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A deeper understanding of the interaction between tumor cell and the immune microenvironment in bladder cancer may help
select predictive and prognostic biomarkers. The current study aims to construct a prognostic signature for bladder cancer by
analysis of molecular characteristics, as well as tumor-immune interactions. RNA-sequencing and clinical information from bladder
cancer patients were downloaded from the TCGA database. The single sample Gene Sets Enrichment Analysis (ssGSEA) and Cell
type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) were employed to separate the samples into two
clusters. Lasso Cox regression was performed to construct an immune gene signature for bladder cancer. The correlation between
key target genes of immune checkpoint blockade and the prognostic signature was also analyzed. Dataset from Gene Expression
Omnibus (GEO) was retrieved for validation. Two immunophenotypes and immunological characteristics were identified, and a 17-
immune gene signature was constructed to provide an independent prognostic signature for bladder cancer. The signature was
verified through external validation and correlated with genomic characteristics and clinicopathologic features. Finally, a
nomogram was generated from the clinical characteristics and immune signature. Our study reveals a tumor-immune
microenvironment signature useful for prognosis in bladder cancer. The results provide information on the potential development
of treatment strategies for bladder cancer patients. Prospective studies are warranted to validate the prognostic capability of this
model, but these data highlight the role of the microenvironment in the clinical outcome of patients.
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INTRODUCTION
Bladder cancer is the 9th most frequently diagnosed cancer
worldwide. Bladder cancer is a heterogeneous disease and
classified into muscle-invasive and nonmuscle-invasive disease
[1]. Platinum-based chemotherapy has been the standard treat-
ment strategy of metastatic muscle-invasive bladder cancer (MIBC)
for many years, based on the results of clinical trials. The inhibition
of immune checkpoints reactivates immune cytotoxicity and
promotes tumor regression in MIBC [2]. Immune checkpoint
inhibitors (ICIs) improve the survival of MIBC patients [3]. However,
treatment responses differ among patients, partly due to the
interpersonal heterogeneity [4].
Current clinical stratification systems focus on the tumor

histopathology and the staging system to inform prognosis.
Current predictive biomarkers of immunotherapy in bladder
cancer include tumor molecular subtype [5], programmed cell
death ligand-1 (PD-L1) expression [6], tumor mutational burden
(TMB) [7], and CD8+ tumor-infiltrating lymphocytes (TILs). The
molecular and immune characterization of cancer is critical for
the prediction of treatment responses [8]. Molecular classification
of bladder cancer is facilitated by transcriptome profiling, which

w-

ill lead to accurate prediction of treatment outcomes. There is
great importance of revising these stratification systems to
include molecular and immune parameters to guide clinical
decisions.
Previous research identified 6 subtypes and molecular features

[9] based on The Cancer Genome Atlas (TCGA), UROMOL
(nonmuscle-invasive bladder cancer cohort) [10], and IMvigor210
[4]. The subtypes include luminal papillary, luminal unstable,
luminal non-specified, basal/squamous, stroma-rich, and
neuroendocrine-like subtypes [9, 11]. The immune infiltration,
oncogenic mechanisms, clinical characteristics and outcomes
differ among the consensus classes.
Recent studies have investigated the immune characteristics of

bladder cancer, which has prognostic potential compared with
clinical characteristics [12–16]. The studies investigated the
characteristics of bladder cancer mainly focusing on immune cell
infiltration. However, the tumor-immune interactions and the
prognostic value in bladder cancer are largely overlooked. In this
study, we aim to explore the molecular characteristics associated
with tumor-immune interaction and establish an immune
signature for prognosis.
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METHODS
Data collection
The transcriptomic information and clinical data of bladder cancer patients
were retrieved. Normalized gene expression from RNA-sequencing
(Fragments Per Kilobase Million value) and somatic mutation of TCGA-
BLCA cohort were downloaded from TCGA database on 1 August 2021
(https://portal.gdc.cancer.gov). Then, TMB per Megabase was calculated for
each sample. Data of clinical information and normalized gene expression
were downloaded from Gene Expression Omnibus (GEO, www.ncbi.nlm.
nih.gov/geo); accession number is GSE13507. Data were analyzed with R
(version 4.0.3) (Fig. 1).

Estimation of immune and stromal content
ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data) tool was used to evaluate the infiltration of
tumor and normal cells. StromalScore, ImmuneScore and EstimateScore
were calculated [17]. CIBERSORT was utilized to determine the abundance
of 22 infiltrating immune cells of the cancer sample [18].

ssGSEA and hierarchical clustering analysis
Using R packages (“GSVA”, “GSEABase”, and “limma”), ssGSEA algorithm
was performed to investigate the immunological characteristics of each
sample based on 29 immune gene sets [19]. The ssGSEA score xi of each
sample was transformed into xi’ by deviation standardization. Hierarchical
clustering analysis was used to determine the subtypes of the bladder
cancer by Euclidean distance and Ward’s linkage. The discrimination and
accuracy of the subtypes of the bladder cancer were confirmed by
T-distribution stochastic neighbor embedding (tSNE) algorithm [20].

Analysis of prognosis-associated immunity genes
Differentially expressed genes (DEGs) were screened, with filter set as |log2
fold change | > 0.58 and false discovery rate (FDR) < 0.05 between
Immunity_H and Immunity_L groups. Differentially expressed immunity
genes (DEIGs) were retrieved from Immunology Database and Analysis
Portal (ImmPort) [21, 22]. Univariate Cox proportional hazards regression
analysis was performed. A gene with p < 0.01 was identified as prognosis-
associated immunity genes (PIGs) from the DEIGs, followed by the
Benjamini-Hochberg (BH) procedure to control for FDR.

Analysis of functional annotation and regulation network
In order to uncover the signaling pathways of the DEGs, a gene-set
enrichment analysis was conducted of TCGA-BLCA cohort by Gene Set
Enrichment Analysis (GSEA) [23, 24]. Kyoto Encyclopedia of Genes (KEGG)
pathways upregulated in Immunity_H and Immunity_L groups

were identified. Screening condition was set as FDR < 0.01. Then,
transcription factors associated with tumorigenesis and tumor progression
of bladder cancer were obtained from CISTROME project (http://cistrome.
org/), and the differentially expressed transcription factors (DETFs) were
extracted from the total DEGs. The regulatory network of PIGs and DETFs
were constructed using Pearson’s correlation coefficient analysis [25, 26].
The cutoffs for significance were set as |r| > 0.3 and FDR < 0.01. STRING
(string-db.org/) was used to analyse protein-protein interaction (PPI).

Construction of immunity gene-associated prognostic model
An optimal immunity gene-associated prognostic model (IGPM) for
bladder cancer was generated using Cox regression model with LASSO
via R package “glmnet” using PIGs. The risk score was calculated as follows:

The risk score ¼
Xn

i¼1

Coefi ´ Expri

where Expri indicates the expression level of gene i, and coefi denotes the
regression coefficient of gene i in the signature.
All patients were separated into low- and high-risk groups based on the

median value of IGPM-based risk signature. Survival analysis was
performed with Kaplan-Meier curve. The log rank test was used to
compare the survival status between the groups. The time-dependent
receiver operating characteristic curve (ROC) was generated and the area
under the curve (AUC) was calculated for 1-, 3-, and 5-year overall survival
to determine the predictive value of the risk signature. The relativity
between the risk signature and clinical parameters, immune checkpoints,
immune cell infiltration, and TMB were analyzed using Pearson’s or
Spearman correlation. A p < 0.05 was considered as statistically signifi-
cant. Finally, IGPM-based risk signature and clinicopathological para-
meters were analyzed with univariate and multivariate Cox regression.
Then, the above factors were used to construct a nomogram. Finally, ROC
and calibration curves were used to determine the suitability of the
nomogram.

RESULTS
Two subtypes of bladder cancer were identified by
immunogenomic profiling
The samples included 414 cancer tissue and 19 adjacent tissue
samples. For available clinical information data, only patients with
complete information were included. Those with missing data
were excluded, including survival time, survival status, age,
gender, grade, or TNM classification. Then, 411 cases with data
on somatic gene mutations were enrolled (Table 1).

Fig. 1 Study flowchart. The main steps and bioinformatics tools used for data analysis were displayed.
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Based on the ssGSEA scores and hierarchical clustering
algorithm, the samples were separated into two clusters:
Immunity_H (High) and Immunity_L (Low) (Fig. 2A, B).

The characteristics of tumor microenvironment between the two
subtypes were identified based on the results of ESTIMATE. The
results indicate that the EstimateScore, ImmuneScore and
StromalScore of Immunity_H group are higher than those of
Immunity_L group (Wilcox test, p < 0.001) (Fig. 2C).
The immune cell infiltration was investigated via CIBERSORT

algorithm. There are significant differences of the infiltration of
CD8+ T cells, activated memory CD4+ T cells, naive CD4+ T cells,
monocytes, naive B cells, M0 macrophages, M1 macrophages, and
neutrophils between Immunity_H and Immunity_L groups
(Fig. 2D). The immune level clustering of the bladder cancer
patients was further confirmed by tSNE algorithm. The classifica-
tion results were obtained (Fig. 2E). The expression of HLA genes
in the two subtypes were investigated. Results show that most
HLA genes are highly expressed in Immunity_H than those in
Immunity_L group (Wilcox test, p < 0.05) (Fig. 2F).

Tumor-immune interactions
The molecular characteristics of tumor-immune interactions in
bladder cancer patients were explored by immunophenotype
stratification. After preliminary screening, 2689 genes were
identified as DEGs. Of these, 1526 and 1163 genes were
upregulated and downregulated in the Immunity_H group,
respectively. The expression levels of all DEG were shown in
Fig. 3A. Subsequently, 468 genes were identified as DEIGs. Among
them, 412 and 56 genes were upregulated and downregulated,
respectively (Fig. 3B). Finally, 32 PIGs were identified using
univariable Cox proportional hazards regression analysis (Fig. 3C).
The correction of FDR by the Benjamini & Hochberg method was
shown in Supplementary Table 1. Of these, 12 and 20 gene were
upregulated and downregulated in the Immunity_H group,
respectively. The log2 fold change values in the DEGs and their
FDR values were shown in Fig. 3D.
GSEA was performed to investigate the pathways involved in

the DEGs in order to uncover the overall pattern of the immune
gene expression. Several biologically sensible themes were
obtained in Immunity_H group, indicating that the DEGs were
involved in the immune-related biological processes and signaling
pathways. For KEGG analysis (Fig. 4A, B and Supplementary
Table 2), the immune-associated pathways were highly active in
Immunity_H. The pathways include cytokine receptor interaction,
hematopoietic cell lineage, natural killer (NK) cell mediated

Table 1. Clinical characteristics of 411 patients in TCGA-BLCA cohort.

Characteristics Variable Entire dataset Percentage (%)

Vital status Alive 232 56.4

Dead 179 43.6

Age ≤65 161 39.2

>65 250 60.8

Gender Female 108 26.3

Male 303 73.7

Grade Low Grade 24 5.8

High Grade 387 94.2

Tumor stage Stage I 2 0.5

Stage II 131 31.9

Stage III 141 34.3

Stage IV 135 32.8

Unknown 2 0.5

T staging T0 1 0.2

T1 3 0.7

T2 120 29.2

T3 195 47.5

T4 59 14.4

Unknown 33 8.0

M staging M0 196 47.7

M1 11 2.7

Unknown 204 49.6

N staging N0 239 58.2

N1 47 11.4

N2 76 18.5

N3 7 1.7

Unknown 42 10.2

Fig. 2 Hierarchical clustering. (A) Bladder cancer patients were separated into Immunity_H and Immunity_L subtypes by hierarchical
clustering. (B) Landscape of tumor microenvironment and the immune characteristics in the TCGA-BLCA cohort. (C) EstimateScore,
StromalScore, and ImmuneScore between two subtypes. (D) Immune cell infiltrations between two subtypes. (E) Validation of
immunophenotype via tSNE. (F) HLA gene expression levels between two subtypes. *p < 0.05, **p < 0.01, ***p < 0.001. tSNE T-distribution
stochastic neighbor embedding.
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Fig. 3 DEGs, DEIGs, and PIGs expression. (A) All DEGs between two subtypes. (B) All DEIGs between two subtypes. (C) PIGs and their hazard
ratios based on univariable Cox proportional hazards regression analysis. (D) Volcano plot of DEGs. DEG differentially expressed gene, DEIG
differentially expressed immunity gene, PIG prognosis-associated immunity gene.

Fig. 4 Identification of subtype-specific pathways and networks. (A) Bar plot chart of DEGs through KEGG enrichment analysis. (B) Bubble
chart of DEGs through KEGG enrichment analysis. (C) Regulatory network revealed by alluvial diagram of the BCTFs and PIGs. (D) PPI network
between BCTFs and PIGs. KEGG Kyoto Encyclopedia of Genes and Genomes, BCTF bladder cancer transcription factor, PIGs prognosis-
associated immunity genes.
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cytotoxicity, chemokine signaling pathway, JAK/STAT signaling
pathway, cell adhesion molecules, antigen processing and
presentation, and T cell and B cell receptor signaling pathway.
Furthermore, various immune disease-associated pathways hyper-
activated in Immunity_H were identified, including asthma,
autoimmune thyroid disease, type I diabetes mellitus, primary
immunodeficiency, systemic lupus erythematosus, and acute
myeloid leukemia. Several pathways relating to infectious diseases
were also enriched in Immunity_H group, such as viral myocardi-
tis, leishmaniasis, prion diseases, and pathogenic Escherichia coli
infection.
Differential expression and data from CISTROME database

were combined to identify transcription factors related to

bladder cancer. A total of 36 upregulated transcription factors
were identified in the Immunity_H group. Then, the regulatory
relationships of the bladder cancer transcription factor (BCTF)-
PIGs were determined from correlation analysis (Supplementary
Table 3). The regulatory network of the BCTF-PIGs was shown in
Fig. 4C. PPI analysis was performed to investigate the correlation
between the BCTF and PIGs, which confirm the interactions
between them (Fig. 4D).

Construction and validation of the IGPM-based risk signature
An IGPM-based risk signature was constructed, including 17 genes
to predict overall survival in TCGA-BLCA cohort (Fig. 5A, 5B). The
17 genes are HLA-G, AGER, VEGFA, SCG2, IL9R, CTSE, NOX1,

Fig. 5 Construction and validation of IGPM-based risk signature. (A) 10-fold cross-validation for tuning parameter selection in the LASSO
model. (B) LASSO coefficient profiles of the 32 PIGs. (C–F) Distribution of the risk score, survival time, and survival status in TCGA-BLCA (C, E)
and GSE13507 cohort (D, F). (G, H) Correlation analysis of the risk score and survival time in TCGA-BLCA and GSE13507 cohort. (I, J) Kaplan-
Meier survival analysis based on IGPM-based risk signature in TCGA-LCA and GSE13507 cohort. (K, L) The ROC curve and AUC of the
predictions for 1-, 3-, and 5-year of IGPM-based risk signature for TCGA-BLCA and GSE13507 cohort. (M, N) The calibration plot of IGPM-based
risk signature for TCGA-BLCA and GSE13507 cohort. IGPM immunity gene-associated prognostic model, ROC curve receiver operating
characteristic curve, AUC area under the curve, kIG key PIG involved in the construction of IGPM.
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S100A10, GBP2, VIM, CD3D, CCL17, PDGFRB, CTSS, PLXNB1, GNLY,
and LTBP2.
The risk score of each patient was calculated, and the patients

of TCGA-BLCA cohort and GSE13507 were separated into high-
and low-risk groups based on a median risk score (Fig. 5C, D). The
clinical characteristics of 165 bladder cancer patients of GEO
dataset was shown in Table 2. Survival time in the high-risk group
is shorter than that in the low-risk group (Fig. 5E, F). Correlation
analysis suggest that the risk score had a significantly negative
correlation with survival time (Fig. 5G, H). Results show that high-
risk group was significantly associated with poorer overall survival
(Log-rank test, p < 0.0001 and p = 0.006, respectively, Fig. 5I, J).
The AUCs of the 1-, 3-, and 5-year predictions were 0.742, 0.595,
0.734, 0.623, 0.747, and 0.612, respectively (Fig. 5K, L). The
calibration plot was used to determine the discriminative ability of
the IGPM-based risk signature. The predicted value of IGPM-based
risk signature was in agreement with the actual value (Fig. 5M, N).

Correlation of risk score, clinical features, immune cell
infiltration, immune checkpoints and TMB
The pairwise correlations of the risk score were examined with
clinical features, immune cell infiltration, immune checkpoints,
and TMB, respectively. Differences of risk score among subtypes
according to clinical variables were determined. The risk score
increased with tumor grade (Fig. 6A) and stage (Fig. 6B), indicating
that risk score was positively correlated with tumor progression.
Our results show that LTBP2, PDGFRB, SCG2, and VIM have
significantly positive correlation with American Joint Committee
on Cancer (AJCC) stage and grade (Supplementary Fig. S1),
indicating that the PIGs might affect the prognosis of bladder
cancer patients.

Results of CIBERSORT algorithm indicate that proportion of CD8
T cells, follicular helper T cells, memory activated CD4 T cells,
regulatory T cells (Tregs), and activated dendritic cells (DCs) were
negatively associated with risk score (Fig. 6C). SCG2 had a
negative correlation with the follicular helper T cells, CD8 T cells,
and activated dendritic cells, whereas GNLY had a positive
correlation with CD8 T cells, memory activated CD4 T cells, resting
NK cells, and M1 macrophages. Besides, CD3D, CTSS, GBP2, and
HLA-G had positive correlation with CD8 T cells and memory
activated CD4 T cells, but there is a negative correlation with M0
macrophages. LTBP2, VIM, and PDGFRB are positively correlated
with M0 macrophages and M2 macrophages, but are negatively
correlated with follicular helper T cells and activated dendritic
cells (Fig. 6D). These results suggest that the prognostic signature
is a novel approach to reveal immunity regulatory network in
bladder cancer. The correlation between the immune subtypes
and clinical characteristics in the TCGA-BLCA cohort was shown in
Table 3.
Furthermore, 6 key immune checkpoint blockade genes

(PDCD1, CD274, PDCD1LG2, CTLA4, HAVCR2 and IDO1) were
correlated. The correlation between immune checkpoint blockade
key targets and the prognostic signature was analyzed (Fig. 6E).
The results indicate that the prognostic signature is positively
correlated to PDCD1LG2 (r= 0.19; p= 0.00017) (Fig. 6F); nega-
tively correlated to PDCD1 (r= −0.15; p= 0.0032) and CTLA4
(r= −0.13; p= 0.011) (Fig. 6G, H). Further correlation analysis
revealed that the expression levels of 16 out of 47 (i.e., PDCD1,
CTLA4, etc.,) immune check blockade-associated gene were
significantly upregulated in patients of low risk (Fig. 6I), suggesting
the prognostic signature could predict clinical outcome for
patients receiving immunotherapy.
We further found that there are no significant differences in

TMB between high and low IGPM group (Fig. 6J). However, higher
TMB was associated with better overall survival (Log-rank test, p <
0.001, Fig. 6K). IGPM and TMB were integrated to stratify all the
samples into TMBhigh/IGPMlow, TMBlow/IGPMlow, TMBhigh/ IGPMhigh,
and TMBlow/IGPMhigh groups. Significant differences are found
among all groups (Log-rank test, p < 0.0001, Fig. 6L), and patients
in the TMBhigh/ IGPMlow group have the best overall survival. These
results demonstrate that the risk score was positively correlated
with tumor malignancy.

Construction and validation of a nomogram
Univariate and multivariate Cox regression analysis was performed
to determine whether IGPM-based risk signature is an indepen-
dent prognostic factor. The IGPM-based risk signature, together
with gender, age and AJCC stage were used as covariates. The
results suggest that p values of the risk score in two analyses were
<0.001, and hazard ratios which were 3.651 [95% confidence
interval (CI): 2.713–4.915] and 2.993 (95% CI: 2.187–4.094),
confirming that the IGPM-based risk signature could inform the
prognosis of bladder cancer patients (Fig. 7A–B).
Finally, a nomogram was constructed to extend the clinical

application of IGPM-based risk signature (Fig. 7C). The ROC curve
suggests that the nomogram has good predictive accuracy for
survival (Fig. 7D). Furthermore, the calibration plot shows that the
nomogram has similar performance to that of an ideal model
(Fig. 7E).

DISCUSSION
In recent years, the classification of bladder cancer has moved
from classical clinical characteristics to multi-omics profiling. Novel
biomarkers and drug targets for bladder cancer are being
investigated [9, 27]. With the emergence of ICI in the treatment
of multiple cancer types, there is a growing interest in the tumor
immunology. The stratification of bladder cancer patients due to
their immunological characteristics have been demonstrated to

Table 2. Clinical characteristics of 165 bladder cancer patients of GEO
dataset.

Characteristics Variable Entire dataset Percentages (%)

Vital status Alive 96 58.2

Dead 69 41.8

Age ≤65 74 44.8

>65 91 55.2

Gender Female 30 18.2

Male 135 81.8

Grade Low Grade 105 63.6

High Grade 60 36.4

Tumor stage Stage 0 23 13.9

Stage I 80 48.5

Stage II 26 15.8

Stage III 13 7.9

Stage IV 23 13.9

T staging Ta 24 14.5

T1 80 48.5

T2 31 18.8

T3 19 11.5

T4 11 6.7

M staging M0 158 95.8

M1 7 4.2

N staging N0 149 90.3

N1 8 4.9

N2 6 3.6

N3 1 0.6

Unknown 1 0.6
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improve patient survival [28]. However, previous studies have not
incorporated the tumor-immune interactions.
In our study, ssGSEA was used to separate bladder cancer

patients to immunity_H and immunity_L subtypes. In immunity_H
group, high infiltration of immune cells in tumors were observed,
as well as positive antitumor activities, which is consistent with
previous findings [29, 30]. Immune control of tumor growth is
mediated by the cytotoxic T lymphocytes or NK cells. CTLs have
shown prognostic value in multiple tumor types, including
bladder cancer [31]. NK cells exert antitumor effects under low
major histocompatibility complex (MHC) conditions. Intratumoral
CD56bright NK cells are correlated with better survival outcome in
bladder cancer [32, 33]. Among various immune cells, B cells have
a role in tumor progression and impact on the bladder cancer
metastasis [34]. Moreover, both proinflammatory and tumoricidal
macrophages which inhibit inflammation are involved in the
process of immune response [35]. M2 macrophage is “protumoral
macrophage”, which is associated with poor prognosis [36].
Additionally, DCs can initiate an immune response to adaptive
immune system [37]. Consistently, patients in the immunity_H
group have better survival outcome than those in the
immunity_L group.

The results of ssGSEA combined with bioinformatics analysis
demonstrate that the immunity_H group has an activated status
of immunity. The immunity_H subtype is abundant with immune-
related signatures, but also associated with various cancer-related
pathways, such as JAK/STAT, apoptosis, pancreatic cancer, and
MARK signaling. The results are in accordance with previous
reports demonstrating that immune signatures are associated
with the JAK-STAT signaling pathways [38]. Of note, our results
suggest that signaling pathway and immune response are
correlated in bladder cancer.
IGPM-based risk signature was constructed based on the 17-

immune genes. It is a robust prognostic tool, which can predict
outcome of the bladder cancer patient, and result was confirmed
in two independent datasets. Furthermore, the IGPM-based risk
signature has similar value of clinical variables and infiltration of
immune cells.
Most of the 17 genes have been associated with tumor

initiation. Previous trials have reported that VIM (vimentin) is an
epigenetic biomarker for bladder cancer. Hypermethylated VIM is
associated with worse relapse-free survival (RFS) in bladder cancer
[39–42]. However, study of Hu et al. reveals that high VIM
expression level is associated with worse overall survival [43].

Fig. 6 Relationship of IGPM-based risk signature with clinical characteristics, kIGs, immune microenvironment and TMB. (A) Correlation of
risk score with tumor grade and tumor stage. (B) Infiltrating immune cell subpopulations and levels between low-/high-risk groups. (C)
Correlation of the IGPM-based risk signature with kIGs and immune cell infiltration. (D) Association analyses between risk score and immune
checkpoints. Association between risk score and PDCD1LG2 (E), PDCD1 (F), and CTLA4 (G). (H) Comparison of expression levels of ICI-related
genes between low-/high-risk groups. (I) Comparison of TMB between IGPM-high and IGPM-low groups. (K) Kaplan-Meier survival analysis
based on the TMB in the TCGA-BLCA cohort. (L) Kaplan-Meier survival analysis for groups stratified by combining the TMB and the IGPM-based
risk signature in the. *p < 0.05, **p < 0.01.
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HLA-G (Human leukocyte antigen-G), an immune checkpoint
molecule known for its tolerogenic role, is expressed by various
cancer types, including bladder cancer [44, 45]. Expression of HLA-
G has been associated with higher grade and worse prognosis in
multiple cancers [46, 47]. VEGFA (Vascular Endothelial Growth
Factor A) can promote angiogenesis and contribute to tumor
metastasis [48, 49]. VEGFA overexpression in stage T3-T4 bladder
cancer is a predictive factor for antiangiogenic therapy [50].
Compared with MIBC, CTSE (cathepsin E) is overexpressed in
nonmuscle-invasive bladder cancer (NMIBC) [51]. During a long-
term follow-up study of 693 patients of NMIBC, low CTSE
expression was confirmed to be significantly related to the
progression of NMIBC to MIBC [52]. SCG2 (secretogranin II) is a
secretory protein, which could regulate the functions of leucocyte,
endothelial, and mesenchymal cell [53]. Previous study found that
SCG2 is secreted by malignant pheochromocytomas, which can
serve as a potential diagnostic marker [54, 55]. The expansion of
CD8+ T cells is promoted by Th9 cell in colorectal cancer in an IL-
9R-dependent manner [56, 57]. Saiki et al. summarized its
biological functions and prognostic value of S100A10 in cancer
[58]. GNLY encodes granulysin, which causes tumor lysis [59]. High
CD3D/CD4 ratio predicts longer survival of MIBC, and the CD3D/
CD4 ratio is considered as a prognostic marker [3]. CCL17 induced
CCR4 production, and CCR4 expression was a prognostic risk
factor in bladder cancer [60]. The level of urinary PDGFRB was
correlated with the risk of recurrence of NMIBC [61]. All these
genes were closely related to the prognosis of bladder cancer.

In the current study, we found that bladder cancer patients of
higher TMB had a better survival outcome, which was similar with
other studies [62, 63]. However, there was no statistically significant
correlation between TMB and the IGPM-based risk signature. The
stratified survival analysis suggested that the prognostic value of
IGPM-based risk signature was not interfered by TMB.
There are several limitations of our study. This study aimed to

develop a nomogram to predict the overall survival of patients of
bladder cancer. However, for NMIBC patients, time to recurrence or
recurrence-free survival is the suitable primary endpoint, while overall
survival is used as a potential surrogate endpoint [64]. Furthermore,
the analysis was based on TCGA and GEO databases; validation using
larger datasets is required to emulate the real-world environment.
Future studies should investigate the utility of prognostic tools.
In conclusion, these findings demonstrated that the IGPM-

based risk signature could be utilized to predict the prognosis of
bladder cancer patients.

CONCLUSION
In conclusion, the comprehensive landscape of tumor-immune
interactions in bladder cancer was elucidated, and an IGPM-based
risk signature was constructed to inform the prognosis of bladder
cancer patients through computational algorithms. The 17-gene
signature should be validated in larger prospective cohorts of
clinical samples. Further investigations on the molecular mechan-
isms are needed.

Table 3. Correlation between the immune subtypes and clinical characteristics in the TCGA-BLCA cohort.

Parameter Immune subtype (n, %) p value FDR

Immunity_L Immunity_H

Age ≤65 83 (39.9) 78 (38.4) 0.7629 0.8683

>65 125 (60.1) 125 (61.6)

Gender Female 46 (22.1) 62 (30.5) 0.0572 0.1334

Male 162 (77.9) 141 (69.5)

Grade Low Grade 19 (9.1) 2 (1.0) 0.0002 0.0011

High Grade 187 (89.9) 200 (98.5)

Unknown 2 (1.0) 1 (0.5)

Tumor stage Stage I 2 (1.0) 0 (0) 0.5884 0.8238

Stage II 64 (30.7) 67 (33.0)

Stage III 69 (33.2) 72 (35.5)

Stage IV 71 (34.1) 64 (31.5)

Unknown 2 (1.0) 0 (0)

T staging T0 1 (0.5) 0 (0) 0.8683 0.8683

T1 2 (1.0) 1 (0.5)

T2 59 (28.3) 61 (30.0)

T3 94 (45.2) 101 (49.8)

T4 31 (14.9) 28 (13.8)

Unknown 21 (10.1) 12 (5.9)

M staging M0 109 (52.4) 87 (42.9) 0.0029 0.0102

M1 11 (5.3) 0 (0)

Unknown 88 (42.3) 116 (57.1)

N staging N0 119 (57.2) 120 (59.1) 0.5298 0.8238

N1 21 (10.1) 26 (12.8)

N2 41 (19.7) 35 (17.2)

N3 5 (2.4) 2 (1.0)

Unknown 22 (10.6) 20 (9.9)

P values were obtained by Fisher’s exact test; FDR was corrected by the Benjamini & Hochberg method.
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Fig. 7 Analysis by proportional hazards model. (A) Univariate Cox regression results. (B) Multivariate Cox regression results. (C) Nomogram
constructed in conjunction with the IGPM-based risk signature and clinical characterization. (D) The ROC curve and AUC of the predictions for
1-, 3-, and 5 years of the nomogram. (E) The calibration plot of the nomogram.

Z. Wang et al.

502

Cancer Gene Therapy (2022) 29:494 – 504



DATA AVAILABILITY
Publicly available datasets were analyzed in this study.

REFERENCES
1. Pang KH, Esperto F, Noon AP. party EAUYAU-UCW. Opportunities of next-

generation sequencing in non-muscle invasive bladder cancer outcome predic-
tion. Transl Androl Urol. 2017;6:1043–8.

2. Bellmunt J, Powles T, Vogelzang NJ. A review on the evolution of PD-1/PD-L1
immunotherapy for bladder cancer: The future is now. Cancer Treat Rev.
2017;54:58–67.

3. Jiang W, Zhu D, Wang C, Zhu Y. An immune relevant signature for predicting
prognoses and immunotherapeutic responses in patients with muscle-invasive
bladder cancer (MIBC). Cancer Med. 2020;9:2774–90.

4. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al.
Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally
advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2
trial. Lancet. 2017;389:67–76.

5. Song BN, Kim SK, Mun JY, Choi YD, Leem SH, Chu IS. Identification of an
immunotherapy-responsive molecular subtype of bladder cancer. EBioMedicine.
2019;50:238–45.

6. Zhou TC, Sankin AI, Porcelli SA, Perlin DS, Schoenberg MP, Zang X. A review of the
PD-1/PD-L1 checkpoint in bladder cancer: From mediator of immune escape to
target for treatment. Urol Oncol. 2017;35:14–20.

7. Lv J, Zhu Y, Ji A, Zhang Q, Liao G. Mining TCGA database for tumor mutation
burden and their clinical significance in bladder cancer. Biosci Rep. 2020;40:
BSR20194337.

8. McConkey DJ, Choi W, Shen Y, Lee IL, Porten S, Matin SF, et al. A Prognostic Gene
Expression Signature in the Molecular Classification of Chemotherapy-naive Uro-
thelial Cancer is Predictive of Clinical Outcomes from Neoadjuvant Chemotherapy:
A Phase 2 Trial of Dose-dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin
with Bevacizumab in Urothelial Cancer. Eur Urol. 2016;69:855–62.

9. Tan TZ, Rouanne M, Tan KT, Huang RY, Thiery JP. Molecular Subtypes of Urothelial
Bladder Cancer: Results from a Meta-cohort Analysis of 2411 Tumors. Eur Urol.
2019;75:423–32.

10. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, et al. Compre-
hensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell.
2016;30:27–42.

11. Kamoun A, de Reynies A, Allory Y, Sjodahl G, Robertson AG, Seiler R, et al. A
Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol.
2020;77:420–33.

12. Liu J, Ma H, Meng L, Liu X, Lv Z, Zhang Y, et al. Construction and External
Validation of a Ferroptosis-Related Gene Signature of Predictive Value for the
Overall Survival in Bladder Cancer. Front Mol Biosci. 2021;8:675651.

13. Wang X, Pan L, Lu Q, Huang H, Feng C, Tao Y, et al. A combination of ssGSEA and
mass cytometry identifies immune microenvironment in muscle-invasive bladder
cancer. J Clin Lab Anal. 2021;35:e23754.

14. Zhao K, Zhang Q, Zeng T, Zhang J, Song N, Wang Z. Identification and validation
of a prognostic immune-related lncRNA signature in bladder cancer. Transl
Androl Urol. 2021;10:1229–40.

15. Wu Y, Zhang L, He S, Guan B, He A, Yang K, et al. Identification of immune-related
LncRNA for predicting prognosis and immunotherapeutic response in bladder
cancer. Aging (Albany NY). 2020;12:23306–25.

16. Quan J, Zhang W, Yu C, Bai Y, Cui J, Lv J, et al. Bioinformatic identification of
prognostic indicators in bladder cancer. Biomark Med. 2020;14: 1243–54.

17. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W,
et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. 2013;4:2612.

18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration
of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

19. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinforma. 2013;14:7. Jan 16

20. Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat
Commun. 2019;10:5416.

21. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al. ImmPort,
toward repurposing of open access immunological assay data for translational
and clinical research. Sci Data. 2018;5:180015.

22. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Res. 2015;43:e47.

23. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al.
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordi-
nately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene
set enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

25. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome Data Browser:
expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res.
2019;47:D729–D735.

26. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data Browser: a data
portal for ChIP-Seq and chromatin accessibility data in human and mouse.
Nucleic Acids Res. 2017;45:D658–D662.

27. Robertson AG, Groeneveld CS, Jordan B, Lin X, McLaughlin KA, Das A, et al.
Identification of Differential Tumor Subtypes of T1 Bladder Cancer. Eur Urol.
2020;78:533–7.

28. Hu B, Wang Z, Zeng H, Qi Y, Chen Y, Wang T, et al. Blockade of DC-SIGN(+)
Tumor-Associated Macrophages Reactivates Antitumor Immunity and Improves
Immunotherapy in Muscle-Invasive Bladder Cancer. Cancer Res. 2020;80:1707–19.

29. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers
based on Immunogenomic profiling. J Exp Clin Cancer Res. 2018;37:327.

30. Liu Z, Jiang Z, Wu N, Zhou G, Wang X. Classification of gastric cancers based on
immunogenomic profiling. Transl Oncol. 2021;14:100888.

31. van Wilpe S, Gerretsen ECF, van der Heijden AG, de Vries IJM, Gerritsen WR,
Mehra N. Prognostic and Predictive Value of Tumor-Infiltrating Immune Cells in
Urothelial Cancer of the Bladder. Cancers (Basel). 2020;12:2692.

32. Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M, et al. Human
CD56bright NK Cells: An Update. J Immunol. 2016;196:2923–31.

33. Mukherjee N, Ji N, Hurez V, Curiel TJ, Montgomery MO, Braun AJ, et al. Intratu-
moral CD56(bright) natural killer cells are associated with improved survival in
bladder cancer. Oncotarget. 2018;9:36492–502.

34. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive analyses of
tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:174.

35. Takeuchi H, Tanaka M, Tanaka A, Tsunemi A, Yamamoto H. Predominance of M2-
polarized macrophages in bladder cancer affects angiogenesis, tumor grade and
invasiveness. Oncol Lett. 2016;11:3403–8.

36. Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage hetero-
geneity in human malignant tumors. Cancer Sci. 2014;105:1–8.

37. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev
Cancer. 2012;12:265–77.

38. Hindupur SV, Schmid SC, Koch JA, Youssef A, Baur EM, Wang D, et al. STAT3/5
Inhibitors Suppress Proliferation in Bladder Cancer and Enhance Oncolytic Ade-
novirus Therapy. Int J Mol Sci. 2020;21:1106.

39. Reinert T, Borre M, Christiansen A, Hermann GG, Orntoft TF, Dyrskjot L. Diagnosis
of bladder cancer recurrence based on urinary levels of EOMES, HOXA9, POU4F2,
TWIST1, VIM, and ZNF154 hypermethylation. PLoS One. 2012;7:e46297.

40. Guan B, Xing Y, Xiong G, Cao Z, Fang D, Li Y, et al. Predictive value of gene
methylation for second recurrence following surgical treatment of first bladder
recurrence of a primary upper-tract urothelial carcinoma. Oncol Lett.
2018;15:9397–405.

41. Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim RI, et al.
Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict blad-
der cancer from DNA-based analyses of urine samples. Clin Cancer Res.
2010;16:5842–51.

42. Guo RQ, Xiong GY, Yang KW, Zhang L, He SM, Gong YQ, et al. Detection of urothelial
carcinoma, upper tract urothelial carcinoma, bladder carcinoma, and urothelial
carcinoma with gross hematuria using selected urine-DNA methylation biomarkers:
A prospective, single-center study. Urol Oncol. 2018;36:342 e15–342.e23.

43. Hu J, Zhou L, Song Z, Xiong M, Zhang Y, Yang Y, et al. The identification of new
biomarkers for bladder cancer: A study based on TCGA and GEO datasets. J Cell
Physiol. 2019;13:5931.

44. Rouas-Freiss N, Moreau P, LeMaoult J, Carosella ED. The dual role of HLA-G in
cancer. J Immunol Res. 2014;2014:359748.

45. Gan LH, Huang LF, Zhang X, Lin A, Xu DP, Wang Q, et al. Tumor-specific upre-
gulation of human leukocyte antigen-G expression in bladder transitional cell
carcinoma. Hum Immunol. 2010;71:899–904.

46. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J. HLA-G: An
Immune Checkpoint Molecule. Adv Immunol. 2015;127:33–144.

47. Desgrandchamps F, LeMaoult J, Goujon A, Riviere A, Rivero-Juarez A, Djouadou
M, et al. Prediction of non-muscle-invasive bladder cancer recurrence by mea-
surement of checkpoint HLAG’s receptor ILT2 on peripheral CD8+ T cells.
Oncotarget. 2018;9:33160–9.

48. Pauty J, Usuba R, Cheng IG, Hespel L, Takahashi H, Kato K, et al. A Vascular
Endothelial Growth Factor-Dependent Sprouting Angiogenesis Assay Based on
an In Vitro Human Blood Vessel Model for the Study of Anti-Angiogenic Drugs.
EBioMedicine. 2018;27:225–36.

49. Ghosh S, Sullivan CA, Zerkowski MP, Molinaro AM, Rimm DL, Camp RL, et al. High
levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2,

Z. Wang et al.

503

Cancer Gene Therapy (2022) 29:494 – 504



neuropilin-1) are associated with worse outcome in breast cancer. Hum Pathol.
2008;39:1835–43.

50. Pignot G, Bieche I, Vacher S, Guet C, Vieillefond A, Debre B, et al. Large-scale real-
time reverse transcription-PCR approach of angiogenic pathways in human
transitional cell carcinoma of the bladder: identification of VEGFA as a major
independent prognostic marker. Eur Urol. 2009;56:678–88.

51. Blaveri E, Simko JP, Korkola JE, Brewer JL, Baehner F, Mehta K, et al. Bladder
cancer outcome and subtype classification by gene expression. Clin Cancer Res.
2005;11:4044–55. Jun 1

52. Fristrup N, Ulhoi BP, Birkenkamp-Demtroder K, Mansilla F, Sanchez-Carbayo M,
Segersten U, et al. Cathepsin E, maspin, Plk1, and survivin are promising prog-
nostic protein markers for progression in non-muscle invasive bladder cancer.
Am J Pathol. 2012;180:1824–34.

53. Kähler CM, Schratzberger P, Kaufmann G, Hochleitner B, Bechter O, Götsch C,
et al. Transendothelial migration of leukocytes and signalling mechanisms in
response to the neuropeptide secretoneurin. Regul Pept. 2002;105:35–46.

54. Yon L, Guillemot J, Montero-Hadjadje M, Grumolato L, Leprince J, Lefebvre H,
et al. Identification of the secretogranin II-derived peptide EM66 in pheochro-
mocytomas as a potential marker for discriminating benign versus malignant
tumors. J Clin Endocrinol Metab. 2003;88:2579–85.

55. Luo Y, Chen L, Zhou Q, Xiong Y, Wang G, Liu X, et al. Identification of a prognostic
gene signature based on an immunogenomic landscape analysis of bladder
cancer. J Cell Mol Med. 2020;24:13370–82.

56. Wang C, Lu Y, Chen L, Gao T, Yang Q, Zhu C, et al. Th9 cells are subjected to
PD-1/PD-L1-mediated inhibition and are capable of promoting CD8 T cell
expansion through IL-9R in colorectal cancer. Int Immunopharmacol.
2020;78:106019.

57. Li P, Hao S, Ye Y, Wei J, Tang Y, Tan L, et al. Identification of an Immune-Related
Risk Signature Correlates With Immunophenotype and Predicts Anti-PD-L1 Effi-
cacy of Urothelial Cancer. Front Cell Dev Biol. 2021;9:646982.

58. Saiki Y, Horii A. Multiple functions of S100A10, an important cancer promoter.
Pathol Int. 2019;69:629–36.

59. Sparrow E, Bodman-Smith MD. Granulysin: The attractive side of a natural born
killer. Immunol Lett. 2020;217:126–32.

60. Zhao H, Bo Q, Wang W, Wang R, Li Y, Chen S, et al. CCL17-CCR4 axis promotes
metastasis via ERK/MMP13 pathway in bladder cancer. J Cell Biochem.
2018;120:1979–89.

61. Feng J, He W, Song Y, Wang Y, Simpson RJ, Zhang X, et al. Platelet-derived
growth factor receptor beta: a novel urinary biomarker for recurrence of non-
muscle-invasive bladder cancer. PLoS One. 2014;9:e96671.

62. Romero D. TMB is linked with prognosis. Nat Rev Clin Oncol. 2019;16:336.
63. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al.

Development of tumor mutation burden as an immunotherapy biomarker: utility
for the oncology clinic. Ann Oncol. 2019;30:44–56.

64. Kamat AM, Sylvester RJ, Bohle A, Palou J, Lamm DL, Brausi M, et al. Definitions,
End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer:
Recommendations From the International Bladder Cancer Group. J Clin Oncol
2016;34:1935–44.

AUTHOR CONTRIBUTIONS
ZW, LP, and LZ designed and supervised the study. ZW, LP, ZW, LL, and LZ analyzed
the data and wrote the original draft. ZW, LP, and JS edited the draft. All the authors
have read and approved the final manuscript.

CONFLICT OF INTEREST
JS’ conflicts can be found at https://www.nature.com/onc/editors. None are relevant
here. The author declares no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41417-022-00438-5.

Correspondence and requests for materials should be addressed to Ling Peng.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Z. Wang et al.

504

Cancer Gene Therapy (2022) 29:494 – 504

https://www.nature.com/onc/editors
https://doi.org/10.1038/s41417-022-00438-5
http://www.nature.com/reprints
http://www.nature.com/reprints

	Identification of an immune gene-associated prognostic signature in patients with bladder cancer
	Introduction
	Methods
	Data collection
	Estimation of immune and stromal content
	ssGSEA and hierarchical clustering analysis
	Analysis of prognosis-associated immunity genes
	Analysis of functional annotation and regulation network
	Construction of immunity gene-associated prognostic model

	Results
	Two subtypes of bladder cancer were identified by immunogenomic profiling
	Tumor-immune interactions
	Construction and validation of the IGPM-based risk signature
	Correlation of risk score, clinical features, immune cell infiltration, immune checkpoints and TMB
	Construction and validation of a nomogram

	Discussion
	Conclusion
	References
	Author contributions
	Conflict of interest
	ADDITIONAL INFORMATION




