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RNA expression of 6 genes from metastatic mucosal gastric
cancer serves as the global prognostic marker for gastric cancer
with functional validation
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BACKGROUND: Molecular analysis of advanced tumors can increase tumor heterogeneity and selection bias. We developed a
robust prognostic signature for gastric cancer by comparing RNA expression between very rare early gastric cancers invading only
mucosal layer (mEGCs) with lymph node metastasis (Npos) and those without metastasis (Nneg).
METHODS: Out of 1003 mEGCs, all Npos were matched to Nneg using propensity scores. Machine learning approach comparing
Npos and Nneg was used to develop prognostic signature. The function and robustness of prognostic signature was validated
using cell lines and external datasets.
RESULTS: Extensive machine learning with cross-validation identified the prognostic classifier consisting of four overexpressed
genes (HDAC5, NPM1, DTX3, and PPP3R1) and two downregulated genes (MED12 and TP53), and enabled us to develop the risk
score predicting poor prognosis. Cell lines engineered to high-risk score showed increased invasion, migration, and resistance to
5-FU and Oxaliplatin but maintained sensitivity to an HDAC inhibitor. Mouse models after tail vein injection of cell lines with high-
risk score revealed increased metastasis. In three external cohorts, our risk score was identified as the independent prognostic
factor for overall and recurrence-free survival.
CONCLUSION: The risk score from the 6-gene classifier can successfully predict the prognosis of gastric cancer.

British Journal of Cancer (2024) 130:1571–1584; https://doi.org/10.1038/s41416-024-02642-6

INTRODUCTION
Gastric cancer is the fifth most common malignancy and the
third leading cause of cancer-related death in the world [1]. The
high risk of invasion and metastasis including regional lymph
node metastasis, is the most important prognostic feature to
explain such aggressiveness. Previous studies to identify
additional prognostic markers for gastric cancer usually have
focused on large, advanced tumors because of the power to
detect overexpressed genes and the availability of tumor tissue
[2–5]. The gene expression profiles of these samples were then
compared to tumors of different phenotypes without proper
matching of baseline characteristics [4, 6, 7]. As tumors progress
to more advanced stage, confounding factors including different
clinicopathologic features not related to essential tumor
biology or increased tumor heterogeneity are also likely to be

accumulated, which eventually reduce the robustness of the
derived molecular signatures [8, 9]. Besides, even though
baseline characteristics were matched, the studies often had a
limited number of samples or samples only from the certain
high stage [10].
On the other hand, the comparison of early-stage cancer with

significantly different prognostic features may solve this selection
bias. However, it is difficult to obtain enough volume of small,
early-stage tumors with or without significant invasion and
metastatic features. Also procurement of those tumors would be
very limited after meticulous pathological processes at the clinic.
Lymph node (LN) metastasis is one of the most critical poor
prognostic features of gastric cancer, even in early gastric cancer
[11, 12]. Early gastric cancers confined to the mucosa (mEGC)
could be the earliest stage which still can show LN metastasis
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[13, 14]. Our previous large-scale clinicopathologic study analyzing
1003 mEGC reported 1.8% of LN metastasis [15]. Propensity score
matching of mucosal gastric cancers with LN metastasis to those
without LN metastasis could minimize the risk of selection bias
and tumor heterogeneity. We posited that a careful application of
statistical analyses and machine learning models of gene
expression profiles of matched tumor samples would enable us
to develop a robust prognostic signature for gastric cancer
patients. Along with the functional validation, this study provides
evidence for the robustness of the risk score as the independent
prognostic marker in three external cohorts.

RESULTS
Feature selection for mucosal early gastric cancer with lymph
node metastasis
Out of previously identified 1003 mEGCs that were surgically
resected in Seoul National University (SNU) Hospital, we retrieved
all mEGCs with lymph node metastasis (Npos) (n= 18). We
matched mEGCs without LN metastasis (Nneg) using 1:1
propensity score matching with age, sex, tumor size, tumor
location, and Lauren classification as covariates (Fig. 1a) [15]. After
meticulous laboratory quality control, one Nneg sample was
excluded, and RNA expression of of 18 Npos, 17 Nneg, and 1
metastatic lymph node (NposLN) samples were profiled using
Nanaostring platform (Supplementary Table S1).
Comparison of Npos and Nneg samples identified 80 differen-

tially expressed genes (DEG) at a false discovery rate of 5%
(Fig. 1b). Canonical pathway analysis of the 80 DEGs demonstrated
that regulation of the epithelial-mesenchymal transition (EMT)
pathway including WNT4 and FZD was the most significantly
enriched pathway (P= 3.162278e-12) (Supplementary Table S2).
Wnt/β-catenin signaling was also significantly enriched along with
the co-overexpression of WNT4 and Frizzled receptor signal
(P= 1.584893e−09).
For feature selection, we used Lasso l1 penalization with spares

Partial Least Squares regression-Discriminant Analysis (sPLS-DA)
for 80 DEGs [16]. After 5-fold cross-validation, 2 PLS components,
including 13 and 40 genes, were selected based on the lowest
balanced error rate (Supplementary Fig. S1). For a more consistent
prognostic classifier, we analyzed Spearman correlation for 13
genes including HDAC5, NPM1, IL3RA, HGF, TP53, CBL, DTX3,
GNG7, KMT2D, MED12, FGF7, SMAD2, and PPP3R1 in the first PLS
component, which eventually led to 8 genes (HDAC5, NPM1,
TP53, CBL, DTX3, KMT2D, MED12, and PPP3R1) with P < 0.001
(Supplementary Fig. S2). Out of those 8 genes, CBL, is shown to
ubiquitinate nuclear β-catenin to switch off the Wnt signaling [17,
18]. Considering the Wnt activation level coupled with main
regulation EMT pathway was higher in Npos cells compared with
Nneg cells (Supplementary Table S2), it is reasonable that CBL
could be upregulated as a negative feedback in the Wnt activated
cells like other Wnt suppressor NOTUM [19]. KMT2D, lysine-
specific methyltransferase 2D that adds a trimethylation mark to
H3K4, has been known to be inhibited by the overexpression of
HDACs including HDAC5 [20, 21]. Considering the significantly
enriched Wnt/β-catenin signaling pathway and the most con-
fident significance of HDAC5 from DEG analysis, we excluded CBL
and KMT2D as a negative feedback or secondary bystander
followed by Wnt/β-catenin signaling or overexpression of HDAC5.
Finally, six genes including HDAC5, NPM1, DTX3, PPP3R1, TP53,
and MED12 were selected as the signature classifiers to predict
poor prognosis of gastric cancer. The remaining six genes,
HDAC5, NPM1, DTX3, PPP3R1, TP53, and MED12, were used to
derive a risk score capable of predicting the prognosis of gastric
cancer. Among these genes, HDAC5, NPM1, DTX3, and
PPP3R1 showed increasing expression, and TP53 and
MED12 showed decreasing expression across Nneg, Npos, and
NposLN (Fig. 1c).

Developing the risk score model using machine learning
We used a Random Forest prediction model to develop a
predictor of Npos status based on the six genes as features. We
attained 88.89% sensitivity, 94.12% specificity, and 91.5%
balanced accuracy based on the leave-one-out cross-validation
strategy (Supplementary Table S3). However, this model did not
apply to tumors where the gene expression profiles were assayed
using a different platform (Supplementary Fig. S3). Therefore, we
calculated the tumor progression “risk score” per sample within
each cohort as the weighted sum of the expression of six genes,
where the weights are the variable importance from the Random
Forest model and the directionality of expression in the test
dataset (Fig. 1d) (Supplementary Table S4). The risk score
distribution was unimodal without serious skewness, irrespective
of various RNA expression platforms (Supplementary Fig. S3). As
the risk score was above the mean +1 standard deviation (SD) or
below the mean – 1 SD, the probability of classifying Npos or
Nneg by Random Forest approached certainty (probability of 1 or
0) asymptotically (Fig. 1d). The risk score of Npos was significantly
higher than that of Nneg (P= 8.6e−8) (Fig. 1e).

Loss of TP53, MED12 and gain of HDAC5, NPM1, DTX3 and
PPP3R1 promote gastric EMT, tumor invasiveness and drug
resistance
We computed the risk scores of 37 gastric cancer cell lines to
elucidate the six target gene expressions’ consequences. We
selected MKN-74 (low-risk score), SNU-216 (middle-risk score), and
MKN-1 (high-risk score) for in vitro experiments (Supplementary
Fig. S4). We initially made stable TP53/MED12 double knockout
(KO) cells using a lentiviral-based CRISPR/Cas9 system and
examined co-overexpression (OE) of HDAC5, NPM1, DTX3, and
PPP3R1 in each cell line (Fig. 2a). To identify whether loss of TP53/
MED12 and gain of HDAC5, NPM1, DTX3, and PPP3R1 altered
gastric EMT, expression of several EMT maker genes was evaluated
(Fig. 2b). In TP53/MED12 double KO and four gene co-OE (KO-OE)
MKN-74 and MKN-1 cells, CDH1 mRNA expression was significantly
decreased whereas CDH2 mRNA expression increased compared
with each control cell (sgNC-Vector, sgNC-OE or KO-Vec only).
Vimentin expression was significantly increased in KO-OE SNU-216
and MKN-1 cells compared with each control cell. Snail and Zeb1
mRNA expression were significantly increased in all KO-OE cells
compared with each control cell. We performed a wound healing
assay and migration assay to investigate the effect of KO-OE on
cell migration. The distance between wound edges of KO-OE
MKN-74, SNU-216, and MKN-1 cells dramatically decreased than
those of control cells in 24 h (Fig. 3a). In addition, each KO-OE cell
line presented a significantly increased number of migrated cells
as well as invasiveness compare with its control cell line (Fig. 3b,
Supplementary Fig. S5). Next, we tested drug sensitivity for
5-Fluorouracil (5-FU), Oxaliplatin, and Panobinostat (a pan-histone
deacetylase inhibitor) in KO-OE MKN-74, SNU-216, and MKN-1
cells. Regarding 5-FU and Oxaliplatin, a standard cytotoxic
chemotherapeutic regimen for gastric cancer, the area under
the dose-response curve (AUC) (Supplementary Fig. S6) signifi-
cantly increased in all KO-OE MKN-74, SNU-216 and MKN-1 cells
compared with their control cell (Fig. 3c). However, AUC of
Panobinostat was not increased in KO-OE MKN-74 or MKN-1, and
even significantly decreased in KO-OE SNU-216. These results
suggested that double KO of TP53/MED12 and co-OE of HDAC5,
NPM1, DTX3, and PPP3R1 functionally enhanced migration and
invasion potential of gastric cancer cells, facilitated EMT and
increased the resistance against standard cytotoxic chemother-
apeutic drugs for gastric cancer.
Additionally, we confirmed the metastatic potential of the six

genes in in vivo experiments. MKN-1 sgNC cells stably expressing
luciferase (MKN-1-sgNC-Luc) and MKN-1 TP53/MED12 double KO
cells stably expressing luciferase (MKN-1-KO-Luc) were established
by luciferase-expressing lentivirus infection. 5 × 105 of each cell
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that luciferase-expressing-control or KO-OE cells were injected
into the tail vein of six-week-old female nude mice (Control group
n= 4, KO-Luc-OE group n= 2). The quantification of luciferase
activity was measured once a week after cell injection using an

IVIS image analyzer. Luciferase activity was detected in the
abdominal cavity of all mice 3 weeks after cell injection (Fig. 3d,
upper panel). Two weeks after cell injection, the KO-Luc-OE group
exhibited an average luciferase activity that was 14 times higher
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than that of the control group (P= 0.0336). Moreover, mice
administered with KO-Luc-OE cells demonstrated a 4.1-fold
increase in luciferase activity compared to the control group
(P= 0.0338) 3 weeks after cell injection (Fig. 3d, middle panel). All
mice were sacrificed 3 weeks after cell injection. Metastatic human
tumor cells were observed in the lung and liver of KO-Luc-OE mice
(Fig. 3d, bottom panel and Supplementary Fig. S7)

External dataset validation and prognostic implication of
risk score
We used three external datasets, SNU (n= 83), the Cancer Genome
Atlas (TCGA, n= 151), and the Asian Cancer Research Group (ACRG,
n= 285), for validating the risk score [3, 4]. The risk score of each
cohort enabled us to divide high- (>mean +1 SD), intermediate-
(between mean +1 SD and mean −1 SD), and low-risk groups
(<mean −1 SD). In the SNU (P= 0.03339) and ACRG (P= 0.01142)
cohorts, the diffuse type of Lauren classification was significantly
more frequent in high-risk group than in low-risk group (Supple-
mentary Fig. S8). In all three cohorts, samples with LN metastasis
showed significantly higher risk score than those without LN
metastasis (P= 0.0018 for SNU, P= 0.013 for TCGA, and P= 0.048
for ACRG) (Supplementary Fig. S9). We further explored the
association of our risk score with TNM stage and other molecular
subtypes reported in gastric cancer (Fig. 4). The risk score
significantly increased as TNM stage increased in the SNU cohort
(P= 0.0016) (Fig. 4a) and ACRG cohort (P= 0.018) (Fig. 4h). In the
SNU cohort, there was a significant difference of risk scores among
TCGA subtypes, especially with the lowest score for MSI subtype
(P= 0.00017) (Fig. 4b). A similar significant difference with the
lowest score for MSI subtype was also observed in the TCGA cohort
(P= 0.00037) (Fig. 4f). Consistent findings were observed with the
ACRG subtype in both the SNU (P= 0.00014) and ACRG cohorts
(P < 2e−16), showing the lowest score for MSI subtype, while the
highest score for EMT subtype (Fig. 4c, i). Compared to the risk score,
the correlation of EMT score demonstrated a significant positive
correlation in EMT subtype (P= 0.019), and that of the MSI score
showed a negative correlation in the MSI subtype (P= 0.065)
(Supplementary Fig. S10) [4]. Similar results were also found when
applying two additional molecular subtypes reported in gastric
cancer. Applying the consensus genomic subtypes (CGSs) in all
three cohorts [20], the risk score was highest in CGS1 and lowest in
CGS5, which were associated with EMT and MSI, respectively
(P= 0.00028 for SNU, P= 0.0000012 for TCGA, and P < 2e−16 for
ACRG) (Fig. 4d, g, j). Lastly, among the alternative splicing (AS)
subtypes in SNU cohort [21], mesenchymal subtype (MesS) had a
significantly higher risk score than epithelial subtype (EpiS)
(P= 0.015) (Supplementary Fig. S11). To summarize, the high-risk
group was mainly classified into EMT related subtypes and the low-
risk group into MSI related subtypes among the other previously
established molecular subtypes (Supplementary Fig. S12).
In both the SNU and TCGA cohorts, mutations in six genes did

not lead to changes in their gene expression levels (Supplemen-
tary Fig. S13). The low-risk group had variants in several genes
associated with MSI, such as ATM for SNU cohort (P= 0.035) and
ARID1A for TCGA cohort (P= 0.002) [22, 23], at significantly higher
frequencies than the high-risk group.
Regarding the prognostic implication of risk score, our risk group

demonstrated significantly different overall survival in the TCGA

(P= 0.045) and ACRG (P= 0.00018) cohorts and significantly
different recurrence- or progression-free survival in all SNU
(P= 0.014), TCGA (P= 0.0077), and ACRG (P= 0.00054) cohorts
(Fig. 5). A merged cohort consisting of all three external cohorts also
showed significantly different overall and recurrence-free survival
(both P < 0.0001). Cox proportional hazard model revealed that the
risk score was an independent prognostic marker for progression-
free survival (hazard ratio (HR)= 1.7, P= 0.035) in the TCGA cohort,
and both overall (HR= 1.70, P= 0.022) and recurrence-free survival
(HR= 1.98, P= 0.01) in the ACRG cohort (Fig. 6). The significance of
our risk score outperformed ACRG subtypes for both overall and
recurrence-free survival in the ACRG cohort. The high-risk group
showed a significantly increased risk of death or recurrence by 3.0 to
3.5 times the low-risk group in a merged cohort (P < 0.0001).

DISCUSSION
Our study demonstrated that the risk score from the 6-gene
classifier can successfully predict the prognosis of gastric cancer. It
is noteworthy that our classifier was designed from the very early
stage tumors all matched with clinicopathologic characteristics
but only different metastatic potential. Besides, the risk score can
be consistently used as the independent prognostic marker across
all TNM stages regarding both overall and recurrence-free survival
of different gastric cancer cohorts irrespective of expression
platform. Our prognostic model was validated through three
different cohorts consisting of two Asian (SNU and ACRG) and one
world-wide cohort (TCGA). The prognostic difference of gastric
cancer by ethnic disparity has been long-standing controversial
issue, and that the TCGA cohort also failed to show discrete
prognosis differences based on their four subtypes [3, 24]. The risk
score calculated by our 6-gene classifier successfully classified
gastric cancer into different groups with statistically different
prognoses irrespective of that ethnic disparity, and outperformed
the previous classification from the ACRG cohort in the multi-
variate hazard model.
Our in vitro experiments using cell lines explained the survival

difference by increased invasion potential and the resistance
against the current 1st line chemotherapeutic regimen of 5-FU
and oxaliplatin [11, 25]. A previous study analyzing the
chemotherapy response for resectable advanced gastric cancer
showed that no-benefit group against 5-FU and oxaliplatin
accounted for 55% (344/625) [26]. Based on our 6-gene classifier,
a pan-histone deacetylase inhibitor was tested on cell lines
engineered to high-risk score, and successfully maintained or
increased drug sensitivity, unlike traditional 5-FU and oxaliplatin.
As the enzyme plays a role in cancer development, over-
expression of HDAC can lead to tumor progression by
deacetylating lysine residues in histones and increasing chro-
matin’s condensation. This process can decrease tumor sup-
pressor gene expression or intrinsic resistance to DNA targeting
drugs, and activate cell-cycle associated proteins [27]. Retro-
spective analysis of high HDAC expression reported a significant
association with nodal spread as an independent prognostic
marker for gastric cancer [28]. In addition, clinical trials using
HDAC inhibitors for anticancer therapy have also remarkably
increased, mainly for hematologic malignancy. A recent phase III
randomized clinical trial using HDAC inhibitor demonstrated

Fig. 2 TP53/MED12 double Knockout (KO) and co-overexpression (OE) of HDAC5, NPM1, DTX3 and PPP3R1 promotes gastric EMT.
a TP53/MED12 double KO were performed using the Lenti-CRISRPR/cas9 system then Flag or GFP tagged PPP3R1, HDAC5, NPM1 and DTX3
were co-transfected in TP53/MED12 double KO MKN-74, SNU-216 and MKN-1 gastric cancer cell. Each protein expression was confirmed by
western blot analysis. b The mRNA expression of EMT associated gene CDH1, CDH2, VIM, Snail and Zeb1 were detected by q-PCR analysis in
sgNC-Vec (the control vector transfection in the negative control sgRNA infected cell), sgNC-OE (HDAC5, NPM1, DTX3 and PPP3R1 co-
transfection in the negative control sgRNA infected cell), KO-Vec (the control vector transfection in TP53/MED12 double KO) and KO-OE
(HDAC5, NPM1, DTX3 and PPP3R1 co-transfection in TP53/MED12 double KO) cells. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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improved survival for advanced breast cancer [29, 30]. Based on
our results, a future clinical trial using HDAC inhibitor would
provide promising evidence for treating advanced gastric
cancers with high-risk scores or resistance to traditional 5-FU
or oxaliplatin.

NPM1, Nucleophosmin, is a multifunctional protein that plays a
crucial role in maintaining nucleolar structure, cell cycle progres-
sion, and histone assembly [31–33]. Overexpression of NPM1 often
correlates with mitotic index, metastasis, ribosome biogenesis, or
protein synthesis amplified in various solid tumors [34–38].
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Fig. 5 Survival analysis of the risk group in external cohorts. Overall survival (a) and recurrence-free survival (b) of the SNU cohort. Overall
survival (c) and progression-free interval (d) of the TCGA cohort. Overall survival (e) and recurrence-free survival (f) of the ACRG cohorts.
Overall survival (g) and recurrence-free survival (h) of a merged cohort including the SNU, the TCGA, and the ACRG cohorts. With mean and
standard deviation (SD) of the risk score, risk group was classified as high (>mean +1 SD), intermediate (between mean +1 SD and mean
−1 SD), and low risk group (<mean −1 SD) in each cohort.
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Risk_score

Mol.Subtype

Mstage

Nstage

Tstage
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TP53−
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0.392 

<0.001 ***
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# Events: 143; global Pvalue (log–rank): 3.4196e–18
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(0.45–60.4)

3.7
(0.87–15.6)

2.2
(0.48–10.2)

Reference

1.9
(0.83–4.3)

Reference

1.0
(1.00–1.1)

0.241 

0.188 

0.078 

0.306 

0.126 

0.062 

0.5 1 2 5 10 20 50 100

Overall survival, TCGA cohort

Risk_score

Nstage

Tstage

Gender

Age

N3
(N=46)

N2
(N=33)

N1
(N=28)

N0
(N=40)

T4
(N=47)

T3

T2
(N=24)
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2.1
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Risk_group

Mstage

Nstage
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High
(N=70)

Intermediate
(N=359)

Low
(N=73)
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(N=33)

M0
(N=469)

N3
(N=205)

N2
(N=124)

N1
(N=91)

N0
(N=82)

Male
(N=345)

Female
(N=157)

(N=502)

3.5
(1.91–6.3)

1.8
(1.05–3.1)

Reference

2.3
(1.49–3.6)

Reference

3.5
(2.07–6.0)

1.4
(0.76–2.5)

1.3
(0.67–2.4)

Reference

1.1
(0.82–1.5)

Reference

1.0
(1.01–1.0)

<0.001 ***

0.032 *

<0.001 ***

<0.001 ***

0.302 

0.475 

0.466 

<0.001 ***
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Overall survival, merged cohorts
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(N=61)
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(N=341)
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(N=74)

N3
(N=180)

N2
(N=120)

N1
(N=92)

N0
(N=84)

T4
(N=163)

T2_T3
(N=292)

T1
(N=21)

Male
(N=334)

Female
(N=142)

(N=476)

3.0
(1.64–5.5)

1.6
(0.92–2.7)

Reference

4.1
(2.23–7.5)

1.5
(0.80–3.0)

1.7
(0.89–3.4)

Reference

1.6
(0.49–5.3)

1.2
(0.37–3.9)

Reference

1.4
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Reference

1.0
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# Events: 103; global Pvalue (log–rank): 1.1846e–11
AIC: 994; concordance index: 0.75

# Events: 196; global Pvalue (log–rank): 4.0576e–19
AIC: 2152.08; Concordance index: 0.72

# Events: 173; global Pvalue (log–rank): 4.0357e–15
AIC: 1880.24; concordance index: 0.71

# Events: 52; global Pvalue (log–rank): 0.0028606
AIC: 447.02; Concordance index: 0.71

# Events: 43; global Pvalue (log–rank): 0.016557
AIC: 363.35; Concordance index: 0.68

Fig. 6 Cox proportional hazard model for external cohorts. Overall survival (a) and progression-free interval (b) of the TCGA cohort. Overall
survival (c) and recurrence-free survival (d) of the ACRG cohort. Overall survival (e) and recurrence-/progression-free survival (f) of a merged
cohort including the SNU, the TCGA and the ACRG cohorts. With mean and standard deviation (SD) of the risk score, risk group was classified
as high (>mean +1 SD), intermediate (between mean +1 SD and mean −1 SD), and low risk group (<mean −1 SD) in each cohort.
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Although mechanism of NPM1 to cancer progression is still
controversial, in vitro study reported that overexpression of NPM1
induced S-phase population in p53-negative cells [39]. In addition
to the inhibition of TP53 by the ARF-MDM2-TP53 pathway,
overexpression of NPM1 induces cellular growth and proliferation
in a dose-dependent manner, suggesting NPM1 as a biomarker for
cancer growth [40–42]. Besides, several recent studies have
suggested NPM1 as a good target for targeted cancer therapy
[38, 43, 44]. Even though our study showed the possibility of
HDAC inhibitor for patients in the high-risk group, inhibition of
NPM1 based on not only the direct effect on NPM1 itself but also
indirect effects including sensitizing cancer cells would be the
promising treatment strategy in the future [38].
DTX3 was reported as one of the eight essential genes for cell

proliferation in luminal-subtype breast cancer according to an
integrated genomic approach [45]. Overexpression of DTX3 also
induced ovarian cancer cell growth and invasion in a mutant P53-
dependent fashion by reducing MDM2-p53 binding [46]. Since
TP53 is one of the most potent tumor suppressor genes,
expression change of one gene related to TP53 may not be
enough to affect the tumor suppressive function. To the best of
our knowledge, our study could be the first report showing the
role of DTX3 in gastric cancer progression in conjunction with
other TP53 linked genes (HDAC and NPM1).
MED12 gene is noted to have copy number alterations or

somatic mutations, or aberrant expressions in various cancers, but
the prognostic significance of these changes is not clear [47].
Consistent with our results, MED12 loss could induce an EMT-like
phenotype through activation of TGF-βR signaling pathway, which
was associated with resistance to chemotherapy such as 5-FU and
cisplatin in colon cancer patients [48]. The RAS-RAF-MEK-ERK
pathway (downstream of EGFR) could be activated by a low
MED12 induced TGF-βR signaling pathway, suggesting that the
EGFR Inhibitor would not be effective for advanced gastric cancer
with a high-risk score. The downregulation of MED12 might
explain why EGFR Inhibitor therapy was ineffective in previous
clinical trials for advanced gastric cancer [47, 49–51].
PPP3R1, the regulatory subunit B of calcineurin, is a well-known

target of the immunosuppressant drug-receptor complexes.
Calcineurin regulates critical biological processes such as T cell
immune response and cell cycle control [52]. A previous in vitro
study revealed that calcineurin and NFAT factors are constitutively
expressed by primary intestinal epithelial cells, and selectively
activated in intestinal tumors due to impaired stratification of the
tumor-associated microbiota and toll-like receptor signaling, which
eventually promotes tumor proliferation and prevents apoptosis
[53]. As one of immune related gene signatures, overexpression of
PPP3R1 was also associated with poor prognosis of colorectal
cancer patients [54]. Considering the recent dramatic evolution of
immunotherapy for gastric cancer, whose background is one of the
most pro-inflammatory microenvironments among gastrointestinal
cancers, we hope our classification will help identify the appropriate
subset of gastric cancer patients for immunotherapy.
Taken together, six genes closely contribute to the progression

of gastric cancer, particularly growth, cell cycle, and resistance to
cytotoxic chemotherapy, albeit in different directions in expres-
sion. The poor prognosis is presumably based on EMT-driven
cancer progression, as the gastric cancer patients classified as
high-risk group have no shared mutations and mainly belong to
EMT-related subtypes across all different molecular classifications
of gastric cancer.
Early gastric cancers invading only the mucosal layer with LN

metastasis are precious and need more than a decade to collect.
Even though we customized several genes through the extensive
literature review, the genes of the PanCancer panel in our study
included only 800 genes. Considering long storage and small
volume of samples, rather than usual RNA sequencing, NanoString
nCounter assay was considered to provide more reproducible

results at very low input of RNA without amplification process [55].
Therefore, instead of using an assay that is not robust and likely to
produce false positive results, we decided to use the Nanostring
platform with robust expression quantitation even though we do
provide a genome-wide expression profile. To the best of our
knowledge, this is the first study analyzing cancers with clinically
different progression feature in the earliest stage whose baseline
clinicopathologic characteristics were statistically matched to the
control group.
In conclusion, the machine learning model of the 6-gene

classifier consisting of HDAC5, NPM1, DTX3, MED12, TP53, and
PPP3R1 can successfully predicts the prognosis of gastric cancer
across all TNM stages in three different gastric cancer cohorts
worldwide, irrespective of expression platform.

MATERIALS AND METHODS
Sample preparation
We identified 18 early gastric cancer samples with lymph node metastasis
(Npos) out of 1003 early gastric cancer samples which were reported in our
previous study [15]. To select the control group as early gastric cancer
without lymph node metastasis (Nneg) in remaining 985 samples, we
carried out 1:1 propensity score (PS) matching by which exact matching
was conducted for differentiation, and PS nearest neighbor matching for
age, sex, location, tumor size, and Lauren classification using SPSS version
21.0 (SPSS, Inc., Chicago, IL, USA). Formalin-fixed paraffin-embedded (FFPE)
samples from corresponding surgical specimens were identified through
the repository of the Department of Pathology, Seoul National University
Hospital. Tumor, normal mucosa, and metastatic lymph node lesions were
microdissected from sections with 10 μm thickness of FFPE samples.
Microdissection was conducted using hematoxylin and eosin-stained slides
with needle and blade under the microscope by the expert pathologist
(WHK). The study protocol was approved by the Institutional Review Board
of Seoul National University Hospital (IRB No: H-1708-166-882) and Seoul
National University Hospital Bundang Hospital (IRB No: B-2006-621-305).

NanoString assay
Total RNA was then extracted using Lucigen-Epicentre MasterPure
Complete DNA/RNA Purification Kit. For extracted RNA, yield and purity
of were assessed using a DS 11 Spectrophotometer (Denovix Inc, DE, USA)
and the quality was checked using Fragment Analyzer(Advanced Analytical
Technologies, IA, USA). Considering severe fragmentation of RNA in FFPE
sample, 1 μg of total RNA with the concentration of 1 μg/5 μl per sample
was used for NanoString assay. NanoString assay was conducted using the
customized nCounter PanCancer Pathways panel including default 770
genes plus 30 manually chosen genes which were selected based on
literature review during the recent 5 years at the time of panel
customization (Supplementary Table S5).
For each assay, a high-density scan encompassing 555 fields of view was

performed, and the final data were collected using the nCounter Digital
Analyzer. Quality control (QC) of nCounter data was conducted using
NanoString nSolver Analysis Software v4.0. For Imaging QC, at least 75% of
fields of view should be successfully counted to obtain robust data. For
binding density QC, the range of 0.1 and 2.25 spots per square micron was
established for assays. For positive control linearity QC, correlation values
between the known concentrations of positive control target molecules
added by Nanostring and the resulting counts were ≥0.95. For positive
control limit of detection QC, the counts for the 0.5fM positive control
probe was higher than background which was represented by the
2 standard deviations above the mean of the expression of negative
control probes. Samples for downstream analysis passed all QC criteria.
Initial normalization of nCounter data was conducted by NanoString-

Norm 1.2.1, R package [56]. For more confident housekeeping genes, 29
genes with P-value ≥ 0.01 or Pearson’s r < 0.8 in housekeeping genes in
nCounter data were excluded before normalization. Normalization
methods for NanoStringNorm were selected as the methods with the
lowest coefficient of variation for control genes which were “geo.mean” for
code count, “mean” for background, and “housekeeping.sum” for sample
content.
Differential expression was analyzed by DESeq2 1.24.0, R package using

normalized nCounter data [57]. All other downstream analyses were
conducted after the variance stabilizing transformation of expression data
by DESeq2. Canonical pathway analysis was performed by Ingenuity
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Pathway analysis (QIAGEN Inc.). Analysis database was used as signaling
pathways including apoptosis, cell cycle regulation, cellular growth
proliferation and development, cytokine signaling, growth factor signaling,
intracellular and second messenger signaling, nuclear receptor signaling,
organismal growth and development, and transcriptional regulation.

Prediction model and risk score
For feature selection for more accurate prediction, we used Lasso l1
penalization with the sparse Partial Least Squares Discriminant Analysis
(sPLS-DA) from mixOmics 6.8.0, R package [16]. The number of optimal PLS
components and selected features in each component was tested toward
the lowest balanced error rate with 5-fold cross-validation. With that
optimal components and features, the performance of sPLS-DA model was
tested with leave-one-out cross-validation (LOOCV). For more consistent
prognostic classifier, we analyzed Spearman correlation for those selected
features, and any genes with P ≥ 0.001 were excluded sequentially until all
remained genes were significantly correlated with P < 0.001. After a
thorough review for the functional implication of those correlated genes,
the final genes were selected as the signature classifier to predict poor
prognosis of gastric cancer. Classification efficacy of the signature classifier
was tested with sPLS-DA or Random Forest model (randomForest 4.6–14, R
package) with LOOCV. As parameters in Random Forest, the number of
trees used was chosen as 10,000, and the number of variables randomly
sampled as candidates at each split was decided as 2 with respect to the
lowest out-of-bag (OOB) error estimate, by which OOB error could not be
improved by 1e−5 or more. Variable importance was retrieved by “varImp”
function of the caret package in R from Random Forest model including
the final classifier. Considering the direction of fold change between Npos
and Nneg, we multiplied the variable importance of TP53 and MED12 by
−1. The risk score per sample was calculated as the sum of the expression
of genes in the final classifier weighted by each variable importance. Using
the mean and SD of the risk score within each cohort, we divided high-
(>mean+ SD), intermediate- (between mean+ SD and mean− SD), and
low-risk groups (<mean− SD).

Cell culture, gene knockout using CRISPR/cas9, and
overexpression
MKN-1, MKN-74, and SNU-216 cells were obtained from the Korean Cell
Line Bank (KCLB, Seoul, Korea). All cells were certified KCLB and
mycoplasma testing was routinely performed using e-MycoTM plus
Mycoplasma PCR Detection Kit (Intron, Korea), verifying that the cells
were mycoplasma free. Cells were maintained in PRMI1640 medium
(Gibco, Thermo Fisher Scientific) containing 10% fetal bovine serum
(Gibco) and 1% Penicillin streptomycin (Gibco) and maintained in a
humidified incubator with 5% CO2 at 37 °C. TP53 and MED12 sgRNA
sequence referred the human GeCKO lentiviral pooled library [58]
sequence (Supplementary Table S6). Lentiviral target plasmid were cloning
with lentiCRISPRv2 backbone (Addgene #52961) and co-transfected with
lentiviral helper plasmid pCMV-VSV-G (Addgene #8454) and psPAX2
(Addgene #12260) in 293FT cells using Lipofectamine 2000 (Life
Technologies). Lentiviral supernatants was concentrated with Lenti-X
concentrator (Clontech Laboratories, Inc.) according to the manufacturer’s
protocol. TP53 and MED12 gene knockout in gastric cancer cells confirmed
with western blot. The expression plasmid for GFP-NPM1 (Addgene #
17578) and Flag-HDAC5 (Addgen # 13822) were purchased from Addgene.
The vectors containing cDNAs encoding Flag-PPP3R1 and Flag-DTX3 were
cloning with pCMV-tag2B vector (Agilent Technologies). Plasmid transfec-
tion were performed using the Neon transfection system (Thermo Fisher
Scientific) into control or TP53 and MED12 knockout gastric cancer cells
following the manufacturer’s protocol. After 48 h, the transfected cells
were subjected to the following in vitro assays.
MKN-1 sgNC cells stably expressing luciferase (MKN-1-sgNC-Luc) and

MKN-1 TP53/MED12 double knockout cells stably expressing luciferase
(MKN-1-KO-Luc) were established by lentivirus infection of pLenti CMV/TO
V5-Luc Puro (w549-1) (addgene # 19785) then transfected pCMV-tag2B
vector for control (MKN-1-sgNC-Luc-vec) or GFP-NPM1, Flag-HDAC5, Flag-
PPP3R1 and Flag-DTX3 plasmid for 4 gene overexpression (MKN-1-KO-Luc-
OE). After 48 h, cells were detached with TripleLE and washed twice with
PBS and resuspension in PBS.

In vivo mouse experiment
All animal experiments conformed to the Institutional Animal Care and Use
Committee (IACUC) guideline and were approved by the Animal Research

Committee of Seoul National University Bundang Hospital (IACUC number:
BA-2311-379-001). Five-week-old female nude mice (BULB/cSlcnu/nu) were
obtained from OrientBio (Seongnam, Korea). Mice were housed and
adapted to the breeding environment for one week before the
experiment. A total of 5 × 105 MKN-1-sgNC-Luc-vec or MKN-1-KO-Luc-OE
cells were suspended 100 μ‘ of PBS and injected into the tail vein of nude
mice. To visualize the metastatic tumors, mice were intraperitoneally
injected with 150mg/kg VivoGloTM Luciferin (#P1043, Promega) every
week and photonic emission was imaged using the In Vivo Imaging
System (IVIS, Perkin Elmer) Lumina II with a collection time of 1min.
Luminescent activity in the region of interest (ROI) was quantified by
integrating the photonic flux (photons per second) through a region
encircling each tumor as determined by the LIVING IMAGES software
package per manufacturer’s instructions (Perkin Elmer). P value of ROI was
calculated using unpaired t-test with two-tailed by Graphpad Prism 9.5.
Three weeks after cell transplantation, all mice were sacrificed and each
organ was autopsied. Tissues were fixed in 10% neutral buffered formalin
and embedded in paraffin. Then, tissues were sectioned into 4 μm
thickness. The slides were subjected to hematoxylin and eosin (H&E) with
BenchMark ULTRA IHC/ISH System (Roche). The slide images were
evaluated by a pathologist.

Western blot and quantitative real-time PCR (qPCR)
Cells were lysed in RIPA buffer (Thermo Scientific) containing protease
inhibitor cocktail (Roche) and phosphatase inhibitor cocktail (Roche), and
were centrifuged at 13,000 × g for 10 min at 4 °C. After determination of
protein concentration in the cell extract by the BCA method (Thermo
Scientific), 20 ug of protein were resolved by SDS-PAGE and transferred to
polyvinyl difluoride membrane. Membranes were blocked for 30min with
blocking buffer (Bio-Rad) and incubated with following antibody; TP53
(Cell Signaling #2527), MED12 (Cell Signaling #4529), anti-Flag (Sigma-
Aldrich Corporation; F1804), anti-GFP(Invitrogen; MA5-15256), and beta-
actin(Sigma-Aldrich A1978) antibody. The membranes were washed and
incubated with horseradish peroxidase-conjugated secondary antibody,
followed by enhanced chemiluminescence development according to the
manufacturer’s instructions.
Total RNA extraction was performed Qiagen RNeasy plus mini kit

according to the manufacturer’s protocol (Qiagen). The quantity of RNA
was measured by Nanodrop 1000 (Thermo Scientific). Two micrograms of
total RNA was reverse transcribed with Superscript III transcriptase
(Invitrogen). qPCR was performed by using SYBR Green Master Mix
(Applied Biosystems) in QuantStudio 7 Real-Time PCR system (Applied
Biosystems) with 10 ng cDNAs as templates in each reaction. qPCR
analyses were performed by relative quantification method normalized
with GAPDH. The sequence of the qPCR primer pairs are shown in
Supplementary Table S7.

In vitro migration, invasion, wound healing,
and cytotoxicity assay
Migration and invasion assays were performed using 8.0-µm pore inserts in
a 24-well Transwell (BD Biosciences). Transfected cells were added to the
upper chamber of a transwell (5 ×103 cells per well) with a non-coated
filter and incubated for 48 h in the migration assay. The invasion assays
were performed using 12.5% Matrigel (Corning)-coated filters at 5 ×103

cells per well, and the cells were incubated for 72 h. The migrated or
invaded cells were fixed with 70% ethanol then stained with 0.4% Crystal
violet solution. For the wound measuring, a scratch on complete
confluence was made, and the percentage of cell-free area at 24 h was
measured relative to the distance at 0 h (100%) using photographed
images. Each experiment was performed in triplicates and the mean values
were presented.
For the cell viability assays, approximately 3000 cells were plated in each

well of a 96-well plate and incubated at 37 °C with 5% CO2 for 1 day then
added with the indicated drugs in triplicate at serially diluted concentrations
with 100ul medium, respectively. Cells were treated with the following
reagents at the indicated final concentration: 5-FU (1mM), Oxaliplatin
(250 µM), and Panobinostat (1 µM) for 72 h and examined for cell viability
using the EzCytox WST assay kit (Daeil Lab, Korea). Cell viabilities were
estimated as relative values compared to the untreated controls.

External datasets: SNU, TCGA, and ACRG cohort
For SNU cohort, we used next-generation sequencing data retrieved from
the snap fresh frozen tissue repository between 2001 and 2015 at the lab
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of gastric cancer biology, Cancer Research Institute, SNU. All RNA samples
extracted from the SNU cohort were processed for the mRNA-focused
sequencing library using the Illumina TruSeq RNA Sample Prep Kit v2. The
paired-end reads (2 ×101 bp) were sequenced on an Illumina HiSeq2000
platform (Illumina Inc., San Diego, CA). Read alignment was performed
using STAR aligner 2.6.1.d (2-pass mode) with the Homo sapiens GRCh38
Ensembl v94 gene primary assembly [59]. The mRNA expression was
quantified for downstream analysis by expected read count based on
effective gene length using RNA-Seq by Expectation-Maximization (RSEM
1.3.1) [60]. The quantified mRNA expression was analyzed for DEGs by
DESeq2, and variance stabilizing transformation was used for downstream
analysis [57].
Whole-exome sequencing (WES) of the dsDNA from tumor and

corresponding normal gastric mucosa samples was performed using
the Agilent SureSelect Human All Exon V5+ UTR region kit (Agilent Inc.,
Santa Clara, CA, USA). The paired-end reads (2 ×101 bp) were sequenced
on an Illumina HiSeq2000 platform (Illumina Inc., San Diego, CA). Based on
the Homo sapiens GRCh38 Ensembl v94 gene primary assembly, the read
alignment, deduplication and base recalibration processing were
performed using the Burrows–Wheeler Aligner (bwakit-0.7.15) and Picard
in Genome Analysis Toolkit 4.1.0.0 (GATK4), following the recommended
best practices [61–63]. The somatic mutations were called by mutect2 in
GATK4 with aligned whole-exome sequencing data [64]. Confident
somatic calls were determined as the passed variants after filtering the
cross-sample contamination calculated by FilterMutectCalls and the OxoG
artifacts calculated by FilterByOrientationBias in GATK4. The functional
annotation of variants was performed with ANNOVAR 2018Apr16 [65].
Variants with 1) 10 or more total read depths for the normal allele, 2) 20 or
more read depth for the tumor allele, and 3) 5% or more alternative allele
fraction were selected. Only variants with population frequencies of <0.01
in the overall population as determined by Genome Aggregation
Database were included [66]. The Fisher’s exact test was performed
between the groups for genes that were mutated by more than 40% in
high- or low-risk group and our six genes, and visualized using Maftools
2.16.0, R package [67].
Sequencing data is archived in Gene Expression Omnibus (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi, accession number: GSE126304),
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/, accession
number: PRJNA521397), and our clinical cancer genome database (http://
ccgd.snu.ac.kr/index.html).
For pathological microsatellite instability (MSI), fragment analysis was

used to compare the tumor and normal tissue samples at 5 base pair (bp)
locations after polymerase chain reaction using the following two primers:
Primer 1 consisted of BAT26 (116 bp) and BAT25 (148 bp), and primer 2
consisted of D5S346 (96–122 bp), D17S250 (146–165 bp) and D2S123
(144–174 bp).
For the classification ACRG subtypes in the SNU cohort, we calculated

the signature scores based on the gene list of each signature including
MSI, EMT, and TP53 activity using the same manner used in the previous
study (Supplementary Fig. S14) [4]. The cut-off of TP53 signature score
(11.89059 in log2 scale) was identified as Youden index of the Receiver
Operating Characteristic curve between TP53 signature score and the
somatic mutation of TP53 gene. A web-based GPICS120 predictor was used
for CGSs classification (https://kasaha1.shinyapps.io/GPICS120) [68]. The
classification of TCGA and AS subtypes for SNU cohort was conducted and
described in our previous study [69]. They were classified using
approximately 800 signature gene classifiers and splicing events of eight
genes, respectively [69, 70].
For TCGA dataset, level 3 mRNA expression data (rnaseqv2_unc)

processed by RSEM was downloaded from Broad GDAC Firehose (http://
gdac.broadinstitute.org) [71]. Expected read count by RSEM was normal-
ized as variance stabilizing transformation by DESeq2, and subsequently
used for the calculation of risk score. Clinical information was retrieved
from phenotype data of GDC TCGA stomach cancer cohort in UCSC Xena
[72]. Survival data, the information of molecular subtypes, and genetic
mutation data were retrieved from TCGA PanCancer data [73]. Regarding
molecular subtypes, POLE type in PanCancer data was replaced by each
previous subtype originally reported in 2014 [3]. For reliable prognostic
analysis, the standardized treatment and accurate pathological information
are essential, and any prior systemic treatment may affect RNA expression
profile. Therefore, we exclude samples with a minimal number of total
examined lymph nodes less than 16, those with TNM stage which cannot
be assessed, those with history of prior malignancy, and those with history
of any neoadjuvant treatment. Also, we only included samples with
R0 status.

For ACRG dataset, we downloaded pre-processed expression data from
GEO (GSE62254), and transformed to log2 scale [4]. In terms of gene
expression summary, we excluded probes with the name including “_s” or
“_x” which may hit different genes. For NPM1, there were only probes with
“_s” or “_x”, and the expression level measured by 221691_x_at was
reported as not consistent for the composite expression of the RefSeqs of
NPM1 [74]. Therefore, we allowed the probes with “_s” for NPM1 in our
classifier genes. To summarize probe signal intensity, we chose one
representative probe with the maximum median level of expression across
all samples. For accurate downstream prognostic analysis, we exclude
samples with a minimal number of total examined lymph nodes less
than 16.

Statistical analysis including survival analysis and Cox
proportional hazard model
For overall survival, we excluded samples with follow up period of
≤60 days or 2 months to avoid unwanted biased events (Supplementary
Table S8). Cox proportional hazard model included age, sex, T stage, N
stage, M stage, and risk score. In case of infinite coefficients for stage
variable, TNM stage grouping was used instead of T, N, and M stage. ACRG
subtypes were included in the Cox model for ACRG cohort since they were
reported as a prognostic marker [4]. For progression-free or recurrence-free
survival, samples with M1 stage were excluded for Cox model. Age and risk
score were fitted as continuous variables, and pathological stages and
molecular subtypes were fitted as categorical variables as they were. In
terms of the edition for TNM stages in the TCGA cohort, we excluded
samples diagnosed by the 4th edition because of incompatible information
to other editions. TNM stage data of samples with the 5th and 6th edition
were manually converted to data in the 7th edition, based on original
pathological reports of those samples downloaded from TCGAbiolinks [75].
For merged external cohorts including the SNU, the TCGA, and the ACRG
cohort, stage information was unified in the 7th edition by which T stage
was classified as T1, T2/T3, and T4, even though TNM stage group was not
available. In case of the infinite coefficient for T stage, TNM stage group
was used instead in the TCGA cohort, or only the N and M stage was used
in the merged cohort. The SNU cohort could not be fitted to the Cox
proportional hazard model with multiple infinite coefficients due to the
sample size. Overall statistical comparison of continuous variables
including risk score was conducted using Wilcoxon test between two
groups or Kruskal–Wallis test for three or more comparison. Other
comparison of categorical variables was analyzed by Fisher’s exact test.
All data analysis in this study were performed using R software (version
3.6.0; The R Foundation for Statistical Computing, Vienna, Austria) and
GraphPad Prism version 9.0 (GraphPad Software, Inc., La Jolla, CA).
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