at the same time providing the tissue with effective
resilience to ischemia-reperfusion injury. Additionally, acetylations
on lysines 27, 79, and 86 were found in both control and ischemic
samples [78].

Oxidation
Cytochrome c can undergo autooxidation at the Met80 residue
through the formation of oxygen groups leading to the cleavage
of the Met80-heme iron bond. A human cytochrome c mutant
(Delta83/84 cytochrome c) was created by removing two amino
acids (Val83 and Gly84) from the loop, and it was observed that
Met80 of Delta83/84 cytochrome c was site-specifically modified
to methionine sulfoxide. This modification may impact the
peroxidase activity of cytochrome c, highlighting a feedback
mechanism between cytochrome c peroxidase activity and
oxidative stress during cell death [82].

SUBCELLULAR COMPARTMENT-DEPENDENT FUNCTIONS OF
CYTOCHROME C
Cytochrome c exhibits a diverse range of functions depending on
its cellular localization and interaction partners (Table 3). Con-
sidering its electrostatic properties, caution is needed when
interpreting cytochrome c interactions in experimental buffers
with varying ionic strength, as inadequate low ionic strength may
promote nonspecific binding [83]. To prevent this, it is beneficial
to use physiological ionic strength in buffers and validate
observed interactions for their physiological relevance. In the
subsequent sections (Fig. 3), we summarize and discuss how the
localization of cytochrome c determines its function and the
associated regulatory mechanisms.

Mitochondrial cytochrome c
Mitochondrial cytochrome c interacts with multiple proteins,
thereby playing an important role in determining its function
within the mitochondria (Table 3). Mitochondrial cytochrome c
generally performs four major functions.
1) Electron transport. Cytochrome c is a peripheral membrane

protein located between the inner and outer mitochondrial
membranes. It undergoes oxidation and reduction as its iron
atom transitions between the ferrous and ferric forms and forms
complexes with several redox partner proteins, including cyto-
chrome bc1, cytochrome c oxidase. Cytochrome bc1, also called
complex III, is a multi-subunit complex involved in mitochondrial
electron transport, while cytochrome c1 is a specific subunit within
this complex that transfers electrons to cytochrome c. Electron
transfer from cytochrome c1 to cytochrome c is energetically
favored within the immobilized cytochrome c1-cytochrome c
complex [84].The function of cytochrome c oxidase can be
regulated by a respiratory supercomplex factor hypoxia-
inducible domain family member 1A (HIGD1A). The interaction
between cytochrome c and HIGD1A regulates mitochondrial
oxidative phosphorylation and response to cellular stress [65]
(Fig. 3). High-resolution structural models of yeast respiratory
supercomplexes have revealed that the diffusion of cytochrome c
enhances electron transport [85]. The axial bond formed by Met80
with heme-iron in cytochrome c contributes to its high redox
potential, enabling its functional role in the respiratory chain [86].
2) Peroxidase activity. Cardiolipin is an anionic phospholipid

that constitutes about 20% of the inner mitochondrial membrane,
and can move from the inner to the outer leaflet of the inner
mitochondrial membrane, a process facilitating cardiolipin
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remodeling [87]. Cytochrome c engages with cardiolipin, exhibit-
ing peroxidase activity that aids in the initiation of apoptosis. [88]
(Fig. 3). Membrane curvature affects peripheral cytochrome
c-cardiolipin interactions, leads to the conformational change of
cytochrome c that switches on its peroxidase activity [89]. In
addition, a decrease in pH at the inner mitochondrial membrane
interface enhances cytochrome c’s peroxidase activity [90]. The
binding of the ferrous state of cytochrome c and cardiolipin
induces higher peroxidase activity of cytochrome c and higher
permeability of the cardiolipin membrane [91], which may play a
pivotal role in apoptosis initiation. The mitochondria-targeted
antioxidant SkQ1 (plastoquinonyl-decyl-triphenylphosphonium,
also known as visomitin), has been shown to inhibit the
peroxidase activity of the cytochrome c-cardiolipin complex [92].
SkQ1 has also been reported to reduce inflammation following
hemorrhagic shock by protecting myocardial mitochondria [93].
3) Dual role of cytochrome c in redox regulation. The redox

states of cytochrome c are involved in the detoxification of
hydrogen peroxide (H2O2) [94, 95]. Particularly, the ferric state of
cytochrome c is instrumental in safeguarding mitochondrial
cytochrome c oxidase from oxidative damage [96]. In addition,
cytochrome c effectively processes free fatty acid hydroperoxides
(FFA-OOH) in mitochondria, mitigating toxicity and regulating
mitochondrial functions [97]. It should be noted that cytochrome c
can also amplify ROS generation and trigger apoptosis through
interaction with p66Shc [98] (Fig. 3).
4) Regulation of mitochondrial physiological functions.

Cytochrome c regulates several mitochondrial physiological
functions via protein interactions. It is associated with coiled-
coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), impor-
tant for mitochondrial cristae structure and oxygen consumption.
Mutations in CHCHD2 have been identified in patients with
Parkinson’s disease (PD). Introduction of CHCHD2 has been shown
to alleviate PD-associated pathological phenotypes [99] (Fig. 3).

Cytochrome c also interacts with other proteins like growth
hormone-inducible transmembrane protein (GHITM, also known
as MICS1) [100] (Fig. 3), transient receptor potential cation channel
subfamily V member 4 (TRPV4) [101], affecting mitochondrial
morphology, or cytochrome c release, and caspase activation. The
BCL2 family, such as BCL2 and BCL2L1 [102], can inhibit the
release of cytochrome c (Fig. 3). BCL2L1 has been shown to
interact directly with cytochrome c in response to ionizing
radiation and genotoxic stress [103]. However, there is debate
over whether this interaction is direct [104]. BCL2 does not appear
to have the same activity [104]. Direct binding between BCL2L1
and cytochrome c was observed by co-immunoprecipitation, size-
exclusion chromatography [105], and mass spectrometry [106].
Nevertheless, these studies lacked a mutational analysis using an
inactive BCL2L1 mutant in the cellular context, which is necessary
for determining the functional significance of this interaction.
Moreover, it remains unclear whether the BCL2L1-cytochrome c
interaction is relevant for the regulation of apoptosis in vivo.
Cytochrome c is also vital for redox-coupled protein import to the
mitochondrial intermembrane space via the Mia40/Erv1 electron
relay pathway in yeast [107]. In human cells, augmenter of liver
regeneration (ALR) is notably more effective in transferring
electrons to cytochrome c than to oxygen [108]. These findings
demonstrate the involvement of cytochrome c in the regulation of
multiple mitochondrial physiological functions.

Cytochrome c translocation to the cytoplasm
Proteomic analysis of human cancer cells suggests the interactions
between cytochrome c and several pro-survival and apoptotic
proteins in the cytoplasm [109]. Four major functions have been
demonstrated following the release of cytochrome c into the
cytosol.
1) Pro-apoptosis function. The translocation of cytochrome c

into the cytosol following MOMP is essential for caspase-dependent

Table 3. The localizations and functions of human cytochrome c interaction partners.

Location Interaction Function

Cytoplasm APAF1 [207] cytochrome c forms with the APAF1/CASP9 complex and initiates an apoptotic protease cascade [207].

Cytoplasm ITPR1 [208] The interaction of cytochrome c and ITPR1 blocks the calcium-dependent inhibition of ITPR1 function,
resulting in increased calcium release, cytochrome c release, and caspase activation [208].

Cytoplasm EIF2S1 [109] EIF2S1 inhibits translation during apoptosis and is critical for autophagy initiation [209].

Cytoplasm 14-3-3 epsilon [210] Cytochrome c/14-3-3epsilon interaction blocks 14-3-3epsilon mediated APAF1 inhibition [210].

Mitochondria P66shc [98] Electron transfer from cytochrome c to p66Shc triggering mitochondrial apoptosis via reactive oxygen
species [98].

Mitochondria Erv1 The interaction of cytochrome c and Erv1 increases the efficient oxidation of the relay system in
mitochondria and prevents the formation of toxic hydrogen peroxide in yeast [107].

Mitochondria GHITM [100] GHITM is involved in mitochondrial morphology in specific cristae structures and the apoptotic release
of cytochrome c from mitochondria [100].

Mitochondria CHCHD2 [99] CHCHD2 binds to cytochrome c and regulates the functions of cytochrome c in both oxidative
phosphorylation and cell death in response to mitochondrial stress [99].

Mitochondria HIGD1A [65] HIGD1A acts as a positive modulator of cytochrome c oxidase [65].

Mitochondria Cytochrome c1 [211] Electron transfer from cytochrome c1 to cytochrome c is thermodynamically favored in the immobilized
cytochrome c1 /cytochrome c complex [84].

Mitochondria TRPV4 [101] The TRPV4-cytochrome c complex may be critical in TRPV4-induced channelopathy and/or mitopathy at
molecular and cellular levels; the complex may be relevant for apoptosis, cell signaling, and different
TRPV4-mediated channelopathies.

Nucleus SET/TAF-Iβ [109] Histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage [143].

Nucleus NPM [32] Cytochrome c binds to NPM by triggering a conformational change, driving ARF release in response to
DNA damage [32].

ANP32B acidic nuclear phosphoprotein 32 family member B, ARF alternative reading frame, SET/TAF-Iβ SET/template-activating factor-Iβ, HNRNPC
heterogeneous nuclear ribonucleoprotein C, ITPR1 inositol 1,4,5-trisphosphate receptor type 1, MCM6 minichromosome maintenance complex component
6, EIF2S1 protein synthesis regulator eukaryotic translation initiation factor 2 subunit alpha, HIGD1A hypoxia-inducible domain family member 1A, NPM
nucleophosmin, GHITM growth hormone-inducible transmembrane protein, also known as MICS1.
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intrinsic apoptosis [110, 111]. MOMP is considered the point of no
return in the commitment to cell death. The release of cytochrome c
is pivotal for the subsequent activation of initiator and effector
apoptotic caspases. However, if caspase activity is inhibited, cell
death can proceed through alternative, caspase-independent

pathways once MOMP has occurred [112, 113], cell death can
proceed through alternative, caspase-independent pathways once
MOMP has occurred [112, 113]. MOMP is primarily and precisely
regulated by various members of the BCL2 family, which consists of
anti-apoptotic proteins (BCL2, BCL2-like 1 [BCL2L1, also known as
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Bcl-XL], etc.) [114], effector proteins (BCL2-associated X [Bax], BCL2
antagonist/killer 1 [Bak], and BCL2-related ovarian killer [Bok]), and
the BH3-only proteins [110, 115]. Under cellular stress, BH3-only
proteins, such as Bim (also called BCL2L11) [116] and BH3
interacting domain death agonist (Bid) [117, 118], become activated
and bind and inactivate the anti-apoptotic proteins, such as BCL2
and BCL2L1, whose primary function is to restrain the effectors Bax
and Bak [119, 120]. Once the anti-apoptotic BCL2 proteins are
neutralized by the BH3-only proteins, Bax and Bak undergo
spontaneous activation, homo-oligomerize, and form pores on the
mitochondrial outer membrane, allowing the escape of cytochrome
c and other apoptogeneic factors from the intermembrane space
[121–123]. Some BH3-only proteins, such as truncated Bid (tBid) and
Bim, may also directly bind and activate Bax and Bak [13, 110, 124],
although such interaction appears to be dispensable for Bax/Bak-
mediated apoptosis [125, 126]. It is worth noting that tBid was
shown to remodel mitochondrial structure and open up the
junction between mitochondrial cristae and the intermembrane
space, allowing maximal release of cytochrome c [127]. Cytochrome
c release appears to require a two-step process [128]. Specifically,
solubilization of cytochrome c involves disrupting the electrostatic
interactions it maintains with cardiolipin. Following this disruption,
MOMP facilitates the release of cytochrome c into the cytosol. Once
in the cytosol, cytochrome c tightly binds to its cytoplasmic
receptor, APAF1, and in the presence of ATP/deoxyadenosine
triphosphate (dATP), triggers the formation of the ∼1.4 mDa protein
assembly known as an apoptosome. Both dATP and ATP are
capable of facilitating the formation of the apoptosome. Historically,
research has emphasized the role of dATP, based on early cell-free
system studies where dATP seemed more effective. However, later
research has shown that ATP, which is far more abundant in living
cells, can also enable apoptosome formation [129]. Cryogenic
electron microscopy studies revealed that an apoptosome is a
wheel-shaped, multimeric, 7-fold symmetric protein complex
composed of 7 cytochrome c and 7 APAF1 molecules [130, 131].
Once formed in the cytosol, the apoptosome efficiently recruits pro-
CASP9 and causes its activation, leading to the activation of the
effector CASP3 and CASP7 [46] (Fig. 3). Moreover, cytochrome c can
bind to inositol 1,4,5-trisphosphate receptor type 1 (ITPR1, also

called IP3R), a calcium channel located on the outer membrane of
the endoplasmic reticulum, releasing calcium that triggers a
feedback loop activating CASP9/3 [132, 133] (Fig. 3). Studies using
NMR spectroscopy, site mutagenesis, and computational calcula-
tions have demonstrated that cytochrome c can bind to
14–3–3epsilon (a direct inhibitor of APAF1) and block 14-3-
3epsilon-mediated inhibition of APAF1, thus acting as an indirect
activator of CASP9/3. Additionally, heat shock proteins have been
identified as inhibitors of cytochrome c release or apoptosome
formation [134, 135] (Fig. 3).
2) Pro-pyroptosis function. Several lines of evidence suggest

that cytochrome c is involved in regulating pyroptosis, a form of
inflammasome-associated cell death, mediated by caspase clea-
vage of the gasdermin family proteins at certain circumstances.
First, iron-mediated ROS production triggers pyroptosis through
the TOM20-BAX-cytochrome c-CASPs-gasdermin E (GSDME) path-
way as was shown in melanoma cells [136]. Second, lobaplatin-
induced ROS production and JNK phosphorylation result in BAX-
dependent cytochrome c release, followed by CASP9/3 activation
and GSDME cleavage, leading to pyroptosis [137]. CASP3-
mediated production of N-terminal-GSDME induces MOMP,
leading to cytochrome c release and apoptosis [138]. In certain
cases, cytochrome c-mediated apoptosis activation may restrict
inflammasome activation [139]. These studies highlight crosstalk
between pyroptosis and apoptosis. Finally, excessive calcium, the
activation of adenine nucleotide translocator 1 (ANT, also called
SLC25A4), oxidative stress, and high bile acid levels lead to MPT,
resulting in a pyroptosome formation with APAF1, cytochrome c,
and CASP4/11 (not CASP9), causing CASP3-dependent GSDME
cleavage and pyroptosis [22] (Fig. 4). These results are from a
study revealing that while inhibitors of cyclophilin D and the
mitochondrial phosphate carrier did not prevent cell death,
bongkrekic acid — by inhibiting ANT — significantly protected
cells from both MPT and subsequent cell death. Moreover,
lonidamine, which specifically targets ANT1, prompts the swift
release of ATP from mitochondria to the cytoplasm. This rapid ATP
release is necessary for assembling the pyroptosome in the
cytoplasm, facilitating bile acid-induced MPT and leading to
pyroptotic cell death. The findings indicate that pyroptosis

Fig. 3 The subcellular-dependent functions of cytochrome c. Cytochrome c exhibit distinct functions depending on its subcellular
localization. In mitochondria, cytochrome c serves as a vital component of the electron transport chain, facilitating electron transfer between
complexes III and IV in the mitochondrial intermembrane space. The interaction between cytochrome c and HIGD1A (hypoxia-inducible
domain family member 1A) is pivotal in regulating mitochondrial oxidative phosphorylation and the cellular stress response. Cytochrome c
also plays a role in scavenging reactive oxygen species (ROS), particularly through the detoxification of hydrogen peroxide (H2O2). Moreover,
when cytochrome c interacts with cardiolipin, it demonstrates peroxidase activity, playing a role in the initiation of apoptosis. It can further
amplify ROS generation and trigger apoptosis via its interaction with p66Shc. Cytochrome c also interacts with other proteins, such as the
growth hormone-inducible transmembrane protein (GHITM, also known as MICS1). Alongside GHITM, coiled-coil-helix-coiled-coil-helix
domain containing 2 (CHCHD2) binds to cytochrome c. These interactions influence mitochondrial morphology or the release of cytochrome
c. Members of the BCL-2 family, including BCL2 and BCL2L1, can inhibit the release of cytochrome c. A Under cellular stress, BH3-only proteins,
such as Bim and Bid, become activated, bind and inactivate the anti-apoptotic proteins, such as BCL2 and BCL2L1, whose primary function is
to restrain the effectors Bax and Bak. Once the anti-apoptotic BCL2 proteins are neutralized by the BH3-only proteins, Bax and Bak undergo
spontaneous activation, homo-oligomerize, and form pores on the mitochondrial outer membrane, allowing the escape of cytochrome c and
other apoptogeneic factors from the intermembrane space. After cytochrome c is translocated to the cytosol, it interacts with APAF1, initiating
apoptosome assembly and subsequently activating CASP9 and CASP3. B It can interact with the inositol 1,4,5-trisphosphate receptor type 1
(ITPR1) on the endoplasmic reticulum membranes, triggering calcium ion (Ca2+) release. In addition, cytochrome c can bind to 14-3-3epsilon
and block 14-3-3epsilon–mediated inhibition of APAF1, thus acting as an indirect activator of CASP9/3. Heat shock proteins have been
identified as inhibitors of cytochrome c release or apoptosome formation. CMitochondrial permeability transition (MPT) induces the assembly
of the pyroptosome, which consists of APAF1, cytochrome c, and CASP4. This complex cleaves CASP3 and triggers the activation of gasdermin
E (GSDME), leading to pyroptosis. D In the presence of cardiolipin, O2, and H2O2, cytochrome c oxidizes the plasmalogen vinyl ether linkage,
facilitating its hydrolytic cleavage leading to lipid peroxidation. E BH3 mimetics can induce sublethal cytochrome c release, which activates
heme-regulated inhibitor kinase (HRI or EIF2AK1) and enables the translation of activating transcription factor 4 (ATF4), resulting in a persister
phenotype. Furthermore, cytochrome c can enter the nucleus, where it directly binds and inhibits histone chaperone SET/TAF-Iβ during DNA
damage, and thus hinders SET/TAF-Iβ nucleosome assembly activity. Cytochrome c can directly bind to nucleolar nucleophosmin (NPM) by
triggering a conformational change, driving alternative reading frame (ARF) release followed by the activation of p53 pathway in response to
DNA damage. NPM engages in liquid-liquid phase separation. Finally, cytochrome c can be released into the extracellular space from damaged
cells and taken up by astrocytes or immune cells in a toll-like receptor 4 (TLR4)-dependent manner. This uptake leads to the secretion of
cytokines such as IL-1β, IL-12, and GM-CSF that trigger immune responses.
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demands significantly stronger stimuli and a higher threshold
than other cell death mechanisms. Remarkably, MPT-induced
pyroptosis occurs within a much narrower time frame ( < 4 h)
compared to MOMP-induced apoptosis, which usually unfolds
over more than 18 h. This suggests that the APAF1 pyroptosome
assembly serves as an immediate response mechanism, enabling
cells to quickly react to severe threats by facilitating the removal
of dying cells. Additionally, the recruitment of CASP4 to APAF1
necessitates considerably higher ATP levels than CASP9, and
CASP4 has been shown to competitively inhibit CASP9 activation
in high-ATP conditions, aligning with the time course of enzyme
activities [22]. However, the mechanism behind the cellular
decision between apoptosis and pyroptosis remains unclear.
3) Plasmalogenase activity. Plasmalogens, phospholipids with

a vinyl ether bond at the sn-1 position, are vital for cellular
signaling. In the presence of cardiolipin, O2, and H2O2, cytochrome
c oxidizes the plasmalogen vinyl ether linkage, facilitating its
hydrolytic cleavage leading to lipid peroxidation [140, 141].
Cytochrome c, when released from myocardial mitochondria,
can cleave the vinyl ether bond of plasmenylcholine and
plasmenylethanolamine in membrane bilayers [140, 141]. Inhibit-
ing cytochrome c-mediated plasmalogen degradation using a
specific monoclonal antibody targeting cytochrome c has been
proposed as a potential Alzheimer’s disease therapy [140]. Further
research is to determine whether cytochrome c functions as a
plasmalogenase to a significant degree under normal physiologi-
cal conditions or in the context of excessive stress. Additionally,
the exploration of any potential therapeutic applications indicated
by this study will necessitate more in-depth investigations.
4) Pro-survival functions in drug-persisting cells. The

translocation of cytochrome c to the cytosol can also result in a

pro-survival signal, assisting cancer cells in developing a persister
phenotype during treatment with BH3 mimetics, both in vitro and
in vivo. This process is triggered by sublethal cytochrome c release,
which activates heme-regulated inhibitor kinase (HRI or eukaryotic
translation initiation factor 2 alpha kinase 1 [EIF2AK1]) through
physical interaction, initiates the integrated stress response (ISR),
and induces translational reprogramming. This reprogramming
suppresses global translation while selectively enabling the
translation of activating transcription factor 4 (ATF4), a key driver
of the persister phenotype (Fig. 4) [31]. Additional research is
required to uncover the extent and importance of this effect.

Cytochrome c translocation to the nucleus
Mitochondrial cytochrome c translocates into the nucleus upon
DNA damage [142], initiating cellular responses like chromatin
condensation, chromosome reorganization, and gene transcrip-
tion regulation. This effect was independent of caspase activation
[142]. Nuclear cytochrome c directly binds and inhibits histone
chaperone SET/template-activating factor-Iβ (TAF-Iβ; Table 3)
during DNA damage, and thus hinders SET/TAF-Iβ nucleosome
assembly activity [143]. Cytochrome c can directly bind to
nucleolar nucleophosmin (NPM) by triggering a conformational
change, driving alternative reading frame (ARF) release in
response to DNA damage. NPM engages in liquid-liquid phase
separation through heterotypic interactions with lysine-rich motifs
of cytochrome c [33]. These motifs facilitate the formation of
nucleolar-like droplets when combined with NPM. As a result, this
intricate complex regulates the movement and accessibility of
nucleolar proteins upon DNA damage [32]. Nuclear cytochrome c
has a cytotoxicity threshold; low-level DNA damage promotes
nuclear translocation for enhanced nucleosome assembly and
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DNA repair, while persistent damage surpasses this threshold,
causing cytochrome c to obstruct DNA remodeling [144].

Cytochrome c release into the extracellular space
Cytochrome c can be released extracellularly by damaged or dying
cells and acts as a signaling molecule possibly alerting nearby cells
to tissue damage. Elevated serum cytochrome c levels have been
noted in various diseases including inflammatory arthritis, myocar-
dial infarction, and liver diseases [145]. It’s also a potential marker of
mitochondrial injury post heart failure resuscitation, snakebite
envenomation, and chemotherapy [146–148]. The released cyto-
chrome c can trigger immune responses in astrocytes via toll-like
receptor 4 (TLR4) interaction [34, 35] (Fig. 3), suggesting that
inhibiting the cytochrome c-TLR4 pathway could mitigate inflam-
mation caused by cell death. It should be noted that the opposite
way of action has also been reported. Intravenous cytochrome c
injection in septic mice restored cytochrome c oxidase activity in
failing myocardium, significantly improving survival [149].

ROLE OF CYTOCHROME C IN DISEASES
In addition to its physiological functions, abnormal cytochrome c
signaling is implicated in various pathological conditions and
diseases. Dysregulated cytochrome c expression, release, and
mutations are closely associated with human diseases (Fig. 5A).

Mutations of CYCS in human thrombocytopenia
Mutations in CYCS have been identified in thrombocytopenia,
which is a heterogeneous group of inherited diseases character-
ized by low platelet counts. Three specific CYCS mutations have
been described: G41S [150], Y48H [151], and A51V [152, 153].
Another newly identified CYCS mutation, Lys101del, is associated
with bleeding tendencies and platelet aggregation defects [154].
Large-scale sequencing studies have also identified multiple
previously unknown CYCS mutations, with potential clinical
significance for the mutation of Asn52 based on its interaction
with cardiolipin [58, 155].
There are contradictory reports suggesting that the G41S

mutant exhibits elevated peroxidase activity without affecting
the strength of the Met80-Fe bond [45, 156]. Despite the increased
peroxidase activity, the mutant does not display heightened
affinity for cardiolipin or increased release to the cytoplasm during
apoptosis stimulation [157]. The Y48H variant of CYCS in
thrombocytopenia exhibits a 30%-40% reduction in oxygen
consumption and an increase in apoptotic activity. In vitro studies
have shown that megakaryocytes from patients with thrombocy-
topenia can produce proplatelets and release platelets with
normal microtubule coil formation [151]. The A51V variant of CYCS
in thrombocytopenia displays increased accessibility to non-native
conformers and exhibits 6- to 15-fold higher peroxidase activity
[153]. So far, there is no explanation as to why these mutations
cause such a specific yet mild phenotype and why there are so
few known variants. This may be due to the essential roles of
cytochrome c in the electron transport chain and apoptosis
initiation, together with a high degree of early evolutionary
optimization and conservation, likely restricting the occurrence of
a broader range of mutations. The impact of CYCS mutations on
other human diseases remains unknown.

Cytochrome c as a biomarker in diseases
Upon release into extracellular space, cytochrome c serves as a
novel in vivo marker for mitochondrial injury following heart
failure and chemotherapy. Circulating cytochrome c is associated
with anti-retroviral-induced toxicity in HIV patients [158, 159].
Elevated serum cytochrome c levels are significantly related to the
occurrence of nephropathy in myocardial infarction patients
treated with percutaneous coronary intervention [160]. In patients
with advanced non–small-cell lung cancer (NSCLC), significantly

lower serum cytochrome c levels were observed, which correlates
with poor survival outcomes. In contrast, patients with higher
serum cytochrome c levels showed better responses to che-
motherapy, indicating that serum cytochrome c levels may serve
as an indicator of severity and prognosis in NSCLC patients [161].
Similarly, breast cancer patients exhibit increased serum cyto-
chrome c levels in response to chemotherapeutic agents [162].
Intracellular cytochrome c deficiency leads to apoptosome and
mitochondrial dysfunction in African American men with prostate
cancer [163]. Furthermore, a study established three gene models
(mRNA of T-box transcription factor 21 [TBX21], TGFB-induced
factor homeobox 2 [TGIF2], and cytochrome c) to classify breast
cancer patients and predict recurrence. The study showed that
mortality was negatively correlated with the expression value of
TBX21 and TGIF2 but positively correlated with cytochrome c,
emphasizing the high possibility of recurrence with high
cytochrome c expression [164].

Cytochrome c detection in diseases
Traditional techniques such as enzyme-linked immunosorbent
assays (ELISAs) [161], western blots, high-performance liquid
chromatography (HPLC), immunocytochemistry (IC) [165], and
flow cytometry (FCM) [166] have been used to detect intracellular
and extracellular levels of cytochrome c (Fig. 5). Researchers are
focusing on the development of sensitive and cost-effective
biosensors for medical technologies that can diagnose clinical
abnormalities. A biosensor for cytochrome c detection and
quantification in human serum consists of three components
(Fig. 5B). 1) The bioreceptor utilizes capture probes such as
aptamers, enzymes, and antibodies specifically designed for
sensing cytochrome c [167, 168]. The electrode surfaces are
modified with gold nanoparticles (AuNPs), carbon nanotubes
(CNTs), quantum dots, trypsin, enzymes, antibodies, or aptamers
[169–172]. 2) The detector element or transducer system employs
various techniques including square wave voltammetry, electro-
chemistry, fluorescence, differential pulse voltammetry, interfero-
metric reflectance spectroscopy, and surface-enhanced Raman
scattering (SERS) to facilitate detection and quantification
[168, 173, 174]. 3) The reader device is responsible for capturing
and analyzing the signals generated by the biosensor system. In
addition, quantitative photo-crosslinking mass spectrometry or
photon counting histograms can distinguish different conformers
of cytochrome c [175, 176]. These technologies also provide a
viable platform for cell-based screening of compounds that
induces cytochrome c release [177].

Targeting cytochrome c in therapeutics
1) Inhibiting cytochrome c-mediated apoptosis to limit
mitochondria injury and therapy toxicity. Several approaches
have been explored to inhibit cytochrome c-mediated apoptosis.
HIV protease inhibitors (nelfinavir and ritonavir) prevent apoptosis
in photoreceptor cells by inhibiting MOMP and subsequent
cytochrome c release [178]. Inhibiting MPT by cyclosporin A or
decylubiquinone also reduces cytochrome c-mediated apoptosis,
which can be beneficial for patients with ischemic respiratory
depression [179, 180]. Synuclein prevents neuronal apoptosis by
covalently hetero-oligomerization with cytochrome c in Parkin-
son’s disease [181]. Additionally, blocking the interaction between
cytochrome c and ITPR1 shows promise in treating apoptosis-
associated disorders [182].
2) Limiting cytochrome c-mediated oxidative stress in

oxidative-associated disease. Cytochrome c administration has
shown potential in limiting oxidative stress and lipid peroxidation
in preclinical models. In rat resuscitation and hemorrhagic shock
models, cytochrome c injection has been found to prevent liver
oxidative damage and reduce oxidative stress and acidosis [183].
On the other hand, cytochrome c can cleave plasmenylcholine in
membrane bilayers, a process that may be targeted with specific
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antibodies to benefit patients with conditions like Alzheimer’s
disease [140]. In addition, artificial cytochrome cmimics have been
developed for reducing highly toxic pollutants by utilizing
cytochrome c’s bioreduction ability [184].
3) Promoting cytochrome c-mediated apoptosis in cancer

therapy. Selective induction of apoptosis in tumor cells while
sparing normal cells is a key strategy in cancer treatment. Various
approaches have been explored, including small-molecule drugs,
natural compounds, and nanocarrier-mediated delivery of multiple
anticancer drugs [185]. For example, artemisinin and berberine can
induce cytochrome c-mediated apoptosis to suppress cancer growth
[186, 187]. Precision nanoparticles have been engineered for
targeted delivery of cytochrome c in cancer cells (Fig. 5C) and
four specific properties have been designed to tailor this platform:
a) utilizing targeting molecules [188–190], such as antibodies
[185, 189], prodrugs [174, 188], peptides, aptamers, and ligands

(e.g., transferrin [191, 192]); b) different therapeutic delivery systems
[193, 194] through cytochrome c encapsulation or binding to
nanoparticles/nanogels [190, 195]; c) the linker systems, such as
redox-sensitive linker, whose disulfide bonds are cleaved within the
reductive or ROS-rich microenvironment, or a pH-sensitive agent in
acidic lysosome microenvironment, or thermo-responsive NGs
[195, 196]; and d) improving cytochrome c stability using PEGylation
[195], ionic liquids, B-DNA, conjugated peptides, or glycosylation that
can increase cytochrome c stability and bioavailability [197, 198].

CONCLUSION AND PERSPECTIVE
Over the past three decades, research on the structure and
function of cytochrome c has generated continuous interest in
understanding its roles in various physiological and pathological
processes. The diverse functions of cytochrome c in cell death and
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redox modulation are intricately regulated by posttranslational
modifications, interacting proteins as well as its localization in
response to various stimuli. Despite advances in cytochrome c
research, challenges remain. Key issues include identifying
alternative cytochrome c conformations and to study their
in vivo functions, understanding how cytochrome c mutations
affect disease onset and progression, and establishing the link
between cytochrome c mutations, apoptosis deficiency, and
tumorigenesis. Additionally, distinguishing cytochrome c’s anti-
oxidation and pro-oxidation functions, pinpointing the balance
between its pro-survival and pro-death effects during treatment,
and developing reliable biomarkers to evaluate mitochondrial
cytochrome c release’s antagonistic functions are. Further explor-
ing cytochrome c functional diversity may aid in creating specific
inhibitors or activators for disease treatment.
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