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PDZK1 confers sensitivity to sunitinib in clear cell renal cell
carcinoma by suppressing the PDGFR-β pathway
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BACKGROUND: Sunitinib has emerged as the primary treatment for advanced or metastatic clear cell renal cell carcinoma (ccRCC)
due to its significant improvement in patients’ average survival time. However, drug resistance and adverse effects of sunitinib pose
challenges to its clinical benefits.
METHODS: The differentially expressed genes (DEGs) associated with sunitinib sensitivity and resistance in ccRCC were
investigated. Cell counting kit-8, plate colony formation, flow cytometry and subcutaneous xenograft tumor model assays were
employed to explore the effects of PDZK1 on ccRCC. Further research on the molecular mechanism was conducted through
western blot, co-immunoprecipitation, immunofluorescence co-localization and immunohistochemical staining.
RESULTS: We elucidated that PDZK1 is significantly downregulated in sunitinib-resistant ccRCC specimens, and PDZK1 negatively
regulates the phosphorylation of PDGFR-β and the activation of its downstream pathways through interaction with PDGFR-β. The
dysregulated low levels of PDZK1 contribute to inadequate inhibition of cell proliferation, tumor growth, and insensitivity to
sunitinib treatment. Notably, our preclinical investigations showed that miR-15b antagomirs enhance sunitinib cytotoxic effects
against ccRCC cells by upregulating PDZK1 levels, suggesting their potential in overcoming sunitinib resistance.
CONCLUSIONS: Our findings establish the miR-15b/PDZK1/PDGFR-β axis as a promising therapeutic target and a novel predictor
for ccRCC patients’ response to sunitinib treatment.
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INTRODUCTION
Renal cell carcinoma (RCC) is the most lethal urological malignancy,
ranking as the sixth most frequent malignancy in males and the
ninth in females, causing more than 140,000 deaths per year
worldwide [1]. Clear cell renal cell carcinoma (ccRCC) is the major
subtype, accounting for 75% of all cases of RCC [2], and is
characterized by frequent inactivation of the von Hippel‒Lindau
(VHL) tumor suppressor gene, which causes significant accumula-
tion of hypoxia-inducible factor (HIF), leading to overexpression of
VEGF and PDGF [3, 4]. While prognosis is usually better in patients
with early-stage ccRCC, advanced or metastatic ccRCC is a life-
threatening disease; the five-year survival rate is only 9% after
diagnosis, and the median overall survival is less than 12months [5].
Surgery is the gold standard for localized ccRCC [6]. However,

for patients with advanced or metastatic ccRCC, surgery alone is
generally not considered curative or sufficient to manage the
disease. ccRCC is characterized by low response rates to

chemotherapy or radiotherapy, and only 20% of ccRCC patients
show sensitivity toward standard cytokine treatment, a nonspe-
cific immunotherapy for ccRCC, with an objective response rate of
only 7.5% [7, 8]. Currently, molecular targeted therapy has become
the primary medical treatment for advanced or metastatic ccRCC,
such as tyrosine kinase inhibitors (TKIs), immune checkpoint
inhibitors, and mammalian target of rapamycin (mTOR) inhibitors
[9–11]. Sunitinib, an oral multi-targeted TKI, is extensively used in
the treatment of advanced or metastatic ccRCC due to its
significant improvement in the average survival time of patients,
extending it from 12 to 22 months [12, 13]. Regrettably, intrinsic
resistance is observed in nearly 30% of patients receiving
sunitinib, and even initial responders eventually experience
relapse and develop resistance after a median treatment duration
of 6 to 15 months. This emergence of drug resistance significantly
limits the therapeutic efficacy and provides only modest overall
survival benefits [14].
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The clinical application of sunitinib is also limited by its toxicity,
leading to variable response rates and notable adverse effects
such as fatigue, diarrhea, and hyperglycemia [15]. In the sunitinib
open-access program, 8% of patients had to discontinue
treatment due to serious adverse effects, and an additional 30%
required dose reductions due to toxicity [16–18]. However, dose
reduction of sunitinib may pose a risk of reducing its antitumor
effects in ccRCC. Studies in metastatic ccRCC have demonstrated
that patients with higher exposure to sunitinib achieved improved
treatment outcomes. They had a higher probability of tumor size
decrease or halting tumor growth, longer time to progression, and
prolonged overall survival [19]. Combination therapies have
emerged as promising treatments for advanced or metastatic
ccRCC, leading to a significant improvement in overall survival.
However, the occurrence of treatment-related adverse events is
common among patients. The mechanisms underlying differential
treatment responses and side effects are complex, but there is
substantial evidence supporting the concentration-toxicity rela-
tionship of sunitinib in ccRCC [20, 21]. Therefore, enhancing the
sensitivity of ccRCC to sunitinib represents a potential strategy to
overcome drug resistance and reduce the risk of severe adverse
events by lowering the sunitinib dosage without compromising its
antitumor effects. This approach can lead to improved therapeutic
efficacy against advanced or metastatic ccRCC. Understanding the
molecular mechanisms of ccRCC sensitivity to sunitinib is crucial
for optimizing treatment strategies and developing novel
therapeutic approaches. Several mechanisms have been proposed
for sunitinib resistance in ccRCC, including alterations in the tumor
microenvironment, activation of alternative signaling pathways,
and insufficient target inhibition [22–25]. However, further
research is needed to uncover additional factors and mechanisms
involved in sunitinib sensitivity and resistance in ccRCC, which
may lead to the development of more effective therapies for
patients with advanced or metastatic ccRCC.
In this study, we identified PDZK1 as a significantly down-

regulated gene in sunitinib-resistant ccRCC specimens. Through
in vitro and in vivo functional assays, we demonstrated that
PDZK1 interaction with PDGFR-β suppressed ccRCC cell prolifera-
tion by inhibiting the activation of the PDGFR-β pathway, thereby
enhancing sunitinib sensitivity. Notably, silencing of miR-15b
using inhibitors or antagomirs increased PDZK1 levels and
synergistically enhanced the cytotoxic effects of sunitinib in
ccRCC cells. Our findings establish the miR-15b/PDZK1/PDGFR-β
axis as a potential therapeutic target and a novel predictor of
response to sunitinib treatment in ccRCC patients.

MATERIALS AND METHODS
Data collection and ccRCC samples
Expression profiling and clinical data for ccRCC were obtained from E-
MTAB-3267, GSE64052, CLINICAL PROTEOME TUMOR ANALYSIS CONSOR-
TIUM (CPTAC), and TCGA. Paraffin embedded surgical resection specimens
(n= 23, 17 males and 6 females) were collected from patients with
advanced or metastatic ccRCC at the First Hospital of Shanxi Medical
University between 2021 and 2023. Each of these patients had undergone
nephrectomy, manifested post-operative recurrence, received sunitinib as
a targeted intervention, underwent radiological assessment to determine
therapeutic efficacy and the median follow-up time is 20 months. The
research involving these samples was approved by the Ethics Committee
of Capital Medical University (2017SY09) and the First Hospital of Shanxi
Medical University (2022HLL001). Tissue microarrays containing 90 pairs of
ccRCC and adjacent tissues were purchased from Shanghai Outdo Biotech.
Written informed consent was obtained from all patients for the use of
their tissue specimens and publication of this report.

DEG screening
The online tools NetworkAnalyst and GEO2R analyzer were used to identify
differentially expressed genes (DEGs) from the E-MTAB-3267 and
GSE64052 databases, comparing sunitinib-sensitive vs. sunitinib-resistant

samples. DEGs were selected based on adjusted p < 0.05 and ∣Log2(fold
change)∣ >0.5 as cutoff criteria. VENNY 2.1 was employed to identify the
common DEGs between E-MTAB-3267 and GSE64052, and the final DEGs
were defined as those appearing in both datasets.

Cell culture
Human renal cell carcinoma (RCC) cell lines ACHN and 786-O, as well as the
monkey kidney cell line COS-7, were obtained from the National
Infrastructure of Cell Line Resource (Beijing, China). ACHN and 786-O cells
were cultured in RPMI-1640 medium, while COS-7 cells were cultured in
DMEM. Both media were supplemented with 1% penicillin/streptomycin
and 10% fetal bovine serum. Cells were maintained at 37 °C with 5% CO2 in
a humidified environment. Prior to use, cells were authenticated using
short tandem repeat (STR) DNA fingerprinting and tested negative for
mycoplasma contamination. Passage number was limited to 30 continuous
passages.

Drugs and chemicals
Sunitinib (HY-10255A) and the PDGFR-β inhibitor CP-673451 (HY-12050) were
obtained from MedChemExpress (Shanghai, China). Stock solutions were
prepared in DMSO and stored at−80 °C. PDGF-BB (HY-P7055) was purchased
from MedChemExpress, reconstituted to a concentration of 100 μg/ml in
sterile distilled water containing 0.1% BSA, and stored at −80 °C.

The measurement of cell viability and analysis of the cell cycle
Cells were plated in 96-well plates at a density of 3000–5000 cells per well
in 100 μl of cell suspension. Cell viability was assessed using an EnSpire
label microplate reader (PerkinElmer, Waltham, MA) by measuring
absorbance at 450 nm according to the instructions provided by the Cell
Counting Kit-8 (Dojindo, Kumamoto, Japan). For cell cycle analysis, cells
were fixed in 70% ethanol at 4 °C overnight, washed with PBS, stained with
propidium iodide for 30min, and analyzed using flow cytometry
(EPICS@XL, Beckman Coulter, 250 S. Kraemer Boulevard Brea, CA).

Clonogenic assay
Cells were seeded in six-well plates at a density of 800–1000 cells per well
and incubated at 37 °C with 5% CO2 for 10–14 days. The resulting colonies
were washed with PBS, fixed with 4% paraformaldehyde for 20min, and
stained with crystal violet for 20min. The plates were then rinsed with
water, and the number of colonies (>50 cells) was counted. The assay was
performed independently three times.

DNA constructs and RNA interference
pcDNA3.1-PDZK1 was obtained from Dr. Randy Hall at Emory University
(Atlanta, GA) and the shPDZK1 plasmids for PDZK1 knockdown were
provided by Dr. Michael R Beard at the Centre for Cancer Biology (Adelaide,
Australia). Constructs encoding Flag-PDGFR-β, Flag-PDGFR-β-L1106A, and
GST-PDGFR-β-CT were purchased from UNIBIO company (Chongqing,
China). GST-PDGFR-β-CT consists of the C-terminal 50 amino acids of
human PDGFR-β. The siRNA sequences targeting PDZK1 were previously
reported [26] and obtained from Sigma (St. Louis, MO).

Stable cell line generation and cell transfection
To establish stable cell lines overexpressing or knocking down PDZK1,
ACHN or 786-O cells were transfected with control vector, PDZK1 plasmid,
shControl plasmid, or shPDZK1 plasmid. After 48 h, cells were selected with
G418 (800 μg/ml) or puromycin (300 ng/ml) in the culture medium for
14 days.
For siRNA knockdown and miR-15b mimics or inhibitors transfection

experiments, cells were seeded in a 6-well plate and transfected with
siRNA (100 nmol/l) or miR-15b mimics or inhibitors (100 nmol/l) using
Lipofectamine 3000. Cells were collected 48 h after transfection for protein
extraction.
hsa-miR-15b control5′-UUCUCCGAACGUGUCACGUTT-3′; hsa-miR-15b

mimic5′-UAGCAGCACAUCAUGGUUUACA-3′. hsa-miR-15b-5p inhibitor: 5′-
UGUAAACCAUGAUGUGCUGCUA-3′; inhibitor control: 5′-UCUACUCUUUC
UAGGAGGUUGUGA-3′.

Western blot analysis and reagents
Western blot assays were performed according to previously described
methods [26]. Cells were harvested and lysed using lysis buffer containing
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Hepes, NaCl, EDTA, benzamidine, Triton X-100, protease inhibitor cocktail,
and phosphatase inhibitor. The antibodies used included PDZK1 (Santa
Cruz Biotechnology, sc-390932), PDGFR-β (Abcam, ab313777), p-PDGFR-β
(phosphor Tyr857) (Abcam, ab62367), ERK (Cell Signaling Technology,
#9102), p-ERK (Cell Signaling Technology, #4370), β-actin (Bioss Antibodies,
bs-0061R), GAPDH (Bioss Antibodies, bs-8778R), His-tag (MBL, M0893),
Myc-tag (MBL, 5265), Flag-tag (Bioss Antibodies, bs-0965R), anti-GST (Bioss
Antibodies, bsm-52605R) and anti-mouse/rabbit secondary antibodies (Cell
Signaling Technology, #7076, #7074). Immune complexes were visualized
and the intensity values were quantified using NIH Image software and
Photoshop software, respectively.

Coimmunoprecipitation (Co-IP)
Coimmunoprecipitation was performed as described previously [27].
Briefly, cells were lysed in lysis buffer, and the lysate was clarified.
Immunoprecipitation reactions were carried out using specific antibodies
and cell lysates. After incubation, protein A/G-agarose was added and
incubated with rotation. The immunoprecipitants were separated by
centrifugation, washed with PBS, and resolved by SDS-PAGE. Immunoblot
analysis was then performed.

GST pull-down assay
GST pull-down assays were performed as previously described [28]. Briefly,
GST-PDGFR-β-CT fusion protein was expressed in bacteria and purified
using glutathione-Sepharose 4B beads. The purified protein was resus-
pended in PBS containing 0.5% Nonidet P-40 and protease inhibitors.
Equal amounts of purified GST-PDGFR-β-CT or GST (conjugated to beads)
were incubated with cell lysates containing His-tagged PDZ domains of
PDZK1 proteins. After a 3-h incubation at 4 °C, the beads were washed with
washing buffers I and II. The bound proteins were separated by SDS-PAGE
and analyzed by immunoblotting using anti-GST and anti-His antibodies.

Immunohistochemistry (IHC) analysis
The IHC analysis was performed as previously described [28]. Tissue
sections were incubated with anti-PDZK1 (sc-390964, Santa Cruz, Dallas,
TX) and anti-p-PDGFR-β (Tyr857) (bs-3320R, Bioss) antibodies overnight at
4 °C. This was followed by incubation with horseradish peroxidase (HRP)-
conjugated secondary antibody kits. Two pathologists, blinded to the
clinical and pathological information, assessed the expression of PDZK1
and p-PDGFR-β on a scale of 0 to 3 for intensity (no staining, weak,
moderate, and strong) and on a scale of 0 to 4 for positive tumor cell
percentage (none, 1–25%, 26–50%, 51–75%, and >75%). The histochem-
istry score (H-score) was calculated by multiplying these two variables.

Gene set enrichment analysis (GSEA)
GSEA was conducted to evaluate the enrichment of gene sets from the
Molecular Signatures Database. The analysis was performed with default
settings, using 1000 permutations. A statistically significant enrichment
was defined as a false discovery rate <0.25 and p < 0.05.

Animal study
Animal experiments were conducted in compliance with the National
Institutes of Health guidelines for the Care and Use of Laboratory Animals
and approved by the Animal Use and Care Committee of Capital Medical
University (approval numbers AEEI-2020-133 and AEEI-2018-201). All
animals were housed in an environment with a temperature of 22 ± 1 °C,
relative humidity of 50 ± 1%, and a 12/12-h light/dark cycle.
To establish a xenograft tumor model, ACHN cells stably overexpressing

PDZK1 or control were implanted subcutaneously into the flanks of male
BALB/c nude mice (6 weeks old, weight 16–18 g, n= 20). Tumor volumes
were monitored, and when they reached 80 to 100mm3, mice were
randomly assigned to control and treatment groups. The treatment group
(n= 10) received oral sunitinib (50mg/kg/day, 25 days), while the control
group (n= 10) received the corresponding solvent.
In the miR-15b-5p antagomir treatment experiment, ACHN cells were

injected into male BALB/c nude mice (n= 14), and when the tumors
reached 80 to 100mm3, the mice were randomly assigned to treatment
and control groups and treated with sunitinib (oral, 50 mg/kg/day)
combined with miR-15b antagomirs (n= 7, local injection, 5 mg/kg,
volume 40 ul, 4 injection sites, once every 3 days, 21 days) or antagomir
control (n= 7). Tumor growth was monitored, and tumor volumes were
calculated. When the tumor volume reached ~1000mm3, mice were

sacrificed and tumors were dissected and weighed. The tumor was fixed in
4% paraformaldehyde, then paraffin embedded and IHC staining was
performed.
Mice were randomly allocated to either the control or treatment groups

using a random number method. Grouping was conducted without
utilizing a blind method, and sample sizes were determined based on
previous experimental experience to ensure that statistical differences
could be achieved.
The hsa-miR-15b-5p antagomir and antagomir control were synthesized

by ChemShine Biotechnology Inc. (Shanghai, China). hsa-miR-15b-5p
antagomir: 5′-UGUAAACCAUGAUGUGCUGCUA-3′; antagomir control: 5′-
UCUACUCUUUCUAGGAGGUUGUGA-3′.
The Pdzk1 knockout (Pdzk1−/−) and wild-type (Pdzk1+/+) mice on the

C57BL/6J background were obtained from GemPharmatech Co., Ltd.
(Nanjing, China). Tissue samples from the kidneys of Pdzk1−/− (n= 3) and
wild-type mice (n= 3) were used for IHC analysis.

Statistical analysis
Statistical analyses were performed using GraphPad Prism software. Data
are presented as the mean with standard error of the mean (SEM) for at
least three independent experiments. Measurement data were assessed for
normal distribution and homogeneity of variance using appropriate tests
(homogeneity of variance was considered present when p > 0.1).
Measurement data were analyzed using analysis of variance or t-tests,
and nonparametric tests were used for non-normal distributed data.
Pearson correlation was used for variables assuming a Gaussian distribu-
tion, while Spearman correlation was used for non-Gaussian distributed
data. The log-rank test was used to compare survival rates between groups
based on Kaplan-Meier survival curves. Two-way ANOVA with Bonferroni
posttests was used for comparing cell viability or tumor size at multiple
cutoff times. The determination of sample size was based on statistical
power analysis to ensure sufficient ability to detect a pre-specified effect
size. We assumed a moderate effect size, with an alpha level set at 0.05,
and a power (1-β) set at 0.80. A significance level of p < 0.05 (two-tailed)
was considered statistically significant.

RESULTS
The downregulation of PDZK1 is correlated with decreased
sensitivity to sunitinib in ccRCC
Differentially expressed genes (DEGs) were identified by analyzing
the E-MTAB-3267 and GSE64052 datasets, resulting in the
discovery of 9 common DEGs (Fig. 1a, b). Among these DEGs,
PDZK1 showed the most significant correlation with patient
prognosis (Fig. 1c and Supplementary Fig. 1) and was higher in
patients who responded favorably to sunitinib treatment (Fig. 1d).
Xenograft ccRCC tumors with high PDZK1 levels were also more
sensitive to sunitinib (Fig. 1e). Furthermore, the PDZK1 mRNA
value showed predictive potential for sunitinib response, as
indicated by the area under the receiver operating characteristic
(ROC) curve (AUC) of 0.70 ± 0.08 (Fig. 1f).
To investigate the molecular mechanisms underlying the

correlation between PDZK1 and sunitinib sensitivity, gene set
enrichment analysis (GSEA) was performed between PDZK1 level
and the well-known sunitinib targeting pathways, including EGFR,
VEGFR, KIT, RET and PDGFR. The analysis revealed that patients
with lower PDZK1 levels exhibited significant enrichment of gene
signatures associated with the PDGFR-β pathway and its down-
stream ERK pathway (Fig. 1g and Supplementary Fig. 2), high-
lighting their potential involvement in PDZK1-mediated sunitinib
sensitivity.

PDZK1 negatively regulates PDGFR-β phosphorylation (Tyr
857) and its downstream signaling in ccRCC cells by directly
interacting with PDGFR-β
To investigate the relationship between PDZK1 and the PDGFR-β
pathway, we examined their expression correlation at both the
mRNA and protein levels. While no correlation was found at the
mRNA level in clinical specimens from TCGA (Fig. 2a), there was a
negative correlation observed between PDZK1 expression and
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phosphorylated PDGFR-β at the protein level (Fig. 2b), suggesting
a potential role for PDZK1 in regulating PDGFR-β phosphorylation.
PDZK1 is a scaffold protein containing PDZ domains, and PDGFR-β
possesses a PDZ domain binding motif (PBM) at its C-terminus (D-
S-F-L). Therefore, there is a molecular structural basis for their
interaction. Co-immunoprecipitation experiments confirmed the
association between endogenous PDGFR-β and PDZK1 in ACHN
cells (Fig. 2c). To further understand the interaction between
PDGFR-β and PDZK1 at a structural level, we performed transient
co-transfection experiments in COS-7 cells. Overexpression of
Myc-PDZK1 along with either wild-type PDGFR-β (Flag-PDGFR-β-
WT) or a mutant form with a C-terminus L1106A mutation (Flag-
PDGFR-β-MT) revealed that the L1106A mutation disrupted the
association between PDGFR-β and PDZK1, indicating a direct
binding between PDZK1 and the carboxyl terminus of PDGFR-β

(Fig. 2d). GST-pulldown assays further demonstrated that PDGFR-
β-CT strongly interacted with PDZ2 and PDZ3 domains, while
exhibiting weaker interaction with PDZ1 and PDZ4 domains
(Fig. 2e). Immunofluorescence colocalization studies supported
the interaction between PDZK1 and wild-type PDGFR-β, while no
significant colocalization was observed with the PDGFR-β L1106A
mutant (Fig. 2f, g).
To investigate the impact of PDZK1 expression on PDGFR-β

signaling in ccRCC, we evaluated the phosphorylation of PDGFR-β
(Tyr 857) and its downstream target ERK1/2 in ccRCC cells.
Overexpression of PDZK1 led to decreased phosphorylation of
PDGFR-β and ERK1/2, while knockdown of PDZK1 increased their
phosphorylation levels (Fig. 3a–c). Moreover, in COS-7 cells
expressing wild-type PDGFR-β, PDZK1 overexpression significantly
reduced the phosphorylation of ERK1/2, whereas no such effect
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was observed in cells expressing the L1106A mutant (Fig. 3d).
These findings indicate that the interaction between PDZK1 and
PDGFR-β is necessary for PDZK1 to inhibit PDGFR-β signaling.
To understand the molecular mechanism underlying the

inhibition of PDGFR-β phosphorylation by PDZK1, we employed

protein structure prediction and modeling. The results
revealed that PDZK1 interacted with PDGFR-β and blocked
access to the tyrosine residues at positions 579 and 581, and
may lead to a reduction in phosphorylation of tyrosine 857
(Fig. 3e, f).
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PDZK1 plays a role in suppressing ccRCC cell proliferation by
inhibiting PDGFR-β signaling
Activation of the PDGFR-β pathway is closely associated with cell
proliferation [29, 30]. Given that PDZK1 has been demonstrated to
effectively inhibit PDGF-induced PDGFR-β phosphorylation at

Tyr857, we investigated its role in cell proliferation. CCK8
experiments were conducted following knockdown and over-
expression of PDZK1 in 786-O cells. The results showed that
knocking down PDZK1 promoted the proliferation of 786-O cells
(Fig. 4a), whereas overexpression of PDZK1 significantly inhibited
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Fig. 3 PDZK1 attenuates PDGFR-β-mediated signaling in ccRCC cells. a PDZK1 overexpression inhibits PDGFR-β pathway activation in ccRCC
cells. Western blot analysis of the indicated proteins in cells overexpressing PDZK1 or vector, stimulated with PDGF-BB. b, c Knockdown of
PDZK1 enhances PDGFR-β pathway activation in ccRCC cells. Western blot analysis of the indicated proteins in cells transfected with siPDZK1
or siCtrl. d The interaction between PDZK1 and PDGFR-β reduced PDGFR-β pathway activation. Western blot analysis in COS-7 cells transfected
with Myc-PDZK1 and PDGFR-β-WT or PDGFR-β-L1106A mutant constructs, stimulated with PDGF-BB after serum starvation for 24 h. e The
protein structure prediction of PDGFR-β (a), PDZK1 (b) and the molecular dynamics simulation of the carboxyl terminus of PDGFR-β bound
with PDZK1 (c) to block the lysine at positions 579 and 581. Right panels (d) show magnifications of the wireframe area on the left (c). The
kinase domains of PDGFR-β (faint yellow); Tyr579, Tyr581, Tyr857 (red); PDZK1 (green). f Schematic diagram of PDZK1 bound to the carboxyl
terminus of PDGFR-β, blocking access to the tyrosine residues at positions 579 and 581.
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proliferation in both 786-O (Fig. 4b) and ACHN cells (Supplemen-
tary Fig. 3A). Consistent with these results, the clone formation
assay also showed decreased colony formation in ACHN cells with
PDZK1 overexpression and increased colony formation in 786-O
cells with PDZK1 knockdown (Fig. 4c, d). To investigate the impact
of the interaction between PDGFR-β and PDZK1 on cell

proliferation, COS-7 cells were engineered to stably overexpress
wild-type or L1106A mutant PDGFR-β with or without coexpressed
PDZK1. The results demonstrated that cells overexpressing wild-
type or mutant PDGFR-β exhibited enhanced proliferation
compared to the control group. However, coexpression of
PDZK1 significantly inhibited the growth of COS-7 cells
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overexpressing wild-type PDGFR-β but not the L1106A mutant
(Fig. 4e). Furthermore, PDZK1 was found to regulate cell cycle
progression. Knockdown of PDZK1 resulted in increased accumu-
lation of ccRCC cells in the S phase (shCtrl, 25.3% vs. shPDZK1,
40.6%), indicating disrupted cell cycle progression. However, when
cells were pretreated with CP-673451, an inhibitor of PDGFR-β,
PDZK1 knockdown no longer promoted cell accumulation in the S
phase (shCtrl, 25.3% vs. shPDZK1+ CP-673451, 27.0%), suggesting
that the effects of PDZK1 on cell cycle progression were
dependent on PDGFR-β signaling (Fig. 4f, g).
To validate the in vitro findings, Pdzk1 knockout mice (Pdzk1−/−)

were generated and examined. Immunohistochemical staining of
kidney tissues from Pdzk1−/−mice showed higher levels of PDGFR-β
phosphorylation (Tyr857) compared to wild-type controls (Fig. 5a).
Additionally, analyzing 90 ccRCC specimens from a tissue micro-
array, it was found that PDZK1 levels were significantly reduced in
tumor tissues from late-stage patients compared to early-stage
patients (Fig. 5b, c). Kaplan-Meier survival analysis revealed that
ccRCC patients with high PDZK1 levels had better overall survival
(Fig. 5d), while high levels of phosphorylated PDGFR-β (Tyr 857)
were associated with poor prognosis (Fig. 5e–g). Importantly, there
was a negative correlation between PDZK1 protein levels and
phosphorylated PDGFR-β levels (Fig. 5h). Moreover, patients with
low PDZK1 and high phosphorylated PDGFR-β levels had the worst
prognosis, while those with high PDZK1 and low phosphorylated
PDGFR-β levels had significantly better survival (Fig. 5i). These
findings demonstrate the critical role of PDZK1 in PDGFR-β signaling
and its impact on ccRCC progression and prognosis.

PDZK1 enhances sunitinib sensitivity in ccRCC by suppressing
PDGFR-β signaling
Over activation of the PDGFR-β/ERK signaling pathway is associated
with sunitinib resistance in RCC cells [31, 32], suggesting that
dysregulated low levels of PDZK1 in ccRCC may reduce sunitinib
sensitivity. To investigate the role of PDZK1 in sunitinib sensitivity,
ccRCC cells (786-O and ACHN) with PDZK1 overexpression were
treated with different doses of sunitinib. PDZK1 overexpression
significantly reduced the IC50 of sunitinib, indicating improved
sunitinib sensitivity in ccRCC cells (Fig. 6a, b). Colony formation
assays also revealed that PDZK1 overexpression notably augmented
the responsiveness of both 786-O (Fig. 6c) and ACHN cell lines
(Supplementary Fig. 3B) to sunitinib. Conversely, depletion of
PDZK1 resulted in decreased sensitivity of 786-O cells to sunitinib
(Fig. 6d). In subcutaneous xenograft tumor models, PDZK1 over-
expression inhibited the growth of ACHN xenograft tumors, and the
tumor volume and weight decreased to a greater extent after
treatment with sunitinib (Fig. 6e–g). IHC staining of xenograft
tissues showed decreased phosphorylated PDGFR-β (Tyr 857) levels
in PDZK1-overexpressing tumors (Fig. 6h). These results indicated
that PDZK1 overexpression synergistically enhanced the antitumor
effects of sunitinib by suppressing PDGFR-β signaling.
To further elucidate the correlation between PDZK1 protein

expression and sunitinib responsiveness in a clinical setting, we
conducted immunohistochemical analysis of PDZK1 in the primary

lesions of 23 advanced or metastatic ccRCC patients who had
experienced disease recurrence following nephrectomy and had
undergone sunitinib treatment. Our findings indicated that
patients who responded favorably to sunitinib demonstrated high
PDZK1 expression and low phosphorylated PDGFR-β (Tyr857)
expression. Conversely, those with a poorer response to sunitinib
exhibited low PDZK1 expression and elevated phosphorylated
PDGFR-β (Tyr857) expression (Fig. 7a–c). The PDZK1 protein level
was negatively correlated with phosphorylated PDGFR-β (Fig. 7d),
and patients with higher PDZK1 levels had better progression-free
survival (Fig. 7e). Moreover, based on the H-score of PDZK1, we
plotted a ROC curve to assess patient sensitivity to sunitinib
treatment. The area under the curve (AUC) registered at
0.89 ± 0.07, highlighting the significant predictive value of PDZK1
(Fig. 7f). Consistently, analysis of TCGA data also showed that
patients who received sunitinib treatment with high PDZK1 mRNA
levels had better overall survival and progression-free survival
(Fig. 7g). These findings indicate that PDZK1 can enhance sunitinib
sensitivity in ccRCC by suppressing PDGFR-β signaling.
To investigate potential therapeutic strategies targeting the

PDZK1/PDGFR-β axis, we examined the impact of miR-15b
inhibition. Previous studies have identified PDZK1 as a target
gene of miR-15b [33], and inhibiting miR-15b has been shown to
enhance sunitinib sensitivity in ccRCC cells [34]. In our research,
we conducted additional experiments using both miR-15b mimics
and inhibitors. Our results demonstrated that miR-15b mimics
suppressed PDZK1 expression and increased activity in the
PDGFR-β and ERK pathways, while miR-15b inhibitors produced
the opposite effects (Supplementary Fig. 4). Combination treat-
ment with miR-15b inhibitor and sunitinib synergistically inhibited
ccRCC cell proliferation (Fig. 8a–d). In subcutaneous xenograft
experiments, miR-15b antagomirs combined with sunitinib
resulted in decreased tumor growth rate and size. IHC staining
showed upregulated PDZK1 levels and downregulated phos-
phorylated PDGFR-β (Tyr 857) in the tumors, indicating the
suppression of ccRCC cell growth by upregulating PDZK1 and
blocking PDGFR-β signaling (Fig. 8e–h).
Overall, these findings demonstrate that PDZK1 enhances

sunitinib sensitivity in ccRCC by retarding PDGFR-β signaling.
Additionally, miR-15b inhibitors have synergistic effects with
sunitinib in suppressing ccRCC cell growth by upregulating PDZK1
and blocking PDGFR-β signaling.

DISCUSSION
Advanced or metastatic ccRCC is a life-threatening disease.
Sunitinib has been widely used for the treatment of advanced
or metastatic ccRCC and has greatly benefited patients in recent
years. However, drug insensitivity and dose-limiting toxicity have
limited its effectiveness in improving patient survival [35–37].
Therefore, it is urgent to understand the molecular events
involved in ccRCC progression and the mechanisms underlying
sunitinib sensitivity in order to develop novel approaches for
effective therapies.

Fig. 5 PDZK1 suppresses ccRCC cell proliferation via PDGFR-β signaling in vivo. a Representative IHC staining of PDZK1 and
phosphorylated PDGFR-β (Tyr 857) in kidney tissues from Pdzk1−/− or Pdzk1+/+ mice. Scale bars: 200 μm. Right panels show magnifications of
the dashed areas on the left. Scale bars: 50 μm. b, c IHC analysis of PDZK1 protein in ccRCC specimens. Representative staining images of
PDZK1 in stage T1 or T3 ccRCC specimens. Scale bars: 200 μm. Right panels show magnifications of the dashed areas on the left. Scale bars:
50 μm. Dot plot showing the corresponding quantification of the PDZK1 histochemistry score (H-score). Data presented as mean ± SEM.
Statistical significance calculated by the Mann‒Whitney test. **p < 0.01. d KM survival plots for overall survival (OS) according to PDZK1
H-score in ccRCC specimens (log-rank test). e, f IHC analysis of phosphorylated PDGFR-β (Tyr 857) protein in ccRCC specimens. Representative
staining images of p-PDGFR-β in stage T1 or T3 ccRCC specimens. Scale bars: 200 μm. Right panels show magnifications of the dashed areas on
the left. Scale bars: 50 μm. Dot plot showing the corresponding quantification of the p-PDGFR-β H-score. Data presented as mean ± SEM.
Statistical significance calculated by the Mann–Whitney test. ***p < 0.001. g KM survival plots for OS according to the p-PDGFR-β H-score in
ccRCC specimens (log-rank test). h Correlation analysis between PDZK1 H-score and p-PDGFR-β H-score in ccRCC specimens (Spearman). i KM
survival plots for OS according to PDZK1 H-score and p-PDGFR-β H-score in ccRCC specimens (log-rank test).
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In this study, we observed significantly reduced expression
levels of PDZK1 in sunitinib-resistant ccRCC tissues or
cells through screening and validating data from multicenter
cohorts (Fig. 1). Functional experiments in ccRCC cells demon-
strated that PDZK1 expression conferred sunitinib sensitivity by

suppressing cell viability (Fig. 6a–d). These findings were
further confirmed in in vivo xenograft tumor models (Fig. 6e–g)
and a clinical study (Fig. 7). Collectively, these results highlight
the crucial role of PDZK1 in conferring sunitinib sensitivity
to ccRCC.
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Fig. 6 PDZK1 enhances sunitinib sensitivity by downregulating the PDGFR-β signaling pathway. a, b PDZK1 overexpression reduces
sunitinib IC50 in ACHN and 786-O cells. Dose-response survival curves of PDZK1-overexpressing ACHN (a) or 786-O (b) cells exposed to
increasing concentrations of sunitinib for 48 h. Mean ± SEM; n= 3; two-way ANOVA. c, d PDZK1 overexpression inhibits while knockdown
promotes clonogenic formation in sunitinib-treated 786-O cells. Quantification analysis of clone formation assays. e–h PDZK1 enhances
sunitinib sensitivity in renal cell carcinoma xenografts. Nude mice transplanted with PDZK1-overexpressing ACHN cells or control cells were
treated with or without sunitinib. Representative images of xenograft tumors (e), tumor masses (f), and tumor growth curves (g) are shown.
Representative IHC staining of PDZK1 and p-PDGFR-β in xenografted tumors are shown in (h). Data are presented as mean ± SEM. *p < 0.05,
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While most studies on ccRCC have focused on VEGF/VEGFR
signaling [38–40], the significance of PDGF/PDGFR-β signaling in
ccRCC development and progression has been underestimated.
PDGFR-β is significantly expressed in ccRCC [32, 40], and its
activation is associated with poor prognosis [31]. In our study, we
analyzed PDGFR-β gene alterations in ccRCC specimens and
observed no consistent dysregulation at the DNA or mRNA level
(Supplementary Fig. 5A–C). However, we found a positive
correlation between the level of phosphorylated PDGFR-β and
tumor size, as well as poor prognosis in ccRCC (Fig. 5e–g and
Supplementary Fig. 5D). Additionally, our findings revealed that
PDZK1 physically interacts with PDGFR-β through the PDZ binding
motif, thereby negatively regulating PDGFR-β phosphorylation at
Tyr857 and downstream signaling activation, resulting in the
inhibition of ccRCC cell proliferation (Figs. 3 and 4). Prior research
has established the importance of phosphorylation at tyrosine 857
in PDGFR-β for its full activation and propagation of the PDGF-
mediated signal [41–43]. Upon PDGF binding to PDGFR-β, specific
tyrosine residues, including tyrosines 579 and 581, undergo
autophosphorylation. Subsequently, the autophosphorylation of
tyrosines 579 and 581 recruits and activates Src-family kinases,

which in turn phosphorylate tyrosine 857 in PDGFR-β [41].
Remarkably, our molecular dynamics simulation revealed that
PDZK1 interacted with PDGFR-β and blocked access to the
tyrosine residues at positions 579 and 581, and may lead to a
reduction in phosphorylation of tyrosine 857 (Fig. 3e). This find
sheds light on how PDZK1 suppresses PDGFR-β activation, thereby
conferring sunitinib sensitivity to ccRCC cells. This was
further validated in PDZK1 deficient mouse models (Fig. 5a).
Moreover, low PDZK1 expression in ccRCC specimens was
associated with PDGFR-β signaling activation and poor prognosis
(Figs. 1 and 5b–i).
Given sunitinib’s ability to target and inhibit PDGFR and VEGFR

in endothelial cells, an intriguing question arises: does PDZK1
inhibition of PDGFR and VEGFR signaling in endothelial cells
impact tumor progression? Several studies have indicated that the
loss of PDZK1 expression in endothelial cells has no effect on cell
migration or angiogenesis induced by VEGF [44, 45]. Additionally,
our GSEA of transcriptome data from Human Umbilical Vein
Endothelial Cells (HUVEC) revealed no enrichment of the PDGFR or
VEGFR pathways associated with PDZK1 expression. These
findings suggest that PDZK1 may not modulate these interactions
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in endothelial cells (Supplementary Fig. S6). Overall, our study
confirms that the loss of PDZK1 expression in ccRCC cells
contributes to sustained PDGFR-β signaling activation, thereby
promoting ccRCC carcinogenesis and progression.
Systemic treatment with tyrosine kinase inhibitors (TKIs), such as

sunitinib, is the standard first-line therapy for advanced or
metastatic ccRCC. However, drug insensitivity remains a significant
challenge in achieving effective treatment outcomes [46–48].
Several factors contribute to drug insensitivity, including the
tumor microenvironment, invasiveness, alternative signaling path-
ways, noncoding RNAs, and insufficient target inhibition [22–25].

Insufficient target inhibition refers to the situation where the
intended target of a TKI is not effectively inhibited or suppressed,
leading to reduced therapeutic effectiveness and limited response
to treatment. Examples include mutations, such as EGFR T790M,
that reduce the binding affinity of TKIs, resulting in inadequate
target inhibition. In such cases, higher doses of TKIs or alternative
treatment options may be necessary to overcome resistance and
achieve effective target inhibition.
In our study, we observed that cells with low levels of PDZK1

exhibited insensitivity to sunitinib treatment, leading to insuffi-
cient inhibition of cell proliferation and tumor growth compared
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to cells with high PDZK1 expression (Figs. 6 and 7). This suggests
that consistent activation of PDGFR-β in PDZK1-low-expressing
ccRCC cells may require higher doses of sunitinib to achieve
therapeutic efficacy, which can lead to dose-dependent toxicity.
Therefore, it is crucial to develop strategies that maintain or
enhance sunitinib sensitivity in ccRCC cells. These approaches can
potentially improve treatment outcomes and minimize the need
for high-dose sunitinib, reducing the risk of toxicity.
RNA-based therapies, including RNA-targeted small-molecule

drugs, have emerged as promising strategies for cancer therapy.
We previously identified miR-15b as a suppressor of PDZK1
expression in ccRCC, and its high level has been associated with
sunitinib resistance [34]. In our study, we demonstrated that miR-
15b inhibitor or antagomir upregulated PDZK1 expression,
resulting in increased sunitinib sensitivity in ccRCC cells (Fig. 8).
These findings support the development of miR-15b antagomirs
as a potential therapeutic intervention to overcome sunitinib
resistance in advanced ccRCC.
Taken together, our study revealed the association of the miR-

15b/PDZK1/PDGFR-β axis with ccRCC progression and sunitinib
sensitivity. Preclinical investigations indicate that miR-15b antag-
omirs could be promising drugs to overcome sunitinib resistance
by upregulating PDZK1 levels and attenuating PDGFR-β signaling.
This provides a theoretical basis for further development of
this combination therapy in a clinical setting to enhance the
effectiveness of sunitinib treatment.
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