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BACKGROUND: The efficacy of FOLFIRI plus an antiangiogenesis biologic agent as 2nd line therapy for metastatic colorectal
adenocarcinoma is limited. TAS-102 is a novel oral antimetabolite with a distinct mechanism of action from fluoropyrimidines. We
evaluated the antitumour efficacy of TAS-102, irinotecan and bevacizumab in patients with pre-treated, advanced colorectal
adenocarcinoma in a multicenter, phase II, single-arm study.
METHODS: Patients with advanced colorectal adenocarcinoma who had progressed after oxaliplatin and fluoropyrimidine and
were eligible for treatment with bevacizumab were treated with irinotecan, bevacizumab, and TAS-102 in 28-day cycles. The
primary endpoint was progression-free survival (PFS).
RESULTS: We enrolled 35 evaluable patients. The study was positive. The median PFS was 7.9 (90% CI 6.2–11.8) months (vs.
6 months in historical control, p= 0.018). The median overall survival was 16.5 (90% CI 9.8–17.5) months. Sixty-seven per cent of
patients experienced grade 3 or higher treatment-related adverse events. The most common toxicities were hematological
(neutropenia) and gastrointestinal (diarrhoea, nausea, and vomiting).
CONCLUSIONS: Irinotecan, TAS-102 and bevacizumab is an active 2nd line therapy for patients with metastatic colorectal
adenocarcinoma. Neutropenia is common and can affect dose density/intensity mandating use of G-CSF. A randomized study
versus standard-of-care therapy is warranted.
CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT04109924.
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BACKGROUND
Colorectal adenocarcinoma (CRC) remains a major cause of cancer-
related death in the United States [1, 2]. Despite improvements in
systemic therapy, a deeper understanding of the molecular
underpinnings of this disease, and personalized treatment options,
the expected median overall survival (OS) for patients with
metastatic disease after progression on 1st line therapy is only
11–13 months [3–5]. The combination of bevacizumab, irinotecan,
and fluorouracil (5-FU) given as continuous infusion (FOLFIRI)
remains one of the most used 2nd line treatments [6, 7].
Combinations of FOLFIRI and different antiangiogenic biologic
(anti-VEGF: bevacizumab, aflibercept, ramucirumab) agents have
produced a median progression-free survival (PFS) in the range of
6 months in the 2nd line setting [3–5]. While such regimens are
clearly active, further gains are desperately needed.
TAS-102 consists of trifluorothymidine, a thymidine-based

nucleoside analog, and the thymidine phosphorylase inhibitor
tipiracil. Following uptake into cancer cells, trifluorothymidine is

phosphorylated and incorporated into DNA, inhibits cell prolifera-
tion, and increases cell death [8]. Tipiracil increases trifluorothy-
midine exposure by inhibiting its metabolism by thymidine
phosphorylase [9]. TAS-102 has a distinct mechanism of action
from 5-FU and in preclinical models can overcome 5-FU resistance
[10]. TAS-102 has demonstrated antitumour activity against CRC
in vivo [10]. DNA incorporation is thought to be the major
mechanism of action of TAS-102 resulting in G2 arrest in p53-
proficient and -deficient cells [11, 12] and double strand DNA
breaks [12, 13]; the base excision repair (BER) pathway and
glycosylation responses also differ from that seen with 5-FU-
mediated DNA damage [14]. In the phase III RECOURSE trial, TAS-
102 was superior to placebo as treatment for patients with
advanced, refractory CRC who had received prior oxaliplatin- and
irinotecan-fluoropyrimidine treatment [15]. Subsequently, in the
phase III SUNLIGHT study, the combination of TAS-102 and
bevacizumab was found to be superior to TAS-102 alone in the
same patient population [16].
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The TASCO-1 study evaluated bevacizumab with TAS-102 or
capecitabine in treatment-naïve CRC patients unfit for intensive
chemotherapy [17]. The observed median PFS and OS in the TAS-
102/bevacizumab arm was higher suggesting that TAS-102 may
confer greater benefit than 5-FU. Additionally, there is additive
effect when TAS-102 is combined with irinotecan in 5-FU sensitive
and resistant cell lines [18]. Interestingly, induction of apoptosis is
most efficient in vitro when the irinotecan metabolite SN-38 is
administered 24 h prior to TAS-102 [19]. In a phase I study, TAS-
102 in combination with irinotecan (180 mg/m2 every 14 days)
and bevacizumab (5 mg/kg every 14 days) was safely dosed at
25mg/m2 twice daily, days 1–5 every 14 days [20]. Notably, in the
expansion cohort of this study, where 88% of the patients had
received prior irinotecan, 3 (13%) had partial responses (PR), and
two in previously irinotecan-exposed patients. The median PFS
was 7.9 months, comparing favorably to FOLFIRI plus an anti-VEGF
agent in the 2nd line setting [3–5].
We hypothesized that the combination of TAS-102, irinotecan,

and bevacizumab is more active than the commonly used FOLFIRI
plus bevacizumab in patients with advanced CRC who have
progressed on 1st line therapy with a fluoropyrimidine (5-FU or
capecitabine) and oxaliplatin.

MATERIALS AND METHODS
Design
TABAsCO was an open-label, single-arm, multicenter, phase II study of TAS-
102, irinotecan, and bevacizumab in patients with advanced (metastatic or
unresectable) CRC who had received 1st line treatment with or had disease
recurrence within 12 months of adjuvant therapy with fluoropyrimidine
and oxaliplatin. The study was conducted according to the Declaration of
Helsinki principles and approved by the Institutional Review Boards (IRB)
from all participating institutions (Roswell Park Comprehensive Cancer
Center, Rutgers Cancer Institute of New Jersey, Moffitt Cancer Center, and
Fox Chase Comprehensive Cancer Center). All patients provided informed
consent prior to study participation. The study was registered at
ClinicalTrials.gov (NCT04109924).

Objectives
The primary objective was to evaluate the antineoplastic efficacy of TAS-102
plus irinotecan and bevacizumab in participants with pre-treated, advanced
(metastatic or unresectable) CRC. The secondary objective was to evaluate
the adverse event (AE) profile of this regimen. The evaluation of prognostic
and predictive biomarkers was a post hoc exploratory objective.

Eligibility
We enrolled patients age 18 years or older with advanced CRC who had
received prior treatment with fluoropyrimidine plus oxaliplatin in the
metastatic or unresectable setting or had disease recurrence within
12 months of adjuvant therapy with a fluoropyrimidine plus oxaliplatin.
Patients had to have an ECOG performance status (PS) of 0 or 1,
measurable disease per RECIST 1.1 criteria [21], and adequate bone
marrow, liver, and kidney function. Patients had to be eligible for treatment
with bevacizumab (i.e., had controlled blood pressure at baseline; no
recent surgery, arterial or venous thrombotic or embolic events within
3 months of study initiation, or recent grade 3 or higher haemorrhage; and
no significant proteinuria). Patients who had prior treatment with TAS-102
or irinotecan, other anti-cancer therapy within 2 weeks of the planned first
dose of study medication, and/or history of abnormal glucuronidation of
bilirubin were excluded from this study. Patients with unstable angina,
symptomatic congestive heart failure or cardiac arrhythmia requiring anti-
arrhythmic therapy, untreated brain metastases, unresolved grade 1 or
higher toxicities from prior therapy, excluding alopecia and grade 2
neuropathy, were similarly not allowed to participate.

Study treatment and procedures
Patients were treated with irinotecan 180mg/m2 IV and bevacizumab
5mg/kg IV days 1 and 15 of each 28-day treatment cycle. TAS-102
25mg/m2 was administered twice daily, orally, on days 2–6 and 16–20 of
each cycle. The dosing rationale is based on preclinical agent sequencing
[19] and clinical safety data [20]. Patients could be dosed only when the

absolute neutrophil count (ANC) and platelet count were ≥ 1,500/ mm3

and ≥ 75,000 /mm3 respectively. Dose adjustments were allowed
(Supplementary Table 1). After the enrollment of the first 8 patients, we
noted increased rates of grade 2 neutropenia precluding dosing every
2 weeks. We then implemented amendment 4 where use of non-pegylated
granulocyte-colony stimulating factor (G-CSF) was suggested after the 1st
episode of neutropenia grade 2 or higher lasting ≥ 7 days (initiated 24 h
after the last TAS-102 dose and for up to 5 days).
The disease status was evaluated with CT or MRI at baseline and every

8 weeks after the initiation of study treatment. Patients could remain on
study until disease progression, unacceptable toxicity, or discontinuation
of both TAS-102 and irinotecan for toxicities.

Study Endpoints
The primary endpoint of the study was PFS. Secondary endpoints included
OS, overall response rate (ORR), and the rate of AEs. The final analysis was
to be conducted 12 months after enrollment of the final patient or once all
patients experienced a progression event, whichever occurs earlier.

Statistical Considerations
PFS was treated as bivariate time-to-event data and defined as the time
from treatment until disease progression, death, or last follow-up.
Historically, the FOLFIRI plus bevacizumab combination can achieve a
median PFS of approximately 6 months [3–5]. We tested the following
hypothesis using a one-sided, one-sample log-rank test:
Ho:M50= 6 versus HA:M50 > 6, where M50 is the true median PFS for

patients treated with TAS-102 + irinotecan + bevacizumab.
If the true median PFS of the experimental treatment is 9 months and

the PFS times are exponentially distributed, a sample size of
n= 36 subjects would achieve 80.5% power (at α= 0.1) to detect such
an effect (hazard ratio ≈ 0.67) compared to historical control. To account
for potential deviations from assumptions and potential dropouts, a total
of n= 42 patients could be accrued.
The PFS and OS were summarized using the Kaplan–Meier method. The

ORR was treated as a dichotomous variable and summarized using
frequencies and relative frequencies. Using Jeffrey’s prior method, a 90%
confidence interval (CI) about the true ORR was obtained for each
treatment group.
There was no formal power calculation for the exploratory analyses

including gene expression in the de-identified tumour tissue protocols.

RESULTS
Baseline characteristics
We enrolled 48 patients from 1/8/2020 to 8/3/2022 within the 4
participating institutions. Of those, 42 were eligible and received
at least one dose of the study treatment (Fig. 1). The baseline
characteristics are presented in Table 1. All patients had prior
treatment with fluoropyrimidine and oxaliplatin, 62% of the
patients had prior treatment with bevacizumab; 2 patients had
received prior treatment with cetuximab or panitumumab as part
of a 1st line regimen. Two patients had received prior treatment
with immune checkpoint inhibitors in combination with che-
motherapy as 1st line treatment. Of these patients, one (evaluable)
had a microsatellite-stable (MS-S)/mismatch repair (MMR) profi-
cient tumour and was treated with nivolumab while the second
(non-evaluable, MS and MMR statuses were not reported) was
treated with pembrolizumab.

Efficacy
Thirty-eight patients had at least one disease assessment, and 35
patients were evaluable for the primary endpoint. At the time of
data cutoff (3/13/2023), 94% of all evaluable patients were off
treatment. The most common reason for treatment discontinua-
tion (51%) was progressive disease. The median follow-up among
all evaluable patients was 14.1 (90% CI 0.9–17.2) months. The
study was positive for the primary endpoint. The median PFS in
the 35 evaluable patients was 7.9 (90% CI 6.2–11.8) months
(p= 0.018, Fig. 2a). The 12-month PFS rate was 35% (90% CI
18–52%). With a median follow-up of 14.5 (90% CI 3.1–26) months,
the median OS was 16.5 (90% CI 9.8–17.5) months (Fig. 2b).
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Additionally, when patients with MS-high (MS-H)/MMR deficient or
BRAF mutant tumour were excluded from the analysis, the results
remained statistically significant. In patients with MS-S/MMR
proficient and BRAF wild-type tumours the median PFS was 7.5
(90% CI 5.3–9.0, p= 0.094) months while the median OS was 16.5
(90% CI 9.8–17.5) months. The PFS and OS in all patients who
received at least one dose of the study treatment were
comparable to the evaluable population results (Supplementary
Figure 1).
The ORR within the evaluable patient population was 14.3%

(90% CI: 6.8–26.0%) with one patient attaining a complete
response (CR, Fig. 3). The disease control rate (CR, partial response
[PR] and stable disease [SD]) was 74.3% (90% CI: 61–84.8%).

Safety
All patients experienced at least one treatment-related AE (TRAE,
Table 2). Twenty-eight patients (67%) experienced a grade 3 or
higher TRAE and 4 (9%) experienced a grade 4 or higher TRAE.
The most common toxicities were haematological (neutropenia)
and gastrointestinal (diarrhoea, nausea, and vomiting) as
expected based on the individual toxicity profiles of irinotecan
and TAS-102. The incidence of grade 3 or higher hypertension
was 5%. Fifty-seven per cent of all treated patients required
treatment with G-CSF. While neutropenia was common, there
was only one episode of febrile neutropenia (grade 3). A total of
12 (29%) patients experienced a treatment-related SAE (Supple-
mentary Table 2). There was one death on a study from
treatment-related colonic perforation. Four patients stopped
treatment due to an AE. Twenty-seven and 17 patients had at
least one dose adjustment or treatment delay for an AE,
respectively.

Exploratory Analyses
There was no difference in OS or PFS in patients with KRAS
(KRASmt) or NRAS (NRASmt) mutant vs. wild-type tumours
(Supplementary Figure 2A/B). There was a trend for improved
OS and PFS in patients with left- vs. right-sided primary tumours
and the absence of liver metastases (Supplementary Table 3);
neither reached statistical significance. Contrary, patients without
prior bevacizumab treatment had significantly higher median OS
(16.5 months) and PFS (13.7 months) compared to patients with
prior bevacizumab treatment (14.2 and 6.4 months respectively,
Supplementary Table 3). Similarly, patients who received the last
dose of oxaliplatin >6 months from study entry had superior
outcomes compared to patients who were treated with oxaliplatin
dose within 6 months from study entry (median PFS 17 vs.

6.7 months and median OS 25.3 vs. 13.7 months, Supplementary
Table 3).
Furthermore, we evaluated the effect of mutations other than

RAS in OS and PFS in patients with clinical multigene molecular
testing data (Supplementary Table 4). Patients with TP53 mutant
(p53mt) tumours had significantly inferior PFS compared to
patients with wild-type (p53wt) tumours (median 7.5 vs. 13 months;
p= 0.084); there was no statistically significant difference in OS
(Supplementary Figure 2C/D). Additionally, patients with APC wild-
type (APCwt) tumours had superior PFS compared to patients with
APC mutant (APCmt) tumours (Supplementary Figure 2E/F, median
13.7 vs. 6.8 months; p= 0.065).
The presence of mutations in homologous recombination (HR)

repair pathway and or DNA damage repair (DDR) has been
associated with improved outcomes with FOLFIRI in patients with
metastatic pancreatic cancer [22]. Four patients in the study had
tumours with BRCA1/2 mutation. In our dataset, we did not
identify an effect of HR and or DDR mutations in OS or PFS
(Supplementary Figure 3).
We also evaluated the significance of expression of genes

involved in different types of DNA repair, trifluorothymidine
metabolism, cell cycle control, and replication in treatment
outcomes. We identified 12 consecutive patients treated on the
study at Roswell Park with available archival tumour tissue. Under
a separate de-identified IRB-approved Roswell Park protocol (BDR
155422), we extracted RNA from these tumours for whole
transcriptome sequencing (see Supplementary Methods). Addi-
tionally, we identified 21 consecutive patients treated with TAS-
102 monotherapy with available archival tumour samples for
similar analyses to be used as controls (IRB-approved Roswell Park
protocol BDR 151721). All patients participating in this transla-
tional study provided universal informed consent for use of
tumour specimens for research. Genes of interest were grouped in
the following categories: HR, BER, MMR, nucleotide excision repair
(NER), proofreading polymerases, non-homologous end joining
(NHEJ), DNA damage response, cell cycle checkpoints, replication,
and trifluorothymidine/nucleotide metabolism. There was a trend
for improved PFS and OS in patients with tumours having
decreased expression of genes involved in NER, trifluorothymi-
dine/nucleotide metabolism, and proofreading polymerases.
There was a trend for improved PFS with low expression of BER
and MMR genes, cell cycle checkpoints and replication-related
genes (Supplementary Figure 4, Supplementary Table 5). In the
control samples, while low expression of NER repair genes was
similarly associated with improved outcomes, low expression of
TK1 and higher expression of TP was associated with worse OS
(Supplementary Table 5).

DISCUSSION
Historically, the median PFS and OS with FOLFIRI plus an anti-VEGF
agent as 2nd line therapy in patients with advanced CRC ranges
from 5.7 to 6.9 and 11.2 to 13.5 months, respectively [3–5]. In this
phase II study, we show that the combination of irinotecan, TAS-
102 and bevacizumab is an active 2nd line regimen for patients
with pre-treated, advanced CRC. The observed median PFS and OS
of 7.9 and 16.5 months, respectively, were higher compared to
historical controls while the ORR of 14.3% was within the range
observed in the landmark studies (ranging between 5 and 19.8%)
[3–5]. The main toxicities were hematological and gastrointestinal
as expected. While the incidence of gastrointestinal toxicity
appears similar to FOLFIRI plus anti-VEGF agent, the incidence of
grade 3 or worse neutropenia is lower compared to FOLFIRI plus
ramucirumab or aflibercept and higher compared to FOLFIRI plus
bevacizumab [3–5]. Importantly, the incidence of grade 2
neutropenia in our study was 31% necessitating use of G-CSF
support to maintain dose density in 57% of all treated patients.

On Treatment

Off Treatment
N=33

Unevaluable
N=7

N=2

Evaluable
N=35

Treated
N=42

Consented
N=48

Patient withdrawn before disease assessment (N=3)
Incomplete baseline imaging (N=2)

Expired prior to disease assessment (N=1)

Progressive disease (N=18)

Death (N=1)
Not reported (N=6)

Physician decision (N=1)

Physician decision (N=1)

Patient decision (N=3)
Adverse Event (N=4)

Fig. 1 CONSORT Diagram. Patient enrollment, allocation and
follow-up.
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Table 1. Baseline Characteristics.

Non-Evaluable Evaluable Total Treated

Overall N 7 (16.7) 35 (83.3) 42 (100%)

Age (years) Median (Range) 57.6 (49.1–78.5) 59.1 (40.2–85.8) 59.0 (40.2–85.8)

< 55 1 (14.3%) 13 (37.1%) 14 (33.3%)

55-65 3 (42.9%) 8 (22.9%) 11 (26.2%)

> 65 3 (42.9%) 14 (40.0%) 17 (40.5%)

Race Caucasian 3 (42.9%) 29 (82.9%) 32 (76.2%)

African American 3 (42.9%) 3 (8.6%) 6 (14.3%)

Not Reported 1 (14.3%) 3 (8.6%) 4 (9.5%)

Gender Male 2 (28.6%) 17 (48.6%) 19 (45.2%)

Female 5 (71.4%) 18 (51.4%) 23 (54.8%)

ECOG 0 6 (85.7%) 22 (62.9%) 28 (66.7%)

1 1 (14.3%) 13 (37.1%) 14 (33.3%)

Primary tumour site Colon 5 (71.4%) 26 (74.3%) 31 (73.8%)

Rectum 1 (14.3%) 7 (20.0%) 8 (19.0%)

Rectosigmoid 1 (14.3%) 2 (5.7%) 3 (7.1%)

Grade I 1 (2.9%) 1 (2.4%)

II 3 (42.9%) 22 (62.9%) 25 (59.5%)

III 3 (8.6%) 3 (7.1%)

Not Reported 4 (57.1%) 9 (25.7%) 13 (31.0%)

Stage at diagnosis I 1 (2.9%) 1 (2.4%)

II 5 (14.3%) 5 (11.9%)

III 3 (42.9%) 6 (17.1%) 9 (21.4%)

IV 4 (57.1%) 23 (65.7%) 27 (64.3%)

Baseline sum of target lesions (mm) Median (range) 47.0 (34.0–100.0) 53.0 (13.0–221.0) 52.5 (13.0–221.0)

Side Right 2 (28.6%) 16 (45.7%) 18 (42.9%)

Left 5 (71.4%) 19 (54.3%) 24 (57.1%)

Liver metastases No 14 (40.0%) 14 (33.3%)

Yes 7 (100.0%) 21 (60.0%) 28 (66.7%)

Lung metastases No 4 (57.1%) 25 (71.4%) 29 (69.0%)

Yes 3 (42.9%) 10 (28.6%) 13 (31.0%)

Microsatellite instability Low 3 (42.9%) 23 (65.7%) 26 (61.9%)

High 1 (14.3%) 2 (5.7%) 3 (7.1%)

Not reported 3 (42.9%) 10 (28.6%) 13 (31.0%)

Mismatch repair Proficient 4 (57.1%) 26 (74.2%) 30 (71.4%)

Deficient 3 (8.6%) 3 (7.1%)

Not reported 3 (42.9%) 6 (17.1%) 9 (21.4%)

KRAS mutation No 11 (31.4%) 11 (26.2%)

Yes 4 (57.1%) 19 (54.3%) 23 (54.8%)

Not reported 3 (42.9%) 5 (14.3%) 8 (19.0%)

NRAS mutation No 2 (28.6%) 15 (42.9%) 17 (40.5%)

Yes 1 (14.3%) 7 (20.0%) 8 (19.0%)

Not reported 4 (57.1%) 13 (37.1%) 17 (40.5%)

BRAF mutation No 2 (28.6%) 20 (57.1%) 22 (52.4%)

Yes 1 (14.3%) 3 (8.6%) 4 (9.5%)

Not reported 4 (57.1%) 12 (34.3%) 16 (38.1%)

Prior radiation No 7 (100.0%) 29 (82.9%) 36 (85.7%)

Yes 6 (17.1%) 6 (14.3%)

Prior surgery* No 2 (28.6%) 9 (25.7%) 11 (26.2%)

Yes 5 (71.4%) 26 (74.3%) 31 (73.8%)

Prior bevacizumab No 2 (28.6%) 14 (40.0%) 16 (38.1%)

Yes 5 (71.4%) 21 (60.0%) 26 (61.9%)

* Twenty-five patients had resection of the primary tumour; 4 patients had resection or liver metastases and 4 resections of lung metastases.
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TAS-102 was recently combined with liposomal irinotecan in a
phase II study in patients with pre-treated CRC (n= 22 patients)
[23]. Contrary to our study, 2 or more prior therapies were allowed
(median 1, range 1–4 prior therapies); 3 patients had prior
irinotecan. Compared to our study, TAS-102 was dosed at a higher
dose (35 mg/m2) starting on day 1 (vs. day 2) for 5 days while
liposomal irinotecan was dosed at 60 mg/m2 on day 1. Addition-
ally, approximately half of the patients in this study received
bevacizumab. The observed ORR (15%) was almost identical to the
ORR observed in our study while the median PFS and OS were 9.7
and 10.1 months, respectively. The incidence of grade 3 or higher
neutropenia was similar compared to our study; the rate of grade
3 or worse diarrhoea was lower. A randomized phase III study is
required to determine the effectiveness of irinotecan (conven-
tional or liposomal), TAS-102 and bevacizumab as 2nd line therapy
in patients with advanced CRC over FOLFIRI plus bevacizumab.
TAS-102 alone [15] and in combination with bevacizumab [16]

has improved outcomes in patients with oxaliplatin-, irinotecan-
and fluoropyrimidine-refractory CRC. To this day, there is no

predictive molecular biomarker to guide treatment decisions. In
vitro studies reveal that KRASG12 mutant CRC are more resistant to
trifluorothymidine causing limited DNA damage [24]. ln a
secondary biomarker analysis from the RECOURSE study, KRASG12

mutations were associated with worse OS with TAS-102 mono-
therapy while KRASG13 mutations with improved OS [24]. On the
contrary, in a pooled analysis from 3 randomized controlled
studies testing TAS-102 vs. placebo (including RECOURSE), no
difference in OS was observed based on the presence of KRASG12

or KRASG13 mutations after adjustment for confounding factors
[25]. Similarly, the OS benefit of TAS-102 plus bevacizumab in the
SUNLIGHT study appears to be independent of the KRASG12

mutation status [26]. The small sample size of our study precludes
codon-specific analyses. With this limitation, we did not identify a
difference in outcomes based on the KRAS and NRAS status of the
tumour. Additionally, retrospective data indicate that the clinical
benefit for TAS-102 as a single agent in p53mt CRC is extremely
limited [27]. Similarly, in our study, patients with p53mt had inferior
outcomes compared to patients with p53wt tumours.
We have previously reported that p53mt tumours have high

expression of BER, MMR and replication-related genes [12, 28]. In
CRC, low expression of genes involved in the HR is associated
with improved outcomes with DNA-damaging agents such as
oxaliplatin and irinotecan [29]. Additionally, highly proliferative
CRC are more sensitive to DNA-damaging agents [30]. Trifluor-
othymidine enters cells via the nucleoside transporters hCNT
and hENT [31, 32]. It is then phosphorylated and converted to
triphosphate by thymidine kinase-1 (TK1) [14, 33]. Subsequently,
DNA polymerase incorporates trifluorothymidine to DNA; the
DNA lesion is then repaired with BER and single-strand DNA
(ssDNA) break repair mechanisms [14, 28, 33]. TK1 expression is
essential for the antitumour effect of trifluorothymidine in
preclinical models [34, 35]. Patients with high TK1 tumour
expression have significantly improved clinical outcomes with
TAS-102 monotherapy [36]. Thymidine phosphorylase (TP), the
target of tipiracil, controls the bioavailability of trifluorothymi-
dine; TP is produced and excreted by the proximal renal tubule
through regulation by organic cation transporter 2 (OCT2) and
toxin extrusion 1 (MATE1) [37]. Notably, germline polymorph-
isms in hENT1, OCT2, and MATE1 are linked to clinical outcomes
for TAS-102 monotherapy [38]. Further, alterations in DDR and
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replication-related genes may also affect clinical outcomes in
CRC patients receiving TAS-102 [39].
In a small number of patients from our study with available

archival tumour tissue, we observed that there is a trend for
improved outcomes in patients whose tumours had low expres-
sion of trifluorothymidine/nucleotide metabolism genes while
patients with p53wt tumours had better PFS on study treatment.
Contrary to previous studies [29, 30], low expression of HR and
high expression replication-related genes in our small translational
experiment was not associated with improved PFS with DNA
damaging agents. Additionally, low expression of genes impli-
cated in alternative DNA repair pathways (NER, BER, MMR) had a
non-significant association with improved outcomes. It is plausible
that prior exposure to and disease progression while on oxaliplatin
may affect the significance of HR deficiency and high proliferation
as predictive biomarkers, especially when these are assessed in
specimens collected from treatment-naïve patients. Furthermore,
tumours with low expression of cell cycle checkpoints, TK1/TP and
replication-related genes may behave more indolently in general
thus explaining improved PFS while on the study treatment.
Further evaluation of DNA repair pathways as integrated
biomarkers in future larger studies is warranted.
Our study has several limitations. First, the historical control was

based on phase 3 clinical trials that evaluated FOLFIRI plus an anti-

VEGF agent as 2nd line therapy. In the ML18147 and RAISE studies,
where all patients had received prior bevacizumab, the median
PFS was identical (5.7 months) and lower than the one observed in
the aflibercept study (6.9 months), where only 30% of the patients
had received prior bevacizumab [3–5]. In our clinical trial,
approximately 40% of the patients had not previously received
bevacizumab. These patients had inferior outcomes compared to
patients who had not previously received bevacizumab. These
results must be interpreted with caution as the study was not
powered to detect differences between bevacizumab-pre-treated
vs. not patients and the CI are wide and overlap. In support,
subgroup analysis of the larger (N= 1226) FOLFIRI plus aflibercept
study did not identify differences in PFS or OS between
bevacizumab-pre-treated vs. not patients [4]. Finally, we per-
formed multiple and not prespecified exploratory analyses in this
small cohort without accounting for false positive results. The
results of these analyses are hypothesis-generating and not yet
appropriate as biomarkers for treatment decisions including
eligibility for future clinical trials. Genetic biomarkers such as the
TP53 and APC status of the tumour should be integrated and
further evaluated in future, larger clinical trials.
In conclusion, the combination of irinotecan, TAS-102 and

bevacizumab is active in pre-treated, metastatic CRC with
improved outcomes compared to historical control (FOLFIRI plus

Table 2. Treatment-Related Adverse Events (with incidence > 5%).

Adverse Event Grade

1 2 3 4 5

ANY AE - Maximum Grade Seen 2 (4.8%) 12 (28.6%) 24 (57.1%) 3 (7.1%) 1 (2.4%)

Anemia 6 (14.3%) 1 (2.4%) 6 (14.3%) 0 (0.0%) 0 (0.0%)

White blood cell decreased 3 (7.1%) 3 (7.1%) 1 (2.4%) 2 (4.8%) 0 (0.0%)

Neutrophil count decreased 1 (2.4%) 13 (30.9%) 12 (28.6%) 2 (4.8%) 0 (0.0%)

Platelet count decreased 0 (0.0%) 7 (16.7%) 2 (4.8%) 0 (0.0%) 0 (0.0%)

Lymphocyte count decreased 2 (4.8%) 3 (7.1%) 0 (0.0%) 1 (2.4%) 0 (0.0%)

Nausea 15 (35.7%) 11 (26.2%) 1 (2.4%) 0 (0.0%) 0 (0.0%)

Vomiting 8 (19.0%) 5 (11.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Abdominal pain 2 (4.8%) 1 (2.4%) 3 (7.1%) 0 (0.0%) 0 (0.0%)

Colitis 0 (0.0%) 1 (2.4%) 1 (2.4%) 0 (0.0%) 0 (0.0%)

Constipation 5 (11.9%) 2 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Diarrhea 13 (30.9%) 7 (16.7%) 6 (14.3%) 0 (0.0%) 0 (0.0%)

Mucositis oral 2 (4.8%) 0 (0.0%) 1 (2.4%) 0 (0.0%) 0 (0.0%)

Proctitis 1 (2.4%) 1 (2.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Fatigue 15 (35.7%) 7 (16.7%) 2 (4.8%) 0 (0.0%) 0 (0.0%)

Urinary tract infection 0 (0.0%) 1 (2.4%) 1 (2.4%) 0 (0.0%) 0 (0.0%)

Infusion related reaction 3 (7.1%) 3 (7.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Weight loss 1 (2.4%) 1 (2.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Anorexia 9 (21.4%) 2 (4.8%) 1 (2.4%) 0 (0.0%) 0 (0.0%)

Dehydration 0 (0.0%) 2 (4.8%) 2 (4.8%) 0 (0.0%) 0 (0.0%)

Dizziness 2 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Dysgeusia 3 (7.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Insomnia 2 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Proteinuria 2 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Epistaxis 7 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Rhinorrhea 2 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Alopecia 8 (19.0%) 6 (14.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Rash acneiform 2 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Hypertension 0 (0.0%) 1 (2.4%) 2 (4.8%) 0 (0.0%) 0 (0.0%)

Hypotension 0 (0.0%) 2 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
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anti-VEGF agent). While toxicity is manageable, G-CSF support is
required to maintain dose density/intensity. Further exploration of
this regimen in randomized studies is warranted.

DATA AVAILABILITY
De-identified clinical data will be available upon request to the corresponding author.
The raw RNA sequencing data can be accessed from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE275628.
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