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Hedyotis diffusae Herba-Andrographis Herba inhibits the cellular
proliferation of nasopharyngeal carcinoma and triggers DNA
damage through activation of p53 and p21
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Dysregulation of the cell cycle and the resulting aberrant cellular proliferation has been highlighted as a hallmark of cancer. Certain
traditional Chinese medicines can inhibit cancer growth by inducing cell cycle arrest. In this study we explore the effect of Hedyotis
diffusae Herba-Andrographis Herba on the cell cycle of nasopharyngeal carcinoma (NPC). Hedyotis diffusae Herba-Andrographis
Herba-containing serum was prepared and then added to the cell culture medium. BrdU, comet, and FUCCI assays, western blot
analysis and flow cytometry analysis revealed that Hedyotis diffusae Herba-Andrographis Herba treatment significantly alters cell
proliferation, DNA damage, and cell cycle distribution. Xenograft mouse model experiments were performed, confirming these
in vitro findings in vivo. Treatment with Hedyotis diffusae Herba-Andrographis Herba inhibited cell proliferation, promoted DNA
damage, and arrested NPC cells progression from G1 to S phase. Further examination of the underlying molecular mechanisms
revealed that treatment with Hedyotis diffusae Herba-Andrographis Herba increased the expression of p53 and p21, while reducing
that of CCND1, Phospho-Rb, E2F1, γH2AX, and Ki-67 both in vivo and in vitro. Conversely, the inhibition of p53 and p21 could
abolish the promoting effect of Hedyotis diffusae Herba-Andrographis Herba on the NPC cell cycle arrest at the G1 phase,
contributing to the proliferation of NPC cells. Hedyotis diffusae Herba-Andrographis Herba suppressed the tumor growth in vivo.
Overall, these findings suggest that Hedyotis Diffusae Herba-Andrographis prevent the progression of NPC by inducing NPC cell
cycle arrest at the G1 phase through a p53/p21-dependent mechanism, providing a novel potential therapeutic treatment
against NPC.
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INTRODUCTION
Nasopharyngeal carcinoma (NPC) is a common head and neck
malignancy and has a distinct geographical and ethnic distribu-
tion [1], being especially common in Eastern and Southeastern
Asia [2]. NPC is an epithelial malignant tumor that occurs on the
upper surface of the pharyngeal mucosa, with most cases being
accompanied by Epstein-Barr virus infections [3]. The develop-
ment of NPC is mainly attributed to environmental, lifestyle
choices, and genetic factors [4]. In recent years, the incidence and
fatal cased of NPC have gradually decreased due to lifestyle
changes, improved population screening, better radiotherapy
treatments, as well as the effective application systemic drugs [5].
Despite this, NPC still accounts for 1% of cancer related deaths in
China [6].
Traditional Chinese medicine has been used to treat a variety of

cancers for a long time [7, 8]. For example, Liao YH, et al. have
demonstrated that traditional Chinese medicine increases the
survival of patients with liver cancer [9]. In addition, an earlier
study has indicated that traditional Chinese medicine can reduce
the risk of death in breast cancer patients [10]. Of note, traditional

Chinese medicine is becoming recognized as an effective therapy
for the treatment of NPC [11, 12]. Hedyotis diffusae Herba (Family
Rubiaceae) and Andrographis paniculata (Family Acanthacea)
Herba are two herbs commonly used in traditional Chinese
medicine treatments. Hedyotis diffusae Herba exerts an inhibitory
effect on hepatoma cancer, which may be related to the
enhancement of the body’s innate immune function, as well as
cytotoxic effects [13]. Hedyotis diffusae Herba has been used to
successfully treat advanced NPC patients, leading to a reduction in
the overall and cancer-related mortality risk [14]. Andrographis
paniculata is a type of herbaceous plant containing an abundance
of bioactive molecules, which are known to exert large scale anti-
inflammatory and anticancer responses [15]. Treatment with
Andrographis can suppress proliferation and stimulate apoptosis
of C666-1 cells by upregulating the LKB1/AMPK/mTOR signaling
pathway [16].
Bufalin, a cardiotonic steroid and a key active ingredient of the

Chinese medicine ChanSu, has been revealed to lead to DNA
damage and cellular apoptosis in NPC [17]. Additionally, Mukonal,
a plant-derived carbazole alkaloid that has been used in traditional
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Chinese medicine to treat several types of cancer, has been shown
to suppress the proliferation of NPC cells [18]. Moreover,
cinobufagin, an active ingredient in Venenum bufonis, a product
of the secretions of Bufo gargarizans, is capable of inhibiting cell
proliferation in several types of tumor cells, and blocks NPC
progression by blocking cell cycle at the S phase and thereby
inducing apoptosis [19]. Andrographolide increases the expression
of cell cycle inhibitory protein p27 and reduces the expression of
cell-cycle-dependent kinase 4 (CDK4), which plays an anticancer
role through the blockade of cell cycle by inducing arrest at the
G0/G1 transition [20]. Treatment of liver cells with andrographo-
lide caused a significant increase in the expression of p53 [21], a
tumor suppressor that mainly acts as a transcription factor, activity
of which regularly leads to cell cycle arrest [22]. Activation of p53
contributes to inhibited NPC cells colony formation, proliferation,
tumor growth, migration and invasion, and augmented cell cycle
arrest, with a marked increase in cells at the G1 stage and
decrease in cells at S stage [23, 24]. The cyclin-dependent kinase
inhibitor p21, a main effector of p53, modulates a variety of
cellular functions including cell cycle progression and mediates
cell cycle block in G1 phase in response to many stimuli such as
oncogene-induced proliferation [25]. Activation of p21 has been
reported to participate in G1 phase arrest in NPC cells [26]. Nuclear
DNA damage has been shown to induce the activation of p53,
which drives p21 activation to mediate the expression of cyclin-
dependent kinases 4 and 6 (CDK4/6) and cyclin D1 (CCND1) [27].
As a response to growth factor stimulation or oncogenic signals,
CCND1 activates CDK4/6, promoting the transition from G1 to S
cell cycle by phosphorylation and inactivation of tumor suppressor
retinoblastoma (Rb) protein. The inactivated Rb is then released
from a complex with transcription factor E2F transcription factor 1
(E2F1), which can then freely initiate DNA replication and the
expression of mitosis-related genes, thereby inducing cell
proliferation [28].
Based on these findings, we hypothesized that the combination

of Hedyotis diffusae Herba and Andrographis Herba may interfere
with NPC progression through regulation of DNA damage, cell
proliferation, and cell cycle arrest by modulating p53, p21, and
CCND1 expression. In this study we test this hypothesis, showing
that Hedyotis diffusae Herba-Andrographis Herba affects NPC
progression through regulation of the p53/p21/CCND1 regulatory
axis, identifying a molecular mechanism which could be used as a
potential therapeutic target for the treatment of NPC.

MATERIALS AND METHODS
Preparation of drug-containing serum
Hedyotis diffusae Herba-Andrographis Herba (30 g) and Andrographis
paniculata (15 g) were purchased from Bozhou Baichuan Pharmaceutical
Co., Ltd. (Guangdong, China). These medicinal materials were resuspended
in water, decocted for 45min and 30min, and then concentrated by
evaporation to 167mL, meaning that every 1 mL of medicinal solution
contained 0.27 g of Chinese medicine [29]. Concentrated drugs were
stored at 4 °C. Twelve male specific pathogen-free (SPF) Sprague-Dawley
(SD) rats (weighing 190–230 g; 101, Vital River Laboratory Animal
Technology Co., Ltd., Beijing, China) were assigned into a Hedyotis diffusae
Herba-Andrographis Herba group and a Vehicle group, with six rats in each
group. The dose given to rats (D3) was: D3= D1 × 6.25mg/kg (where D1 is
the human dose). The adult dose of 45 g/60 kg/day thus converts to the rat
dose: D3= 45 g ÷ 60 kg × 6.25 × 0.2 kg= 0. 938 g/day. Each rat in the
Hedyotis diffusae Herba-Andrographis Herba group received intragastric
administration twice a day with (0. 938 g/day ÷ 2 times ÷ 0.27 g/mL) 1.7 mL
of the concentrated medicine [29]. Six rats in the Hedyotis diffusae Herba-
Andrographis Herba group were subjected to intragastric administration
with 1.7 mL of Hedyotis diffusae Herba-Andrographis Herba twice daily for
7 days and six rats in the Vehicle group were subjected to intragastric
administration with equal volume of normal saline twice daily for 7 days.
Two hours after the last intragastric administration, 0.3% amobarbital
sodium was intraperitoneally injected into the abdominal cavity of rats for
anesthesia. Blood was collected from the abdominal aorta under sterile

conditions. Serum was removed and inactivated at 56 °C for 30min,
followed by filtration through a 0.22 μm filter membrane for sterilization.
The drug-containing serum was prepared, mixed, and stored at −20 °C.

Cell culture and transfection
Human NPC cell lines C666-1 (CC-Y1082) and SUNE-1 (CC-Y1486) were
purchased from Shanghai Biological Technology Co., Ltd., enzyme research
(Shanghai, China) and cultured in Roswell Park Memorial Institute (RPMI)
−1640 medium (CC-Y1082M, Shanghai Biological Technology Co., Ltd.,
enzyme research, Shanghai, China) supplemented with fetal bovine serum
(FBS, Gibco) and 1% penicillin and streptomycin in an incubator at 37 °C
containing 5% CO2. The cells were then detached with 0.25% trypsin and
passaged. The cells at the logarithmic growth phase were used for the
experiment.
After the cells were cultured for 12 h, the medium was removed.

Thereafter, drug-containing serum was added to the cell culture medium
and blank serum to the control group, with 10mL of the drug-containing
serum supplemented to every 100mL of cell culture medium. Recombinant
human p53 adenovirus (rAd-p53)-transduced C666-1 and SUNE-1 cells were
subsequently constructed. According to the manufacturer’s instructions, the
cells were transduced with rAd-p53 upon reaching 40% confluence. After
24 h, positive cells were screened. The cells were treated with blank control,
blank serum, drug-containing serum, cultured with medicated, or drug-free
medium for 24 h; cells were treated with Pifithrin-α (PFTα) (p53 inhibitor,
63208-82-2, Selleck Chemicals, Houston, TX, USA, S2929) or UC2288 (p21
inhibitor, 2.5 μM; ab146969, Abcam Inc., Cambridge, UK).

Transmission electron microscope (TEM)
Cells in the logarithmic growth phase were seeded into six-well plates and
cultivated to a subconfluent state. Cells were incubated in medium
containing normal serum or drug-containing serum or in serum-free
medium for 24 h. The cells were collected and centrifugated twice in
0.1 mol/L phosphate buffer (pH 7.4). After being fixed with 2.5%
glutaraldehyde for at least 2 h, cells were stained with 1% osmium
tetroxide for 30min, dehydrated with an acetone concentration series, and
placed in Epon 812 resin at room temperature overnight. Ultra-thin
sections were cut and mounted on a copper mesh, followed by staining
with uranium acetate and lead citrate. The stained grid was examined and
imaged under a transmission electron microscope (TEM; Hitachi, Tokyo,
Japan).

Alkaline comet assay
Cells were collected and resuspended in chilled PBS. Trypan blue staining
was used to determine cell viability. The number of trypan blue-positive
cells did not exceed 15%. Two slides were prepared for each sample, with
two gels being used for each slide. The sections were soaked and
dissolving in solution supplemented with 2.5 M NaCl, 100mM ethylene-
diamine tetraacetic acid (EDTA), 10 mM Tris, 0.16 M dimethyl sulfoxide, and
0.016mM Triton X-100 for 1 h (with the final pH value adjusted to 10), and
then washed three times with PBS (5min per wash). Thereafter, each
sample was treated with the mixture of formamide-pyrimidine-glycosylase
(FPG) and endonuclease III (ENDO III) (i.e., two gels) at a ratio of 1:1. Each
gel was exposed to 45 µL of enzyme mixture (the final concentration of
both enzymes was 2.5 µg/mL; Sigma–Aldrich Chemical Company, St Louis,
MO, USA) at 37 °C for 30min. At the same time, the remaining gel of each
sample was treated with the same volume of enzyme dilution buffer (0.1 M
KCl, 4 mM EDTA, 2.5 mM 4-(2-hydroxyethyl)-1-piperazineëthanesulfonic
acid [HEPES], and 2% bovine serum albumin [BSA]). The slides were
equilibrated in alkaline buffer (0.3 M NaOH, 1mM EDTA, pH 13) for 40min
to induce unfolding of the DNA, followed by electrophoresis in alkaline
buffer for 30min at 4 °C, 1 V/cm and 300mA. Finally, the slides were
neutralized with 0.4 M Tris (pH 7.5), stained with 0.005% ethidium bromide
(Sigma–Aldrich) for 7 min, washed with distilled water for 7 min, fixed with
methanol for 15min, dried at room temperature, and stored at 4 °C.
Before analysis, the slides were rehydrated in distilled water, and the

images were recorded with a CCD-13008 camera (VDS, Vosskuhler,
Germany) and a BX51 fluorescence microscope (Olympus, Tokyo, Japan).
The degree of DNA migration was quantified using Lucia Comet Assay
7.00 software (Laboratory Imaging, Prague, Czech Republic). The percen-
tage of comet tail area (the proportion of the DNA tail area to the total
DNA area) and the length of the comet tail (from the center of the DNA
head to the end of the DNA tail) of 50 cells were subjected to monolithic
analysis. The experiment was conducted three times independently [30].
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Cell viability test
Cells in the logarithmic growth phase were seeded in six-well plates and
cultured to a subconfluent state. Cells were incubated in medium
containing blank serum (blank serum group), drug-containing serum
alone (drug-containing serum group) or in presence of MDM2i (drug-
containing serum+MDM2i group) or UC2288 (drug-containing serum+
UC2288 group), or in serum-free medium (blank control group) for 24 h.
Cell viability was determined using a Cell Titer-Blue Cell Viability Assay kit
as per the manufactures protocol (G8080, Promega, Madison, WI, USA).
Cells were fixed with 100% methanol for 10min, followed by staining with
1% crystal violet solution (Sigma–Aldrich). The fluorescence value was
measured with a 96-well plate fluorescence microplate reader (Thermo
Scientific Varioskan LUX, Waltham, USA) and then observed and imaged
under a microscope (Olympus). Cells cultured in the serum-free medium
was considered to be 100% viable cells.

Immunofluorescence staining
Bromodeoxyuridine (BrdU) is a synthetic thymidine nucleotide analog,
which can be incorporated into newly synthesized synthetic DNA in
replicating cells (cell cycle S phase). C666-1 and SUNE-1 cells in the
logarithmic growth phase were seeded in six-well plates at a density of 1 ×
106 cells/well. The cells were treated with drug-containing or control
medium along with 10 μg/mL BrdU (Sigma, St. Louis, MO, USA) for 30min
at room temperature. After the supernatant was medium, the cells were
fixed with 4% paraformaldehyde for 10min, pretreated with 2 M HCl for
20min and permeabilized with 0.5% Triton X-100 for 10min. The cells
were then blocked with 10% goat serum for 1 h and probed with anti-BrdU
monoclonal rat primary antibody (1: 300, Sigma, St. Louis, MO, USA)
overnight. The following day, the cells were reprobed with goat anti-rabbit
IgG (H&L, Alexa Fluor® 647, 1:1000, Abcam, ab150087), and treated with 4’-
6-diamidino-2-phenylindole (DAPI) or nuclear staining. Images were
photographed under a fluorescence microscope (Olympus) and the
percentage of BrdU-positive cells was calculated.

Colony formation assay
C666-1 and SUNE-1 cells were seeded in six-well plates at a density of 5 ×
102 cells/well. Cells were cultured in serum-free medium or drug-
containing medium for 1 week (the cells formed visible clones). After the
medium was removed, the cells were fixed with 4% paraformaldehyde
(Shanghai Sangon, Shanghai, China) for 15min. The cells were stained with
crystal violet (Shanghai Sangon) for 30min and then counted.

Fluorescence ubiquitination cell cycle indicator (FUCCI)
A NPC cell line expressing FUCCI was established in order to be able to
examine cell cycle progression. Briefly, C666-1 and SUNE-1 cells were
transfected with FUCCI-S/G2/M green vector (AM-V9010M; MBL Life
Science). Next, 1 μg Lipofectamine 2000 (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) and 500mM antibody-free medium were used to
transfect 500 ng plasmids into groups of 2 × 105 cells. On the 3rd day post
transfection, the cells were treated with neomycin-containing medium for
screening, and were then seeded and cloned by the limiting dilution
technique. Community formed by stable cells was chosen, and FUCCI-G1
Orange vector (AM-V9003M; MBL Life Science) was transfected into NPC
cells expressing FUCCI-S/G2/M, followed by another neomycin screening.

Western blot analysis
Total protein from tissues or cells was extracted using enhanced radio-
immunoprecipitation assay (RIPA) lysis buffer (Boster Biological Technology
Ltd., Wuhan, China) supplemented with protease inhibitor. Protein
concentration was detected using a bicinchoninic acid (BCA) protein assay
kit as per the manufacturer’s instructions (Boster). Isolated proteins were
separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophor-
esis (SDS-PAGE) and transferred onto polyvinylidene fluoride (PVDF)
membranes. The membrane was then blocked with 5% BSA for 2 h and
probed with diluted primary anti-rabbit antibodies to p53 (ab131442), p21
(ab109199), CCND1 (ab226977), CDK2 (ab32147), Phospho-Rb (ab47763),
E2F1 (ab179445), γ-H2AX (ab11175), β-actin (ab227387), and Lamin B1
(ab229025) overnight at 4 °C. The following day, the membrane was
reprobed with the secondary goat anti-rabbit antibody (ab205719, 1: 2000)
labeled by horseradish peroxidase (HRP) for 1 h at room temperature. The
above-mentioned antibodies were from Abcam. The immunocomplexes
on the membrane were visualized using enhanced chemiluminescence
(ECL; EMD Millipore, Billerica, MA, USA) for 1 h. A Tanon 5200 visualizer was

applied for development and band intensities were quantified using Image
J software. The relative protein expression was calculated with β-actin and
Lamin B1 as the internal reference.

Flow cytometry
Cells were seeded in a 6-well plate at a density of 1.5 × 106 cells/well. The
cells were trypsinized, neutralized by serum-containing medium, centri-
fuged at 2000 rpm for 5 min, resuspended in precooled PBS, and washed.
The supernatant was removed, leaving ~50 μL. Next, the cells were
resuspended in 1 mL PBS to form a single-cell suspension, and treated with
3mL of precooled absolute ethanol to a final concentration of 75%, and
left to stand at 4 °C overnight (18–24 h). The cells fixed overnight, rinsed
twice with cooled PBS, centrifuged at 2000 rpm for 5min, and added with
200 μL PBS (~400 μL). Afterwards, the cells were resuspended in 20 μL
RNase (storage concentration of 25mg/mL, PBS diluted to 1mg/mL,
working concentration of 50 μg/mL), and then added with 20 μL PI to a
final concentration of 50 μg/mL (storage concentration of 25mg/mL, PBS
diluted to 1mg/mL, working concentration of 10 μL). The cells were
stained in the dark at 4 °C for 30min and then analyzed by flow cytometry
within 24 h.

Tumor xenografts in nude mice
Thirty-six SPF BALB/c nude mice (aged 6 weeks, weighing 14–18 g; 401,
Vital River Laboratory Animal Technology Co., Ltd., Beijing, China) were
acclimatized for one week in the SPF laboratory at 20–25 °C and relative
humidity of 45–50% with a 12 h light/dark cycle, with free access to feed
and water. C666-1 and SUNE-1 cells were prepared into cell suspension at
a density of 5 × 107 cells/mL. Next, 0.2 mL of the cell suspension was
injected subcutaneously into the right armpit of each mouse. When the
tumor volume reached 100mm3, the mice were randomly divided into a
control group (without any treatment), a Vehicle group (intragastric
administration of 0.25mL of equal volume of normal saline twice daily for
30 days), and a Hedyotis diffusae Herba-Andrographis Herba group
(intragastric administration of 0.25mL of Hedyotis diffusae Herba-Andro-
graphis Herba twice daily for 30 days) (n= 12/group). The tumors were
measured every 2 days with a Vernier caliper and tumor volume calculated
using the formula: V= a × b2/2, where V is tumor volume, a is the tumor
length and b is the width. We plotted the tumor weights by treatment
group as a function of time. Two hours after the last intragastric
administration, the mice were euthanized and the subcutaneous tumor
was extracted, weighed and photographed. No blinding was required.

Cell cycle detection in tumor tissues
Nude mice in each group were administered for 30 days and at 2 h after
the final administration, the mice were euthanized and the subcutaneous
tumors were removed. The tumor tissues were fixed in 4% paraformalde-
hyde for 24 h, dehydrated with 30% sucrose for 48 h, and embedded at
−25 °C for frozen sections at a thickness of 5 μm. After allowed to stand at
room temperature for 30min, the sections were fixed in ice acetone for
10min, rinsed thrice with PBS (5 min per wash), dried and mounted.
Finally, the cell cycle distribution in the tumor tissue sections was analyzed
under a fluorescence microscope, (S/G2/M phases: green and G0/G1
phases: red) [31].

Immunohistochemistry
Paraffin sections were dewaxed, hydrated, and washed with PBS. Antigen
retrieval was carried out in 10mM citrate buffer (pH 6.0) in a microwave
oven for 20min. After blocking with 3% hydrogen peroxide (H2O2) for
10min, the sections were incubated with 0.1% Triton X-100 in PBS for
20min, immersed in 5% BSA for 20min and probed with primary anti-BrdU
antibody (1: 100; ab152095; Abcam) at 4 °C overnight. After washing with
PBS, the sections were reprobed with HRP-conjugated polyclonal goat anti-
rabbit immunoglobulin G (IgG) for 1 h and developed with the peroxidase
substrate diaminobenzidine (DAB). All sections were counterstained with
hematoxylin and imaged under a microscope (Olympus).

Pharmacological analysis of Chinese medicine
The active ingredients and corresponding targets of Hedyotis diffusae
Herba-Andrographis Herba were retrieved using the TCMSP database
(https://tcmspw.com/tcmsp.php). According to the active ingredients’ oral
bioavailability (OB) and drug-likeness (DL), ingredients were screened with
the criteria set as OB ≥ 15%, DL ≥ 0.18. With “nasopharyngeal carcinoma”
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set as the keyword, the GeneCards database (https://www.genecards.org/)
was used to retrieve the NPC-related targets (published molecular
therapeutic targets). The intersection of the screening results of TCMSP
and GeneCards database was taken to determine the potential target of
Hedyotis diffusae Herba-Andrographis Herba in the treatment of NPC. The
jvenn online tool (http://jvenn.toulouse.inra.fr/app/example.html) was
adopted to identify the common targets of Hedyotis diffusae Herba-
Andrographis Herba and NPC-related targets. The interaction relationship
of candidate genes was analyzed using the STRING database (https://
string-db.org/; minimum required interaction score= 0.9), and Cytoscape
3.5.1 software was utilized to visualize the interaction relationship network.
The built-in tool NetworkAnalyzer was employed to analyze the network,
with the Degree value of the gene calculated. The R language
“clusterProfiler” package (https://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html) was used to perform Kyoto Encyclopedia of
Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses
on candidate genes. The relationship between pathway factors was
identified by the KEGG database (https://www.genome.jp/kegg/pathway.
html).

Statistical analysis
The data were processed using SPSS 21.0 statistical software (IBM Corp.
Armonk, NY, USA). Measurement data were summarized by mean ±
standard deviation throughout this study. Data obeying normal distribu-
tion and homogeneity of variance among multiple groups were compared
using one-way analysis of variance (ANOVA) with Tukey’s post-hoc test.
Repeated measures ANOVA with Bonferroni post-hoc test was applied for
the comparison of data among multiple groups at different timepoints. A
value of p < 0.05 indicated significant difference.

RESULTS
Hedyotis diffusae Herba-Andrographis Herba inhibits the
proliferation of NPC cells
Initially, the serum was isolated from rats treated with Hedyotis
diffusae or Herba-Andrographis Herba, which was then added to
NPC cell lines C666-1 and SUNE-1. A BrdU assay was performed in
these NPC cells to determine if treatment effects the proliferation
of C666-1 (Fig. 1A, B) and SUNE-1 (Fig. 1C, D) cells. The results
showed that, when compared with cells treated with control blank
serum, BrdU expression was significantly reduced in cells treated
with drug-containing serum. This suggests that the Hedyotis
diffusae Herba-Andrographis Herba treatment does in fact
suppress the proliferation of NPC cells.

Hedyotis diffusae Herba-Andrographis Herba treatment
inhibits the tumorigenicity of NPC in vivo
To determine the effects of Hedyotis diffusae Herba-Andrographis
Herba on the tumorigenicity of NPC cells in vivo, we constructed a
nude mouse xenograft model. Compared to mice receiving
intragastric administration with saline, the tumor volume of mice
receiving intragastric administration with Hedyotis diffusae Herba-
Andrographis Herba was strikingly reduced (Fig. 2A, B). Meanwhile,
similar results were obtained in the tumor weight of mice (Fig. 2C).
Relative to mice receiving intragastric administration with normal
saline, it was markedly reduced by the medical treatment (Fig. 2D).
As shown in Fig. 2E, F, there was no significant difference in body
weight of C666-1- and SUNE-1-implanted mice following admin-
istration. Importantly, intragastric administration of saline did not
affect tumor volume or expression of BrdU in the tumor tissue
when compared to untreated mice. Therefore, these results
showed that as well as inhibiting NPC proliferation in vitro.
Hedyotis diffusae Herba-Andrographis Herba inhibits tumorigeni-
city of NPC in vivo.

Hedyotis diffusae Herba-Andrographis Herba promotes DNA
damage in NPC cells
OB and DL analysis on the active ingredients and corresponding
targets of Hedyotis diffusae Herba-Andrographis Herba obtained
from the TCMSP database revealed 33 active ingredients and 200

targets (Supplementary Table 1). In addition, 1857 published
molecular therapeutic targets for NPC were identified using the
GeneCards database. Following Venn diagram analysis of the
predicted medication targets and therapeutic targets for NPC, 112
candidate targets were found in both data sets (Fig. 3A). Next, we
plotted the intersection network of candidate targets and the
active ingredients of Hedyotis diffusae Herba-Andrographis Herba
plotted (Fig. 3B). Through the enrichment analysis of candidate
genes, the KEGG signaling pathway, biological process (BP),
molecular function (MF), and cellular component (CC) that the
genes participated in were obtained (Fig. 3C-F). This enrichment
analysis indicates that treatments which alleviate the NPC
progression mainly act by regulating the proliferation, apoptosis,
and DNA damage of NPC cells.
Moreover, the results of a comet assay displayed no significant

difference in the percentage of TA to WA of DNA and the average
comet tail length between cells without any treatment and those
treated with the blank serum. The percentage in C666-1 cells
treated with drug-containing serum was 31.08%, and the average
comet tail length was 45.22 ± 3.36 µm (p < 0.05) while the
percentage in SUNE-1 treated with drug-containing serum was
28.92%, and the average comet tail length was 36.59 ± 4.12 µm. In
comparison to blank serum, the percentage of TA to WA and the
average comet tail length were increased in C666-1 and SUNE-1
cells treated with drug-containing serum (Fig. 3G-I). These results
appear to indicate that Hedyotis diffusae Herba-Andrographis
Herba could potentially increase DNA damage in NPC cells as
well as inhibiting DNA damage repair.
In order to explore these findings further we examined

nontreated and treated C666-1 and SUNE-1 cells using TEM
analysis. In contrast to untreated cells which displayed awell-
preserved plasma membrane, the NPC cells treated with drug-
containing serum had a distinctive altered morphology, with a
small number of microvilli seen on the cell surface, and chromatin
accumulation, indicating that these cells were in the early stages
of apoptosis (Fig. 3J). Additionally, western blot analysis suggested
no significant difference in the protein expression of γH2AX
between untreated cells and those treated with blank serum.
However, protein expression of γH2AX was markedly increased in
cells treated with drug-containing serum compared with the cells
treated with blank serum (Fig. 3K, L). Collectively, Hedyotis diffusae
Herba-Andrographis Herba promoted DNA damage of NPC cells.

Hedyotis diffusae Herba-Andrographis Herba treatment blocks
cell cycle of NPC cells
In order to examine cell cycle distribution more closely we
adopted a FUCCI approach using C666-1 and SUNE-1 cells at 0, 3,
6, 9, 12, 15, 18, 21, and 24 h after treatment with Hedyotis diffusae
Herba-Andrographis Herba. Following administration, an increase
in cells arrested at the G0/G1 phase was detected, while as time
passed fewer cells were observed to be arrested at the S/G2/M
phase (Fig. 4A, B). In addition, flow cytometric data revealed more
cells arrested at the G0/G1 phase and fewer at the S phase at 24 h
after drug administration (Fig. 4C). These results confirmed that
Hedyotis diffusae Herba-Andrographis Herba can block the cell
cycle, increasing the number of cells arrested at the G0/G1 phase
transition and decreasing the number of cells arrested at the S/G2/
M phase.

The administration of Hedyotis diffusae Herba-Andrographis
Herba inhibits NPC cell cycle in vivo
In order to further validate the effect of Hedyotis diffusae Herba-
Andrographis Herba on the cell cycle of NPC cells in vivo, we used
C666-1 and SUNE-1 cells to construct a mouse xenograft model.
FUCCI results showed gradually declined S/G2/M phase-arrested
cells and increased G0/G1 phase-arrested cells over time following
treatment with Hedyotis diffusae Herba-Andrographis Herba
(Fig. 5A, B). Additionally, flow cytometric analysis revealed more
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C666-1 and SUNE-1 cells arrested at the G0/G1 phase and fewer
cells arrested at the S phase at 30 d after the administration of
medication compared to baseline (Fig. 5C). This highlights that
Hedyotis diffusae Herba-Andrographis Herba treatment suppresses
cell cycle progression from the G1 to S phase in C666-1 and SUNE-
1 cells. The administration of Hedyotis diffusae Herba-Andrographis
Herba disrupts cell cycle via the p53/p21/CCND1 axis to inhibit the
viability and proliferation of NPC cells.
In order to identify the molecular mechanism by which Hedyotis

diffusae Herba-Andrographis Herba affects NPC, we first analyzed

the interaction relationship of 112 candidate genes using the
STRING database (Supplementary Table 2) and obtained the
interaction relationship network between genes with the Cytos-
cape 3.5.1 software (Fig. 6A). According to the Degree value of the
genes in the network, TP53 (Alias: p53) and STAT3 were at the core
of the network. KEGG enrichment analysis indicated that p53 was
involved in many signaling pathways, most notably the
p53 signaling pathway (hsa04115) (Fig. 6B). The network of p53
and its interaction genes was extracted from Fig. 6A, which
indicated that p53 had a close interaction with CDKN1A (Alias:
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p21) and CCND1 genes (Fig. 6C). Concurrently, previous studies
have shown that the regulation on the p53/p21/CCND1 regulatory
axis can affect the G1 phase arrest (map04115) [32, 33].
Studies have shown a close correlation of DNA damage with the

regulation on the expression of CCND1, p53, and other target

proteins. The overexpression of the CCND1 gene can alter cell cycle
progression, and the interaction of CCND1 with CDK2 Phospho-Rb
and E2F1 contributes to the tumorigenesis [34]. p53 is well-known
as a tumor suppressor gene, and p21 is a CDK inhibitor, which
plays a tumor-suppressing role together with p53 [28]. Therefore,
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the detection of CCND1, p53 and related protein expression can
reflect the proliferation and apoptosis of NPC cells. Western blot
analysis of p53, p21, CCND1, Phospho-Rb, and E2F1 proteins
presented no changes in tumor tissues of C666-1- and SUNE-1-
implanted mice without treatment or in those treated with
normal saline. However, protein expression of p53 and p21 was
increased while that of CCND1, Phospho-Rb, and E2F1 was

decreased in tumor tissues of C666-1- and SUNE-1-implanted
mice treated with medication compared with the normal saline-
treated mice (Fig. 6D-F).
PFTα is a p53 inhibitor and UC2288 is a p21 inhibitor [35].

Phospho-Rb and E2F1 are necessary for cell cycle progression
from the G1 to S phase [36]. In order to validate whether Hedyotis
diffusae Herba-Andrographis Herba regulates the p53/p21/CCND1

Fig. 3 Administration of Hedyotis diffusae Herba-Andrographis Herba facilitates DNA damage in C666-1 and SUNE-1 cells. A Venn diagram
analysis of the predicted targets of Hedyotis diffusae Herba-Andrographis Herba and therapeutic targets for NPC. B Intersection network of
candidate targets and the active ingredients of Hedyotis diffusae Herba-Andrographis Herba. The central green circle represents the candidate
gene, and the surrounding polygon represents the molecular ID of the active ingredients, where red color indicates that the ingredient is
from Hedyotis diffusae Herba, and the purple indicates that the ingredient is from Andrographis Herba. C KEGG enrichment analysis of
candidate genes. D BP enrichment analysis of candidate genes. E MF enrichment analysis of candidate genes. F CC enrichment analysis of
candidate genes. G Level of DNA damage repair in NPC cells detected by comet assay (red indicates ethidium bromide; scale bar: 50 μm).
H The percentage of DNA tail area to DNA whole area detected by comet assay. I Average comet tail length detected by comet assay. J DNA
damage of C666-1 and SUNE-1 cells observed under a TEM (scale bar: 1 μm). K The protein expression of γH2AX in C666-1 and SUNE-1 cells
measured by western blot analysis. L Quantification of panel K. *p < 0.05 vs. the cells treated with blank serum, n= 3.
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Fig. 6 Hedyotis diffusae Herba-Andrographis Herba treatment restrains cell cycle progression resulting in decreased viability and
proliferation of C666-1 and SUNE-1 cells by altering the p53/p21/CCND1 regulatory axis. A Interaction relationship network between
candidate genes. The color gradation indicated by the circle from blue to orange indicates the Degree value of the gene from small to large.
B Network diagram of the relationship between the KEGG pathway and genes. C Network diagram of TP53 and its interaction genes.
D Representative western blots of p53, p21, CCND1, Phospho-Rb, and E2F1 proteins in the tumor tissue of C666-1- and SUNE-1-implanted
mice. E Quantitation of p53, p21, CCND1, Phospho-Rb, and E2F1 protein expression in the tumor tissue of C666-1-implanted mice.
F Quantitation of p53, p21, CCND1, Phospho-Rb, and E2F1 protein expression in the tumor tissue of SUNE-1-implanted mice. G Representative
Western blots of p53, p21, CCND1, Phospho-Rb, and E2F1 proteins in C666-1 cells as well as their quantitation. H Representative Western blots
of p53, p21, CCND1, Phospho-Rb, and E2F1 proteins in SUNE-1 cells as well as their quantitation. I Viability of C666-1 and SUNE-1 cells
examined using a cell viability test. J Proliferation of C666-1 and SUNE-1 cells assessed by colony formation assay. K The protein expression of
Ki-67 in C666-1 and SUNE-1 cells determined by western blot analysis. *p < 0.05 vs. mice receiving intragastric administration with normal
saline or the cells without any treatment. #p < 0.05 vs. the cells treated with drug-containing serum. n= 6 for mice in each group, n= 3.
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axis to affect the cell cycle distribution and proliferation of NPC
cells, we treated C666-1 and SUNE-1 cells with drug-containing
serum+ PFTα or drug-containing serum+ UC2288. The results of
western blot analysis showed that the protein expression of p53
and p21 was significantly augmented while that of CCND1,
Phospho-Rb, and E2F1 was reduced in C666-1 and SUNE-1 cells
treated with drug-containing serum compared with that in cells
without any treatment. Besides, treatment with drug-containing
serum+ PFTα or drug-containing serum+ UC2288 led to lower
protein expression of p53 and p21 yet higher protein expression
of CCND1, Phospho-Rb, and E2F1 than treatment with drug-
containing serum. Additionally, treatment with drug-containing
serum suppressed the cell cycle progression of NPC cells from the
G1 phase to the S phase, which was revered following treatment
with drug-containing serum+ PFTα or drug-containing serum+
UC2288 (Fig. 6G, H).
The results of cell viability test and colony-formation assay

displayed that, in contrast to cells without any treatment, the
viability and colony formation of cells treated with drug-
containing serum were suppressed. In comparison to cells
treated with drug-containing serum, the viability and colony
formation of cells treated with drug-containing serum+ PFTα or
drug-containing serum+ UC2288 were increased upon UC2288
treatment (Fig. 6I, J). In addition, Western blot analysis revealed
that protein expression of Ki-67 was reduced in cells treated
with drug-containing serum, while further PFTα or UC2288
treatment had the opposite effect (p < 0.05, Fig. 6K). In summary,
Hedyotis diffusae Herba-Andrographis Herba could regulate the
p53/p21/CCND1 axis to suppress cell cycle progression from the
G1 to S phase so as to inhibit the viability and proliferation of
NPC cells.

DISCUSSION
Natural products can function as antitumor drugs [37]. Tradi-
tional Chinese medicine as an adjunct adjunctive therapy has a
significant role in raising the life of quality of patients with NPC
[38]. This study was designed with the aim to determine the
effect of Hedyotis diffusae Herba-Andrographis Herba on NPC
and the molecular mechanism by which these natural treatment
ace. Here, we provided evidence, which reveals that these drugs
arrest the cell cycle and suppressed cell proliferation of NPC by
increasing p53 and p21 expressions through the triggering DNA
damage.
The initial finding of our study was that Hedyotis diffusae Herba-

Andrographis Herba could inhibit the proliferation of NPC cells, as
demonstrated by reduced tumor volume following drug treat-
ment. Mukonal, another traditional Chinese medicine, has
previously been shown to restrain cell proliferation in NPC mouse
models [18]. Similarly, the inhibitory role of Glycyrrhiza glabra in
NPC cell proliferation has been reported by Zheng et al. [39]. One
of the recurring themes in the biology and treatment of NPC is the
induction of DNA damage. EB virus infection, which can indeed
cause DNA damage responses, is usually considered to be the
main causative factor in the development of NPC [40]. Our results
showed that Hedyotis diffusae Herba-Andrographis Herba was able
to promote DNA damage, accompanied by significantly increased
γH2AX expression. Moreover, findings of induced DNA damage
accumulation and delayed DNA damage repair were consistent
with the promoted sensitivity to irradiation and the chemother-
apeutic agent doxorubicin [41]. One of the earliest cellular
responses to DNA double-strand breaks is the phosphorylation
of γH2AX, meaning that phosphorylated γH2AX can serve as a
reliable marker of DNA damage [42]. DNA damage has been
documented to be closely related to cell cycle [43]. Interestingly,
DNA damage induced by the traditional Chinese medicine
Cordycepin has been shown to induce cell cycle arrest [44].
Similarly, our results show that Hedyotis diffusae Herba-

Andrographis Herba treatment blocks NPC cells progression from
G1 to S phase, accompanied by elevated expression of p53 and
p21 and decreased expression of CCND1, phospho-Rb and E2F1.
p53 is a key integrator of cellular responses to DNA damage,
contributing to post-translational repair and transcription-
mediated responses such as repair and cell cycle arrest [45]. p21
was originally considered to be a cyclin-dependent kinase
inhibitor, and a mediator of p53 as well as a sign of cell aging
[46]. p21 also closely regulates cell cycle progression and
stimulates cell cycle arrest, which can be driven both by p53-
dependent or p53-independent mechanisms [47]. The transition
of the cells from G1 phase to S phase is a key regulatory
checkpoint in controlling the proliferation of eukaryotic cells and
the occurrence of tumors [48]. CCND1, also known as Cyclin D1, is
a well-known proliferation promoter that accelerates G1/S
transition in cell cycle progression [49]. In the context of the cell
cycle, Rb is the target of the cyclins-CDK complex, and its
phosphorylation is a prerequisite for triggering E2F-dependent
gene transcription, which is necessary for cell cycle progression
[50]. Interestingly, a previous study has suggested that Andro-
grapholide could enhance G1 phase block, decrease the protein
expression of CCND1 and CDK4, and increase expression of p53
and p21, as well as suppressing phosphorylation of Rb and
dissociation of the Rb/E2F complex [51]. Besides, downregulated
expression of CDK4/6, CCND1, E2F1 and upregulated the
expression of p21 can restrain the cell cycle progression of NCP
cells [52]. In addition, G1 phase arrest induced by Luteolin
presented with inhibited cyclin D1 expression, CDK4/6 activity, Rb
phosphorylation, as well as E2F1 expression in NPC [53]. All these
results are conducive with the findings made in this study.
Furthermore, the present findings supports the hypothesis that
activation of p53 results in elevated expression of p21 and
diminished expression of CCND1, Phospho-Rb, E2F1, whereas
inhibition of p21 led to increased expression of CCND1, Phospho-
Rb, and E2F1.
In conclusion, the current study reveals that Hedyotis diffusae

Herba-Andrographis Herba inhibit cell cycle progression from G1
phase to S phase and thereby impede the proliferation of NPC

CDK4/6

Diffusae Herba-Andrographis Herba

CyclinD

DNA damage
Nutlin-3a

(Stabilizes the p53 protein)

p21 1inhibitor
(UC2288)

p53

p21

ProliferationRb
E2F1

S-PHASE
G1-PHASE

Fig. 7 Schematic diagram summarizing the effects of Hedyotis
diffusae Herba-Andrographis Herba on cell cycle progression and
proliferation of NPC. Administration of Hedyotis diffusae Herba-
Andrographis Herba regulates the p53/p21/CCND1 axis to induce
DNA damage and block cell cycle progression from the G1 phase to
the S phase, thereby inhibiting the viability and proliferation of
NPC cells.
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cells via inhibition of the CCND1/Rb/E2F1regulatory axis through
DNA damage-induced activation of p53 and p21 (summarized in
Fig. 7). This improves our r understanding of NPC progression
and highlights a novel potential therapeutic treatment for NPC.
This study, for the first time combined the components of
Hedyotis diffusae Herba-Andrographis Herba and conducted an
in-depth investigation of the mechanism of this mixture in the
treatment of NPC, providing a reliable basis for explaining its
molecular mechanism in the treatment of NPC. Nevertheless, the
current study presents the theoretical basis of this mechanism in
NPC, and calls for detailed investigation of effects of CCND1,
Phospho-Rb, E2F1 on the development of NPC cells. In addition,
the optimal composition and dosage of Hedyotis diffusae Herba-
Andrographis Herba remains to be established in future work.
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