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Abstract

Active cysteinyl protease Caspase-6 is associated with early Alzheimer and Huntington diseases. Higher entorhinal cortex
and hippocampal Caspase-6 levels correlate with lower cognitive performance in aged humans. Caspase-6 induces axonal
degeneration in human primary neuron cultures and causes inflammation and neurodegeneration in mouse hippocampus, and
age-dependent memory impairment. To assess whether Caspase-6 causes damage to another neuronal system, a transgenic
knock-in mouse overexpressing a self-activated form of Caspase-6 five-fold in the striatum, the area affected in Huntington
disease, and 2.5-fold in the hippocampus and cortex, was generated. Detection of Tubulin cleaved by Caspase-6 confirmed
Caspase-6 activity. The Caspase-6 expressing mice and control littermates were subjected to behavioral tests to assess
Huntington disease-relevant psychiatric, motor, and cognitive deficits. Depression was excluded with the forced swim and
sucrose consumption tests. Motor deficits were absent in the nesting, clasping, rotarod, vertical pole, gait, and open field
analyzes. However, Caspase-6 mice developed age-dependent episodic and spatial memory deficits identified by novel
object recognition, Barnes maze and Morris water maze assays. Neuron numbers were maintained in the striatum,
hippocampus, and cortex. Microglia and astrocytes were increased in the hippocampal stratum lacunosum molecular and in
the cortex, but not in the striatum. Synaptic mRNA profiling identified two differentially expressed genes in transgenic
hippocampus, but none in striatum. Caspase-6 impaired synaptic transmission and induced neurodegeneration in
hippocampal CA1 neurons, but not in striatal medium spiny neurons. These data revealed that active Caspase-6 in the striatal
medium spiny neurons failed to induce inflammation, neurodegeneration or behavioral abnormalities, whereas active
Caspase-6 in the cortex and hippocampus impaired episodic and spatial memories, and induced inflammation, neuronal
dysfunction, and neurodegeneration. The results indicate age and neuronal subtype-dependent Caspase-6 toxicity and
highlight the importance of targeting the correct neuronal subtype to identify underlying molecular mechanisms of
neurodegenerative diseases.
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Caspase-6 (Casp6) activity is associated with axonal
degeneration in human primary neuron cultures [1], in
mouse dorsal root ganglia, sympathetic cervical, and
commissural neurons [2—-4], and in ischemic [5] and
ethanol-mediated [6] brain damage. Casp6 activity is also
associated with age-dependent human cognitive impair-
ment and Alzheimer disease (AD) pathologies [7-9].
Expression of a self-activated form of Casp6 in the hip-
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pocampal CA1 region results in inflammation, neurode-
generation, and age-dependent episodic and spatial
memory impairment in ACL mice [10]. Despite being
grouped with the effector caspases, Caspase-3 and
Caspase-7, active Casp6 does not induce cell death in
various peripheral cell lines [11, 12]. Furthermore, Casp6
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has a protective role in the amyotrophic lateral sclerosis
mutant G93A super oxide dismutase transgenic mouse
model [13]. Therefore, Casp6 is not always detrimental
to brain neurons. To determine if active Casp6 is sufficient
to induce neurodegeneration in all neurons, here, we
assessed the effect of active Casp6 expression in the
medium spiny neurons (MSN) principally affected by
Huntington disease (HD).

HD is an autosomal dominant neurodegenerative dis-
order caused by CAG repeat expansion in the human hun-
tingtin (HTT) gene that expresses mutant huntingtin protein
(mHtt) containing N-terminal extended polyglutamine
repeats [14]. HD pathology is characterized by intracellular
inclusions of cleaved mHtt (AmHtt) aggregates, neurode-
generation, and neuronal loss of the MSN, and inflamma-
tion, mainly in the striatopallidal pathway [15-17]. At
advanced stages, atrophy, loss of neurons and mHtt inclu-
sions occur in the deep layers of the cortex [15, 18] and
hippocampus [19, 20]. HD causes motor impairments
such as chorionic movements with gait disturbance, bra-
dykinesia and rigidity [21], and psychiatric and cognitive
impairments characterized by depression, apathy, irrit-
ability, impulsivity and social disinhibition, and decreased
attention and learning abilities [21], detected up to ten
years before motor deficits [14, 21]. Casp6 is thought to
also be involved in HD pathogenesis [22—-24]. Increased
Casp6 mRNA levels [22] and Casp6 activation [23] are
reported in the cortex and striatum of early-grade human
HD. Casp6 activation in human striatum is proportional to
the number of mHtt CAG repeats and correlates with the
age of disease onset in HD patients [24]. Casp6 cleaves Hitt
at amino acid D586 in vitro, ex-vivo, and in vivo [24, 25].
This fragment is generated in murine HD brains [26, 27]
and co-localizes with active Casp6 in the nucleus of
cultured striatal cells under apoptotic conditions [28]. In
BACHD or YACI128 mutant HTT transgenic mice,
disease severity correlates with cortical and striatal active
Casp6 levels [24]. Mice expressing the 586 aa AmHitt
fragment with 82 polyglutamine repeats, but not with
normal 23 polyglutamine repeats, display several HD-like
features including astrogliosis, motor and cognitive
deficits, early mortality, and age-dependent brain atrophy
[29, 30]. Prevention of Casp6-induced mHtt cleavage by
expression of the dominant-negative catalytically inactive
Casp6-C163A, mutagenesis of mHtt to D586A, or treatment
with a peptide inhibitor based on the Htt Casp6 cleavage
site, decreases the sensitivity of cells to several excitotoxic
insults, and prevents body weight gain, brain atrophy,
depression, and cognitive and motor disorders in BACHD
and YACI128 HD mice models [23, 25, 26, 31, 32].
In addition, YAC128 and BACHD mice lacking Casp6
are resistant to mHtt-induced body weight gain and
depression-like phenotype [33, 34]. Together, these results
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indicate that Casp6 plays an important role in HD
pathogenesis.

Therefore, a new transgenic knock-in mouse (ACK) was
generated to express a self-activating form of human Casp6
under the control of the adenosine A2A receptor (Adora2a)
promoter in the striatum, and to a lesser extent in the cortex
and hippocampus. The ACK mice do not develop motor or
psychiatric disturbances, but show cortical and hippocampal
neuroinflammation and age-dependent memory impair-
ments. Furthermore, Caspase-6 impaired synaptic trans-
mission and induced neurodegeneration in hippocampal
CA1 neurons, but not in striatal MSN. Consequently, these
results demonstrate a differential brain region-specific vul-
nerability of neurons to Casp6 activity.

Results

Expression of a self-activated form of human Casp6
in the MSN of the indirect striatopallidal pathway

To determine if active Casp6 induces neurodegeneration in
striatal neurons, a transgenic mouse line (ACK) expressing
a self-activating form of human Casp6 in the MSN of the
indirect striatopallidal pathway was generated by crossing
the knocked-in (KI) CASP6 transgenic mouse with a mouse
expressing Cre recombinase under the Adora2a promoter
(Fig. 1a). These ACK KI/Cre mice were compared to wild
type (WT/WT), KI CASP6 transgene in the absence of Cre
(KI/WT), or Cre only (WT/Cre) control littermates. Viabi-
lity and fertility were normal in the four genotypes. Similar
body weight and rectal temperature in the four genotypes
excluded potential effects of the transgene on basal meta-
bolism (Supplementary Fig. 1). Human Casp6 mRNA
levels were higher in the KI/Cre striatum and present in the
cortex and hippocampus (Fig. 1b). Casp6 mRNA was not
detected in WT/WT or WT/Cre brains, but was observed in
KI/WT brains, indicating leakiness of the transgenic mRNA
expression. Nevertheless, Casp6 protein was not detected
above endogenous mouse Casp6 by western blotting
(Fig. 1c). Casp6 protein levels in the KI/Cre striatum, cor-
tex, and hippocampus were 5.2, 2.5, and 2.6-fold higher
than in the WT/WT tissues, respectively. ACK hippocampal
Casp6 levels were only 35% of that in the hippocampal
ACL Casp6 transgenic [10] (Supplementary Fig. 2a, b).
Transgenic Casp6 protein expression levels were main-
tained with aging (Fig. 1d). Casp6 protein levels were
~three-fold higher in the striatum compared to the cortex
and hippocampus (Fig. le, f). Tubulin cleaved by Casp6
(TubACasp6), migrating with that generated by the addition
of recombinant active Casp6 in brain protein extracts, was
detected in KI/Cre, but not in control or Casp6 null (Casp6
KO) striatal protein extracts (Fig. 1g). The presence of
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Fig. 1 Casp6 ACK KI/Cre mice express active Casp6. a Schematic
diagram showing Casp6 cDNA and Adora2a-Cre constructs in trans-
genic mice crossed to generate the Casp6-expressing ACK KI/Cre, and
control littermates KI/WT, WT/Cre and WT/WT mice. b Ethidium
bromide-stained agarose gel of human Casp6, Cre recombinase, and
ribosomal 18S RT-PCR amplicons from striatum (Str), cortex (Cx) and
hippocampus (Hc) of KI/Cre, K/WT and WT/WT mice. ¢ Western blot
of 15 ug total protein extracts from KI/Cre, KI/'WT and WT/WT Cx,
Str, and Hc with anti-Casp6 and GAPDH antibodies. The histograms
represent densitometric analyzes of ratios of Casp6 over GAPDH levels
and relative to WT/WT (n = 3/genotype, 15-22 months of age). One-
way ANOVA followed by Dunnett’s post-hoc test against KI/Cre was
performed. **p < 0.01, ***p < 0.001 d Western blot analysis of Casp6
in striatal protein extracts from KI/Cre mice aged from 1 to 21 months

TubACasp6 in the KI/Cre striatum confirmed Casp6 acti-
vation. Consistent with our previous observations [10],
active p20 Casp6 levels remained undetectable. Immuno-
positive anti-active Casp6 was observed only in striatal
neurons due to the lower levels expressed in cortex and

with anti-Casp6 and anti-p-actin antibodies. WT/WT (3 and 20 month
old) and KI/WT (11 and 16 month old, marked with asterisks) striatal
protein extracts were used as controls for endogenous Casp6 expres-
sion. e, f Western blot and densitometric analyzes of Casp6 (15 pg/lane)
in cortical, striatal and hippocampal protein extracts from three inde-
pendent KI/Cre mice. Results are represented as ratios of Casp6 over -
actin levels and are relative to Str. One-way ANOVA followed by
Dunnett’s post-hoc test against striatum were performed. ***p < 0.001.
g Western blot analysis of TubACasp6 in 17 ug striatal protein extracts
from 6-7 month old mice digested or not with recombinant human
Casp6. h, i Representative micrograph of 6 KI/Cre and 5 KI/WT
striatum (8 months of age), cortex and hippocampus (1621 month old)
tissue sections immunostained with anti-human Casp6 (h) or anti-
TubACaspb6 (i)

hippocampus (Fig. 1h). Immunopositive anti-TubACasp6-
staining (Fig. 1i) confirmed the presence of active Casp6 in
ACK KI/Cre striatum, cortex, and hippocampus, but not in
control brains (Supplementary Fig. 2c¢, d). TubACasp6
immunostaining as punctate structures in neuritic cytoplasm
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indicated degenerating neurons. Together, these results
confirm that the ACK KI/Cre mouse expresses Casp6 pre-
dominantly in the striatum, and to a lesser extent in the
cortex and the hippocampus.

Casp6 expressing mice do not display HD-like
depressive behavior or locomotor impairments

To evaluate if the ACK KI/Cre mouse develops HD-related
features, psychiatric, and motor functions of aged mice were
compared to those of control littermates. 18 to 21-months-
old KI/Cre and control littermates spent equivalent time in
an immobile state in the forced swim test indicating the
absence of depressive behavior (Fig. 2a; p =0.769). Eva-
luation of anhedonia, a major component of depression,
by sucrose consumption, was normal in KI/Cre (Fig. 2b;
p = 0.3020), indicating the absence of depressive behavior
in the Casp6-expressing KI/Cre mice.

Gross motor dysfunctions were assessed by the nesting
and clasping tests. Evaluation of the nest quality revealed
that the aged mice made nests achieving normal scores [35]
of approximately 3.8, independent of the genotype (Fig. 2¢).
Abnormal involuntary movements evaluated with the
clasping test were significantly increased in WT/Cre mice
compared to control littermates (Fig. 2d), confirming pre-
vious observations of Cre toxicity in the brain [36].
Nevertheless, no significant difference was observed in the
clasping score of KI/Cre mice compared to control litter-
mates, suggesting that human Casp6 expression reduces
Cre-induced abnormal involuntary movements. Locomotor
activity of aged KI/Cre mice (Fig. 2e), 5-7 month old, and
12—15 month old mice (Supplementary Fig. 3), analyzed by
the openfield test distance traveled, percentage of time
moving, percentage of cells used and average speed, was
normal. Fine locomotor problems including motor coordi-
nation and balance were evaluated with a rotarod protocol
(Fig. 2f) commonly used to characterize HD mouse models
[31] and the vertical pole test (Fig. 2g). The time spent on
the rotarod significantly increased over time for all four
genotypes, indicating the ability to learn the task (Fig. 2f;
days, F(5 94y =46.82, p <0.0001). The groups did not differ
in overall level of performance or change across days
(genotype, F347=2.07; genotype x day, F(s94) = 0.64,
both p > 0.05). During the testing session, the KI/Cre mice
spent the same amount of time on the accelerating rotarod
as the control littermates (p =0.3794). In the vertical pole
test, the performances of the four genotypes were equivalent
(Fig. 2g). The latency before mice turned downward
(p=0.1341) and completely descended the pole
(p =0.1341) did not differ significantly between groups.
Lastly, gait abnormalities tested by the footprint test did not
reveal walking pattern or gait differences in the KI/Cre mice
when compared to control mice (Fig. 2h). Taken together,
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the results indicate that the presence of active human Casp6
in mouse striatum does not modify their overall activity,
exploratory behavior, and motor function.

ACK Casp6-expressing KI/Cre mice display age-
dependent cognitive deficits

The KI/Cre mice were assessed for cognitive function since
the human Casp6 was expressed and activated in the brain
striatum, cortex and hippocampus, three regions involved in
cognition. Adult (12-15 months of age) and old
(16—19 months of age) mice were submitted to the novel
object recognition (NOR) test to assess episodic memory
function. The adult KI/Cre and control littermates sig-
nificantly spent more time touching the novel object than
the familiar one, indicating normal episodic memory
(Fig. 3a). However, the old KI/Cre mice spent an equal
amount of time touching the familiar and the novel objects,
revealing memory recall impairment, whereas control lit-
termates performed normally.

The Barnes maze further characterized spatial memory
function in the old KI/Cre mice (Fig. 3b, c¢). During the
acquisition phase (Fig. 3b), the primary errors (days,
F3.93=8.42, p < 0.0001; genotypes x days, F(g 93, = 0.40,
p=0.9340) and the primary latency (primary latency:
days, F393=47.90, p<0.0001; genotypes x days,
Foo3=1.12, p=0.3553) to find the escape hole
decreased significantly over time and to the same extent
for the four genotypes. Short-term memory was assessed
by a single probe, 24 h after the last trial (Fig. 3c). Con-
trary to the control mice, the number of pokes made by
KI/Cre mice was not significantly higher in the target area
compared to other areas. Although the KI/Cre mice spent a
bit less time in the target quadrant than the control litter-
mates, this measure did not reach statistical significance.
These results indicate impaired spatial memory in the
KI/Cre mice.

Mice performances in the search strategy preference
test of the Morris water maze (Fig. 3d) were also eval-
uated to analyze the dynamic interplay between cortico-
striatal and hippocampal memories [37]. All genotypes
learned to find the platform during the training sessions
(Fig. 3e) since the escape latency decreased significantly
over time (days, F(7273=49.82, p <0.0001; genotypes
x days, Fj273y=1.13, p=0.3142). During the probe

test (Fig. 3f, g), the KI/Cre used the cued (cortico-
striato-related) or spatial (hippocampal-related) strategy
equally, contrary to the control littermates who preferred
the cued strategy. More conflictual responses were
observed in the KI/Cre compared to the control mice,
confirming that the dynamic interplay between the
hippocampal-cortico-striatal systems was impaired in the
Casp6 expressing mice.
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Fig. 2 Assessment of HD-like depressive and locomotor behaviors of
ACK mice. a Time in an immobile state during the forced swim test.
Data represent the mean and SEM from 16 KI/Cre, 9 KI/WT, 8 WT/
Cre and 9 WT/WT aged from 18-21 months. b Sucrose preference
index of 10 KI/Cre, 9 KI/'WT, 4 WT/Cre and 13 WT/WT aged from
16-20 months. ¢ Average nesting score +SEM of 25 KI/Cre, 6 KI/
WT, 10 WT/Cre and 25 WT/WT aged from 1622 months. d Average
clasping score +SEM measured by tail suspension in 33 KI/Cre, 21
KI/WT, 22 WT/Cre and 18 WT/WT aged from 15 to 19 months.
Statistical evaluation was done with ANOVA followed by a Dunnett’s
post-hoc analysis against KI/Cre. **: p <0.01. e Openfield perfor-
mances of mice assessed by evaluating the path, the total distance, %
time in activity, % of cells used and average speed of 31 KI/Cre, 25

KI/WT, 17 WT/Cre, and 27 WT/WT aged from 12 to 18 months. The
green circle is the start position and the red is the circle end position of
the mouse. f Motor coordination and balance were evaluated using a
rotarod test. The latencies during training and test were evaluated on
17 KI/Cre, 13 KI/WT, 11 WT/Cre and 10 WT/WT aged from 15 to
18 months. Locomotor learning was assessed by two-way ANOVA
followed by a Bonferroni post-hoc test. g The time to turn downward
and to completely descend the pole during the vertical pole test
was evaluated on 17 KI/Cre, 13 KI/WT, 11 WT/Cre, and 10 WT/WT
aged from 15 to 18 months. h Gait analysis on 16 KI/Cre, 10 KI/WT, 9
WT/Cre and 9 WT/WT aged from 18 to 21 months was performed
with the footprint test. Red represents hind paws; black represents
front paws
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Fig. 3 Assessment of ACK Casp6 mice cognitive function. a NOR
analyzes of adult (<15 M, upper panel) or old (>16 M, lower panel) mice
showing the percentage of touches of two identical objects during the
familiarization phase (pre-exposure) or of a familiar and novel object
during the test phase, two hours later (left panels) and a representative
path of KI/Cre versus WI/WT mice (right panels). The light blue circle
represents the position of the novel object during the test phase, green
circle is the start position and the red circle is the end position of the
mouse. Data represent the mean + SEM of 13 KI/Cre, 10 KI/WT, 4 WT/
Cre, and 15 WT/WT adult mice aged from range 12 to 15 months or 16
KI/Cre, 14 KI/WT, 11 WT/Cre, and 10 WT/WT old mice aged from 16
to 19 months. Statistical evaluations were done with one way ANOVA
followed by a Tukey post-hoc analysis. **p <0.01; ***p <0.001. b
Barnes maze training performance of 9 KI/Cre, 10 KI/WT, 9 WT/Cre,
and 8 WT/WT aged from 14 to 18 months. Data show the mean + SEM
for the latency to reach the target hole (primary latency) and number of
errors to the first encounter of the escape hole (primary errors) during
training. Data were analyzed by repeated-measures ANOVAs, with
genotype and days as factors. ¢ Barnes maze probe test shows mean +
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SEM of pokes in the five holes of the target quadrant, its adjacent left
(AL), adjacent right (AR), or opposite quadrants during the probe test
performed 24 h after the last training trial. Statistical evaluations were
done with one way ANOVA followed by a Dunnett’s post-hoc analysis
against the target quadrant. ***p < 0.001. (Right panel) Total time spent
in the target quadrant during the probe test. d—f Performance of 12 KI/
Cre, 11 KI/WT, 6 WT/Cre and 14 WT/WT mice aged from 15 to
20 months in the search strategy preference test of the Morris Water
Maze. d Schematic representation of the position of the cued platform
(blue circle with a yellow star), hidden platform (clear circle) and starting
position (red cross) during the training and the probe tests. e Latency to
reach the platform during training. Data represent the mean + SEM of
each genotype for each trial. f The histogram represents mean % + SEM
of cue (black bar), place (gray bar) and conflictual (white bar) respon-
ders. Statistical evaluations were done with two-way ANOVA followed
by a Bonferroni post-hoc analysis. *p <0.05; ***p <0.001 for cue
versus spatial. ##p<0.01 for cue versus conflictual. g Representative
swim paths during the probe test
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Casp6 overexpression selectively increases the
expression of synaptic plasticity-related genes in
the hippocampus, but not the striatum, of ACK mice

To investigate the mechanisms implicated in age-dependent
Casp6-induced cognitive impairments, we evaluated the
levels of the neuronal marker NeuN and synaptophysin
staining in the striatum, hippocampus, and cortex of aged
mice (Fig. 4a, b). Quantitative analyzes of the immunos-
taining revealed that the number of neurons and synapto-
physin staining were equivalent across the four genotypes in
the striatum, the hippocampus, and the cortex. By western
blot analysis, NeuN, synaptophysin, PSD-95, synapsin, and
SNAP-25 levels of KI/Cre mice were unchanged in the
striatum, hippocampus, and cortex (Fig. 4c, d) compared to
control littermates. mMRNA profiling of 84 synaptic
plasticity-related genes identified JunB and Nfkbib to be
differentially expressed 2.2 and 5-fold, respectively, in the
aged KI/Cre hippocampus (Fig. 4e). No differentially
expressed genes were detected in the striatum. These results
indicate greater susceptibility of hippocampal neurons to
Casp6 than striatal neurons.

Casp6 impairs excitatory post-synaptic potential
(EPSP) and induces neuritic degeneration in
hippocampal CA1 pyramidal neurons but not in
striatal MSN

To compare the effects of Casp6 on hippocampal CAl
pyramidal neuron and striatal MSN synaptic function,
synaptic transmission in the neurons patched with recom-
binant active Casp6-WT or catalytically inactive Casp6-
C163A was studied. The activity of Casp6 in the internal
solution was stable for 2 h, and decreased to 80% between
2-5h (Supplementary Fig. 4). Decreased EPSP amplitude
in hippocampal CAl pyramidal neurons occurred rapidly
after patching 10pg Casp6-WT, but not 10pg Casp6-
C163A (Fig. 5a). Decreased EPSP amplitude occurred 40
min after patching pyramidal neurons with 1 pg Casp6-WT.
EPSP recordings in MSN patched with 10 pg of Casp6-WT
or Casp6-C163A were stable for one hour (Fig. 5b).
Moreover, CA1 pyramidal neurons exhibited dose—response
sensitive neuronal degeneration evidenced by Alexa 594
positive axonal beading (Fig. 5c), whereas no obvious
morphological changes were observed in MSNs with 10 pg
of Casp6-WT (Fig. 5d). Quantitation showed a 6 fold
increase in beaded neurites in the 10 pg Casp6 patched CA1
neurons (Fig. 5e) but no change in MSN (Fig. 5f). The total
number of neurites per patched neuron were similar in
Casp6-WT and Casp6-C163A patched CAl neurons and
MSN (Fig. Se, f). These results reinforce the notion that
CAl pyramidal neurons are more vulnerable to active
Casp6 than the MSN.

ACK Kl/Cre mice display neuroinflammation in the
hippocampus and cortex, but not in striatum

Analyzes of immunohistological striatal sections indicated
that the total number of Iba-1 positive microglia was similar
for all four genotypes (Fig. 6a, b). Analysis of type one
(ramified), type two (shorter abundant ramifications), type
three (amoeboid) and type four (enlarged) microglia [38]
indicated that only the percentage of type three microglia
was significantly increased in the KI/Cre and KI/WT stria-
tum compared to the WT/WT. In the hippocampus stratum
lacunosum molecular, the total number of Iba-1 positive
microglia and the % of type four microglia were specifically
increased in the KI/Cre compared to the WT/WT. No dif-
ference in the number but an increase % type four microglia
was observed in the cortex. The area of GFAP astrocytic
immunostaining was not increased in the KI/Cre striatum,
but was increased in the hippocampal SLM and cortex,
compared to the WT/WT (Fig. 6¢c, d). Western blotting
confirmed the increase in GFAP in the cortex of KI/Cre
mice (Fig. 6e). Together, these results indicate that active
human Casp6 induces neuroinflammation specifically in the
hippocampus and cortex, but not in the striatum, of aged
ACK mice.

Casp6 immunopositive AD-related pathologies are
present in the hippocampus of HD and AD brains,
but not in the caudate nucleus

To determine the extent of Casp6 activation in HD brains,
active Casp6, and TauACasp6 immunostaining were com-
pared in HD and AD brains (Supplementary Fig. 5). Strong
anti-active Casp6 and anti-TauACasp6 immunostaining
were detected in pre-tangles and mature neurofibrillary
tangles, and in neuropil threads of three Alzheimer and
three stage 2 HD hippocampi, although less widespread in
HD as expected (Supplementary Fig. 5a—c). By contrast, no
immunoreactivity was detected in the striatal caudate
nucleus, the main brain area pathologically affected in HD
(Supplementary Fig. 5d). These results suggest that active
Casp6 accumulation and damage is predominant in AD
pathologies, but not in HD pathologies.

Discussion

Our data expose the differential CNS neuronal vulnerability
to Casp6 expression and activation, show the inability
of Casp6 to induce pathogenesis in striatum, and
confirm the age-dependent memory impairment caused by
Casp6.

Our results expose differential striatal and hippocampal
neuronal vulnerability to Casp6. Indeed, 5.2-fold over-
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SPRINGER NATURE

b synaptophysin
KI/Cre  KI/'WT  WT/Cre

WT/WT

Str

200 um

Str Hc Cx
& ,g 0.8 o {gO.S e '§0.6
2.5 06 2.206 2 %
= =5 =5 0.
iy Qe [=X3)
2 €E04 2804 S g
= g3 %goz
aa aa f=Ka] .
$§0.2 %\EO.Z %g
rnmry Corro’e Voo
Ogos OEuE F342
MEEE MEEE “UEE

=5

PSD95 synapsin SNAP25 synapto NeuN

[
(=3
(=]

EES
EEE
SEEE
EEE

*

EEF

[\
(=
S

Cx
=
(=

0o o oo T O To o' TR
S50z 0s0s 505 Gsuz 505
vivinaiviviNaEvivis vivial=Rvivia™
MMz MM MMBEMMBB MEzE

synapsin, SNAP-25, synaptophysin and NeuN. Quantitative results are
represented as ratios of protein levels over p-actin and are arbitrarily
expressed as percentage + SEM of WT/WT. Statistical evaluations
were done with ANOVA followed by a Dunnett’s post-hoc analysis
against KI/Cre values. **p<0.01, ***p<0.001. e Differential
synaptic plasticity profile mRNA expression of Junb and Nfkbib in KI/
Cre versus WT/WT hippocampal tissues. No change was observed in
striatum. Student’s t-test shows a significant difference between WT/
WT and KI/Cre (n =3 each)



Selective neuronal vulnerability to Caspase-6

1327

expression of active Casp6 in the transgenic striatum, a
level equivalent to that found in Huntington disease stria-
tum [24], did not alter striatal behavioral functions, synaptic
protein gene expression profiles, nor induce inflammation
and neurodegeneration. Furthermore, a 30-fold higher dose
of active Casp6 did not induce neurodegeneration or
synaptic transmission deficits in MSN. By contrast, 2.5-fold
overexpression of Casp6 in the hippocampus was associated
with episodic and spatial memory impairment, differential
expression of two genes involved in synaptic plasticity, and
increased inflammation. Additionally, CA1 pyramidal neu-
rons exhibited dose-dependent Casp6-mediated synaptic
transmission impairment and neurodegeneration. This dif-
ferential neuronal vulnerability is surprising since Casp6
activation is associated with axonal degeneration in primary
human cortical neurons [1], NGF-deprived mouse sensory
neurons [2, 4], and ischemia and stroke-mediated cell death
[5, 39]. The reason for this differential vulnerability is not
clear at this time. The cleavage of specific protein substrates
with more relevant functions in specific neuronal subtypes
[40, 41] could explain increased vulnerability in hippo-
campal neurons. Protective factors could prevent Casp6-
mediated neurodegeneration in MSN, although these are not
inhibitors since TubACasp6 is observed in striatal tissues.
Alternatively, the vulnerability of hippocampal neurons to
Casp6 may be related to inflammation, consistent with
recent reports showing brain region-dependent diversity in
the gene expression profile of isolated mouse brain micro-
glia [42] and higher astrocyte density in the cortex and
hippocampus compared to striatum [43].

Our results are consistent with the differential neuronal
vulnerability of familial neurodegenerative diseases.
Familial mutations in AD, HD, and Parkinson disease cause
selective degeneration of neuronal subtypes, despite mutant
proteins being expressed in most neurons. Prion protein
mutations highlight the exquisite difference in neuronal
vulnerability to a specific mutation [44]. In these, the dif-
ferential vulnerability of neurons may be related to the
activation of specific neurodegenerative pathways in the
susceptible neurons. However, here, we placed the
degeneration-inducing active Casp6 directly in the neurons
and still, we observe selective neuronal vulnerability. Our
results highlight the importance of identifying neuronal
subtype specific mechanism of pathogenesis in each neu-
rodegenerative disease.

Despite expression and activation of Casp6 in the MSN
of the indirect striatopallidal pathway, no depressive or
motor impairments, nor striatal neurodegeneration or
inflammation, normally associated with HD, were observed.
The inability of Casp6 to induce HD pathogenesis was
unexpected given the strong evidence for the implication of
Casp6 in HD. Casp6 expression and activation has been
reported in human and mouse HD brains [23, 24, 28].

Truncation of mHtt protein cleaved by Casp6 at amino acid
586 (mHttACasp6) is observed in HD mouse models and is
toxic in cultured cells and in mice [25, 26]. Expression of
the mHttACasp6 N-terminal fragment induces Htt immu-
nopositive nuclear and cytoplasmic inclusion bodies in
cerebellum and striatal neurons, astrogliosis, brain atrophy,
progressive movement disorder, and cognitive impairment
accompanied by further proteolytic processing of
mHttACasp6, weight gain, and decreased lifespan in mice
[29, 30, 34]. Failure of Casp6 to induce HD pathogenesis is
thus likely due to the absence of mHtt. Indeed, WT Htt is
cleaved by Casp6 but is not toxic, whereas mHttACasp6 is
detrimental [29, 30]. Our data agree with other evidence that
disputes the role of Casp6 in HD pathogenesis. Neuronal
population-specific expression analyzes reveal no difference
in Casp6 mRNA levels between HD and normal brains [45],
and the levels of Casp6 mRNA in the striatum, the cortex
and mouse embryonic fibroblasts cells derived from
YAC128 mice are similar to those of WT mice [33, 46, 47].
Furthermore, neurodegeneration, locomotor deficits and
production of mHtt586 fragments are unaffected by Casp6
ablation in HD mice [33, 34, 48], suggesting that mHitt
cleavage at D586 residue is not specific to Casp6 in vivo
and that Casp6 activity is not required for the pathogenic
aspects of mHtt. Moreover, other caspases generate mHitt
cleaved at D586 [23, 33, 34], and shorter Casp2-generated
N-terminal Htt fragments are significantly more toxic than
Casp6-generated fragments in mice [49]. These and our
results indicate that in the absence of mHtt, Casp6 is not
detrimental to MSN and striatal tissues.

Lastly, as previously observed [10], spatial and episodic
memory impairments caused by the expression of Casp6 in
the ACK mouse occur only in aging, consistent with age-
dependent human neurodegenerative diseases. However, in
these cases, there is cell type-specific expression of mutant
proteins that must initiate precise degenerative pathways,
explaining the selective vulnerability. In our model, the
active Casp6 would have been expected to cause age-
independent neurodegeneration because it is expressed three
weeks after birth [50]. Therefore, young neurons are likely
protected by higher levels of neurotropic factors, healthier
and more active microglia, less cumulated damaged mole-
cules due to active proteasome and lysosomal systems, and
healthier mitochondria to provide the required energy for
neurotransmission [51]. This ACK mouse model provides a
novel tool to study age-dependent neurodegeneration.

In conclusion, we demonstrate age and neuronal subtype-
dependent Casp6 toxicity indicating that it is essential to
carefully consider the right neuronal subtype when inves-
tigating underlying molecular mechanisms of human neu-
rodegenerative diseases and establishing therapeutic targets.
Specifically, “Omics” studies should strive to specifically
study vulnerable neurons. Mutant gene expression in the
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WT). ¢, d Representative flattened two-photon-imaging stack of hip-
pocampal ¢ and striatal d neurons patched by whole-cell recording

right neuronal subtype should be achieved from its endo-
genous promoter in animal models [52]. Even if the neu-
ropathology is not quite reproduced in the model,
mechanisms of disease may be better reproduced and
could provide more appropriate therapeutic targets for the
development of efficient medications against human
disease.
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MSN

electrode (WC) with Alexa 594. Neuritic degeneration in the basal side
of pyramidal neurons with 10 pg Casp6-WT in hippocampal CAl
pyramidal cell layer (PCL) was indicated by white arrows. Scar bar =
50 um. e, f Total number of neurites and percentage of beaded neurites
of patched CA1 pyramidal neurons (e) and MSN (f). Statistical eva-
luations were done with one-way ANOVA followed by Bonferroni
post-hoc test. **p < 0.01 vs. 10 pg Casp6-C163A; ##p <0.01 vs. 1 pg
Casp6-WT

Materials and methods
Mice models
All animal procedures followed the Canadian Council on

Animal Care guidelines and were approved by the McGill
Animal care committee. Mice were bred and aged in the
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GFAP immunostaining. d Quantification of the area immunostained by
GFAP. Results are expressed as means + SEM. e Western blot analysis
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WT, 3 WT/Cre, and 3 WT/WT aged from 20 to 22 months with
antibodies against GFAP and f-actin. The histogram represents den-
sitometric measurements of the protein bands. Results are represented
as ratios of GFAP over f-actin levels and are arbitrarily expressed as
percentage + SEM of WT/WT. Statistical evaluation were done with
ANOVA followed by a Dunnett’s post-hoc analysis against KI/Cre
values. *p <0.05, **p <0.01, ***p <0.001
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Goodman Cancer Research Centre Mouse Transgenic
Facility at McGill University and transferred to the Lady
Davis Institute for behavioral testing. Mice were housed in a
temperature-controlled room at 22 °C and were kept on a
12/12 h light/dark cycle with ad libitum access to food and
water. Casp6 Knock-Out (KO) mice were obtained from
Jackson Laboratories (Bar Harbor, ME, USA). ACL mice
expressing human active Casp6 in the CAl region of the
hippocampus were generated previously [10].

To express human active Casp6 in the MSN of the
indirect striatopallidal pathway, knock-in mice con-
ditionally expressing a self-activating form of human Casp6
[10] were crossed with the BAC-transgenic adenosine A2a
receptor-Cre  mouse line [Tg(Adora2a-cre)KG126Gsat,
stock number # 034744-UCD, Mutant Mouse Resource and
Research Center (MMRRC; Davis, California, USA)].
Resulting ACK mice were viable and fertile. Mice were
monitored daily following the McGill University Animal
Resources Center’'s protocol. Because Casp6 expressed
specifically in the CA1 of the mouse hippocampus causes
age-related neurodegeneration in transgenic mice [10],
phenotyping was conducted with aged mice of over
15 months of age and any aberrant phenotype re-assessed in
12—-15 month-old mice.

Total RNA extraction and reverse-transcriptase
polymerase chain reaction

Total RNA was isolated with Trizol (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. Five
hundred ng of total RNA was treated with DNAse RQI
(Promega, Madison, WI, USA) prior to cDNA synthesis
with avian myeloblastosis reverse transcriptase (Roche,
Mannheim, Germany). The following primers were used to
amplify a 229bp human Casp6 amplicon: 5-CGAT
GTGCCAGTCATTCCTT-3" and 5-CTCTAAGGAG
GAGCCATAT-3', a 386 bp Cre recombinase (Cre) ampli-
con: 5'-TCTCAGGTACTGACGGTGGACCAGCTTGCAT
GATCTCC-3" and 5-GTGAAACAGCATTGCTGTCACT
T-3', and a 151bp 18S amplicon: 5-GTAACCCGTT
GAACCCCAT-3' and  5-CCATCCAATCGGTAGT
AGCG-3'. Amplifications were conducted for 27 (18S),
30 (human Casp6) and 35 (Cre) cycles of 95 °C for 30s,
61.1 °C (human Casp6)/70 °C (Cre)/58 °C (18S) for 30s,
and 68 °C for 60s, with a final 68 °C extension phase
for 5 min.

Mouse synaptic plasticity RT>-profiler PCR array

The expression of 84 key genes related to synaptic plasticity
were assessed by RT-qPCR with the Mouse Synaptic
Plasticity RT” Profiler PCR Array (PAMM-126Z, Qiagen),

according to the manufacturer’s instructions. Data was
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normalized to the geometric mean of the housekeeping
genes and analyzed by the comparative Ct-method (274€T).
Genes with fold change >1.5 and p-value <0.05 were
considered as biologically and significantly altered.

Behavioral assessment

Mice were handled daily during 5 min for one week
before testing. Because the human Casp6 transgene
was inserted in the X chromosome Hprt locus, only males
were used to avoid a lionization effects. The experimenter
was blinded to the genotype. Mice performances were
recorded using the HVS 2100 automated video tracking
system (HSV Image, Hampton, UK) or recorded
manually.

Psychiatric analyzes

Forced swim test Mice were placed 6 min in a cylinder
(25 cm tall, 19 cm wide) filled with room temperature water
to a depth of 15 cm. Immobility was timed during the last 4
min of the session.

Sucrose consumption test Individually housed animals
were provided ad libitum access to two bottles of water
for four days before replacing the water in one of the
bottles with 2% sucrose/H,0. Liquid intake was estimated
by weighing the bottles daily for an additional four
days. The sucrose preference index was calculated
as the ratio of 2% sucrose solution consumed over
total liquid consumed normalized to kilogram body
weight [31].

Sensory and motor analyzes

Nesting score Mice were separated into individual cages
containing one Nestlet (#NES3600, Ancare, Bellmore, NY,
USA). The next day, the quality of the nests was scored
using the defined 5-points nest-rating scale [35].

Clasping score Mice were suspended by the tail at a height
of 30 cm, for two 20 s intervals, and limb movements were
evaluated with a rating scale [53].

Openfield Mice were placed in an empty box (Stoelting
Co, # 60111, Wood Dale, IL, USA) and were allowed
to explore for 5 min, three days in a row. The HVS 2100
analysis software divided the field in 16 virtual zones
(4 rows x4 columns) and analyzed the total distance
traveled (m), the percentage of time moving, and the
number of entries in each zone. The average speed was
estimated by dividing the total distance traveled per time
moving.
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Rotarod Mice were given three daily trials of 2 min at a
fixed speed (15 rpm) rotarod (IITC Life Science, Woodland
Hills, CA, USA) during three consecutive days (nine trials
total) with an inter-trial interval of 2 h. Mice falling from the
rod were returned on the rod until a maximum of 10 falls/
trial. The time to first fall and the total number of falls per
trial were recorded. On the fourth day, mice were tested on
a rod accelerating from 5 to 40 rpm over 300 s. Three trials
were performed, with an inter-trial interval of 2 h. The mean
latency to fall from the rod was recorded.

Vertical pole test Mice were placed head upwards at the
top of a vertical rough-surfaced pole (diameter: 20 mm;
height: 95 cm) and the mouse ability to turn downwards and
descend the pole measured. Mice were subjected to tree
trials of 180 s maximum with an inter-trial interval of 2 h.
The performance was scored as described (http:/neurobeha
viour.lunenfeld.ca/DEFAULT.ASP?page=Motor%
20Functions).

Footprints The hind and fore paws were coated with non-
toxic paint of different color and mice were allowed to walk
along a narrow corridor lined with white paper. Light was
used at one end of the corridor to encourage the mouse to
walk to the other end. Eight parameters were measured: the
left and right foot overlap (distance between right/left hin-
dlimb and forelimb), the right and left forelimb strides, the
right and the left hindlimb strides, the front base (distance
between the forelimbs) and the hind base (distance between
the hindlimbs). Each parameter was evaluated on a set of
four consecutive footprints.

Cognitive analyzes

Novel object recognition test Twenty-four hours after the
openfield assessment, mice were allowed to explore two
identical objects for 5 min (pre-exposure), returned to their
home cage and room for 2 h, and presented with the familiar
and a novel object (#62020, Stoelting Co, Wood Dale, IL,
USA). The position of the novel object was counterbalanced
between the animals to avoid any bias related to a pre-
ference in the location of the new object and the use of
potential founding spatial cues. The number of times
touching each object was recorded.

Search strategy preference test of the Morris water
maze Morris water maze test was performed as pre-
viously described [37] with minor modifications, using a
pool (150 cm diameter x 60 cm height, UgoBasile, Varese,
Italy) filled with 21-22 °C water made opaque by adding
white nontoxic paint (Tempera white #46 gouache, DemCo,
Quebec, QC, CA), and platforms of 10 cm diameter. Mice
were submitted to four trials per day for two consecutive

days; 60s each, followed by a series of three test trials,
24 h later. During the acquisition task, the platform was
marked by a visible static colored cylinder suspended above
the platform, and mice were released at a constant starting
position. During the test trials, 24 h later, the cued platform
was located in the opposite quadrant and a hidden
platform was placed in the training quadrant. The mouse
responses were analyzed for place response: the mouse
swam directly to the original platform; cue-guided response:
the mouse swam directly to the cued platform; conflictual
response: the mouse first swam in a quadrant but escaped
the water by using the platform located in the opposite
quadrant.

Barnes maze Barnes maze testing was performed as
described [54]. Mice were given four trials per day,
with an intertrial interval of 15 min, for four consecutive
days. Twenty-four hours after the last training trial, the mice
were submitted to a single probe test. Mouse movements
were continuously tracked and the latency to reach the
target hole (primary latency), the number of errors to the
first encounter of the escape hole (primary errors), the total
error and the latency to enter the escape hole, and the
number of nose pokes in each hole were recorded and
analyzed.

Tissue preparation

Mice were sacrificed and tissues were processed as pre-
viously described [55]. Frozen tissues were homogenized in
five volume of radioimmunoprecipitation assay buffer
[(0mM Tris—HCl, pH 7.4, 1% NP-40, 150 mM NaCl,
0.25% Na-deoxycholate, 1 mM EDTA, 1 mM Na3zVOy,, 1
mM NaF, 1 mM PMSF, 10 uL/mL of Proteases Inhibitors
Cocktail (P8340, Sigma—Aldrich, St. Louis, MO, USA)]
with a mechanical homogenizer (TH, Omni International,
Marietta, GA), and centrifuged for 20 min at 15,000 rpm at
4°C. The supernatants were stored at —80°C until
processing.

In vitro digestion of brain extracts by recombinant
active Casp6

Proteins were precipitated with acetone (1:4 ratio, —20 °C
overnight) [56]. The pellets were resuspended in Sten-
nicke’s buffer (SB) (20 mM piperazine-N, N-bis (2-ethane-
sulfonic acid (BioShop Canada Inc., Burlington, Ontario,
CA) pH 7.2, 30mM NaCl, 1 mM EDTA, 0.1% CHAPS,
10% sucrose) [57]. The reaction mix consisted of 400 ng
recombinant active Casp6, prepared from the pET23b
cDNA construct [58], 200 pg brain protein extract, SB
and freshly added 10 uM DTT and was incubated 4 h at
37 °C [40].
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Western blots analyzes

Samples were prepared in Laemli buffer, as described [55].
Five to twenty microgram of proteins were separated on
SDS-PAGE gels and blotted onto PVDF membranes.
Membranes were probed with primary antibodies diluted in
SuperBlock® blocking buffer (Thermoscientific, Rockford,
USA): 1/10000 GN20622 anti-TubulinACasp6 [40], 1/1000
2125 anti-a-Tubulin (Cell Signaling, Danvers, MA, USA),
1/5000 SAB4200544 anti-synaptophysin (Sigma-Aldrich,
Oakville, ON, CA), 1/5000 AB1543 anti-synapsin (Cell
Signaling Tech. Danvers, MA, USA), 1/1000 SMI-81R
anti-SNAP-25 (Biolegend, San Diego, CA, USA), 1/1000
MAB377 anti-NeuN (Millipore, Etobicook, ON, CA),
1/5000 73448 anti-PSD-95 (UC Davis/NIH NeuroMab
Facility), 1/10000  MAB374 anti-GAPDH (Millipore),
1/3000 G3893 anti-GFAP (Sigma-Aldrich), 1/5000 10630
anti-p20 Casp6 [7], 1/1000 9762 anti-Casp6 (Cell Signaling
Tech.), 1/5000 A5441 anti-B-actin (Sigma-Aldrich).
Immunoreactivity was  detected with  horseradish
peroxidase-linked secondary antibodies (Jackson Immu-
noresearch Laboratories, West Grove, PA, USA for anti-
mouse; and Dako Cytomation Pascal, Burlington, Ontario,
CA for anti-rabbit) diluted in 5% nonfat dry milk in PBS-T.
Membranes were revealed by enhanced chemiluminescence
(ECL Prime, GE Healthcare Biosciences, Piscataway, NJ)
in a Fujifilm LAS4000 imaging system (Fujifilm USA,
Valhalla, NY) or by scanning the X-ray film on the Che-
miGenius apparatus (Syngene, Frederik, MD, USA) using a
lower light setting in transmission mode. The p-actin
immunoreactivity was detected with anti-mouse secondary
antibody conjugated with alkaline phosphatase (Jackson
ImmunoResearch Laboratories). Densitometric analyzes
were performed with Image Gauge analysis software 3.0.
(Fujifilm USA).

Immunohistochemistry

Mice were anesthetized with isoflurane, transcardially per-
fused with saline and 4% paraformaldehyde. The dissected
brains were postfixed for 24h in 10% neutral-buffered
formalin (Thermo Fisher Scientific, Ottawa, ON, CA),
embedded in paraffin blocks, and 4 pm sections cut at the
IRIC histology core facility (Universit€é de Montréal,
Montreal, CA). Postmortem human brain tissues were
obtained from the Douglas-Bell Canada Brain Bank (Dou-
glas Mental Health University Institute, Montreal, Quebec,
Canada). Eight micron sections of formalin-fixed, paraffin-
embedded brains from three HD patients (Vonsattel grade
II; case #325: female, 60 years; case # 1723: male, 66 years;
case #1020: female, 75 years) and three aged-matched non-
neurodegenerative controls (case #770: female, 77 years;
case # 1670: female, 51 years; case # 1722: male, 59 years)
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and one AD patient (case #725: female, 75 years) were
used. Paraformaldehyde-fixed, paraffin-embedded 4 pm
thick tissue sections of two Alzheimer cases from the
Religious Orders Study (case #10101327, male 89 years
and case #20965598: female, 90 years) were kindly pro-
vided by Dr D.A. Bennett (Rush Medical School, Chicago,
Il). Immunohistological staining were performed with an
automated Dako immunostainer (Burlington, ON, CA) as
described [9], with the following primary antibodies:
1/8000 Z0334 anti-GFAP (Dako), 1/2000 019-19741 anti-
Iba-1 (Wako, Richmond, VA, USA), 1/5000 LSB477
anti-human Casp6 (Lifespan Bioscience, Seattle, WA,
USA), 1/2000 MAB377 anti-NeuN (Millipore), 1/8000
SAB4200544 anti-synaptophysin (Sigma-Aldrich), 1/5000
GN20622 anti-Tubulin cleaved by Casp6 (TubACasp6) [40]
and 1/25000 anti-Tau cleaved by Casp6 (TauACasp6) [7].
Immunostaining was revealed with anti-rabbit-HRP or
-mouse-HRP antibodies and diaminobenzidine (Dako,
Burlington, ON, CA). The tissue sections were mounted in
Permount mounting medium (Fisher Scientific, Ottawa,
ON, CA) and digitally scanned with the MIRAX SCAN
scanner (Zeiss, Don Mills, ON, CA). The area of GFAP and
synaptophysin staining was quantified with Image J soft-
ware (NIH, Bethesda, MD, USA) and expressed as me
staining/um?® of tissue. NeuN staining was analyzed by
quantifying the number of NeuN positive nuclei with the
Image J software. Two parameters were used to analyze
Iba-1 staining: quantification of total positive cell/mm? tis-
sue and morphological characterization of Iba-1" cells
according to scoring schemes described [38]. An observer
blinded to genotypes did quantifications.

Preparation of recombinant Casp6 for
electrophysiological experiments

Casp6 activity assays were performed with 5-500 nM
recombinant active Casp6 (Casp6-WT) and 100 mM Ac-
VEID-AFC in Stennick buffer as described [11]. Recom-
binant Casp6 were active site titrated using z-VAD-fmk.
The ratio between reaction velocity with inhibitor over
reaction velocity without inhibitor was plotted against the
inhibitor concentration, and the concentration for y = 0 was
determined as the active site concentration of the Caspb6.

Titrated recombinant Casp6-WT was pre-activated in
Stennick buffer for 15 min at 37 °C, then diluted at 1:1000
in internal solution for cell patching. The catalytically
inactive Casp6-C163A, purified and prepared as Casp6-
WT, was used as a negative control.

Electrophysiology

Hippocampal whole-cell recordings were performed on 300
pm transverse hippocampal slices from 10 to 14-day-old
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C57BL/6 mice prepared with artificial cerebrospinal fluid
(ACSF) (125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH,POy,
26 mM NaHCO;, 1 mM MgCl,, 2 mM CaCl,, 45 mM glu-
cose, ~338 mOsm) as described [59]. The patch pipettes
were filled with internal solution (125 mM KCI, 2.5 mM K
gluconate, 10mM HEPES, 4mM MgATP, 0.3 mM
NaGTP, and 10mM Na-phosphocreatine, pH 7.3-7.4
adjusted by KOH, ~310 mOsm adjusted with sucrose) with
1-10 pg/10 uL recombinant Casp6-WT or Casp6-C163A
and 0.05 mM Alexa 594. Cell-attached whole-cell current-
clamp recordings were performed using standard techniques
[59]. CAl pyramidal neurons with large pyramidal soma
and thick apical dendrite were identified using Dodt contrast
and confirmed by morphology as visualized by two-photon
microscopy of Alexa 594 fluorescence, their resting mem-
brane potential and action potential properties. The stimu-
lation electrode was placed in the CA1l stratum oriens and
neurons were given five biphasic pulses of 25-50 V every
30 s to evoke EPSPs.

Striatal whole-cell recording was performed on 300 um
horizontal brain slices from 10-14 day old mice. Striatal
MSNs were identified post hoc by their morphology, resting
membrane potential, and action potential properties, and
input-output curve. To obtain the EPSPs in striatal MSN,
the dorsal MSN near the sensory-motor cortex was patched
and the cortico-striatal afferents were stimulated by placing
the stimulation electrode in layer 5 of the sensory-motor
cortex. The stimulation pattern was given as described for
CAL neurons.

Each neuron used in the data was required to have stable
membrane potential (+4 mV), input resistance (+15%) and
temperature (31-33 °C) throughout the recordings. Analysis
of EPSPs was performed using custom software running with
Igor Pro (WaveMetrics Inc., Lake Oswego, OR, USA). Peak
amplitudes of EPSPs were measured, and averaged every 2.5
min (5 traces). All averaged EPSPs were normalized to the
first 2.5 min EPSP in each neuronal recording.

Two-photon imaging

Two-photon excitation was achieved using a Chameleon
XR (Coherent, Santa Clara, CA, USA) at 820 nm for Alexa
594. Two-photon microscopes were custom-built as
described [60]. Imaging data were acquired using Matlab
(The MathWorks, Natick, MA, USA) via PCI-6110 boards
(National Instruments). After recording, images of neurons
were taken from two-photon laser scanning microscope
image stacks. The whole visible neuron was scanned at 2
ms/line and 512 x 512 pixels and three frames were aver-
aged for each optical section. Flattened two-photon-imaging
stack was used for morphological identification and
quantification.

Statistical analyzes

Data are expressed as means + SEM. Statistical analyzes
were performed with one-way analysis of variance (one-
way ANOVA) followed by the Dunnett’s post hoc test. For
repeated measures, the two-way ANOVA with genotype
status as one factor and time for the other, followed by the
Bonferroni post hoc test was used. Statistical calculations
were performed using GraphPad Prism 5.0 software
(GraphPad, La Jolla, CA, USA). Results were considered
significantly different at p < 0.05.
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