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BACKGROUND: CC-115, a dual mTORC1/2 and DNA-PK inhibitor, has promising antitumour activity when combined with androgen
receptor (AR) inhibition in pre-clinical models.
METHODS: Phase 1b multicentre trial evaluating enzalutamide with escalating doses of CC-115 in AR inhibitor-naive mCRPC
patients (n= 41). Primary endpoints were safety and RP2D. Secondary endpoints included PSA response, time-to-PSA progression,
and radiographic progression.
RESULTS: Common adverse effects included rash (31.7% Grades 1–2 (Gr); 31.7% Gr 3), pruritis (43.9% Gr 1–2), diarrhoea (37% Gr
1–2), and hypertension (17% Gr 1–2; 9.8% Gr 3). CC-115 RP2D was 5mg twice a day. In 40 evaluable patients, 80% achieved ≥50%
reduction in PSA (PSA50), and 58% achieved ≥90% reduction in PSA (PSA90) by 12 weeks. Median time-to-PSA progression was
14.7 months and median rPFS was 22.1 months. Stratification by PI3K alterations demonstrated a non-statistically significant trend
towards improved PSA50 response (PSA50 of 94% vs. 67%, p= 0.08). Exploratory pre-clinical analysis suggested CC-115 inhibited
mTOR pathway strongly, but may be insufficient to inhibit DNA-PK at RP2D.
CONCLUSIONS: The combination of enzalutamide and CC-115 was well tolerated. A non-statistically significant trend towards
improved PSA response was observed in patients harbouring PI3K pathway alterations, suggesting potential predictive biomarkers
of response to a PI3K/AKT/mTOR pathway inhibitor.
CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02833883.
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INTRODUCTION
Globally, over 375,000 men died of prostate cancer in 2020 [1, 2].
Although androgen-deprivation therapy (ADT) to lower the
production of testosterone is initially effective, almost all cancers
eventually stop responding, a stage termed castration-resistant
prostate cancer (CRPC) with a median survival of about 3–5 years.
Next-generation AR pathway targeted therapy, such as abirater-
one, enzalutamide and apalutamide, has improved the survival of
patients in both the metastatic castration-resistant and hormone-
sensitive setting, but treatment resistance inevitably emerges,
leading to a lethal outcome [3, 4].
Multiple mechanisms of resistance to AR pathway targeted

therapy have been identified, and one major mechanism involves
the activation of phosphoinositide-3 kinase/AKT/mammalian

target of rapamycin (PI3K/AKT/mTOR) pathway [5, 6]. Reciprocal
regulation between PI3K/AKT and AR pathways has been reported
in prostate cancer, with inhibition of AR pathway leading to
tumour cell survival via feedback activation of PI3K pathway [7, 8].
In addition, deletion or loss-of-function mutation in PTEN, a critical
negative regulator of the PI3K/AKT/mTOR pathway, occurs in up to
50% of mCRPC, and the presence of such alterations can portend
to attenuated response to AR-targeted therapies and worse
clinical outcomes [9–13]. Thus, dual inhibition of AR and PI3K/AKT/
mTOR pathways may enhance anti-tumour response and delay
the development of drug resistance to AR-targeted therapy alone.
Indeed, clinical support for this hypothesis emerged from a
randomised Phase 3 trial where addition of ipatasertib, a AKT
inhibitor, to abiraterone improved radiographic progression-free
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survival (rPFS) compared to abiraterone alone in mCRPC patients
with PTEN loss [14].
DNA-dependent protein kinase (DNA-PK), a member of the

PI3K-related kinase family, plays a significant role in DNA damage
response, cell survival and proliferation, and has emerged as a
potentially important therapeutic target in cancer [15, 16].
Clinically, DNA-PK dysregulation has been associated with
aggressive disease, tumour progression and poor clinical out-
comes in many cancers, including prostate cancer [17–19].
Furthermore, pre-clinical studies have identified a potential
interaction between AR and DNA-PK pathways in DNA repair in
prostate cancer, suggesting that dual inhibition of AR and DNA-PK
pathways may provide synergistic killing of prostate cancer cells
[20, 21].
CC-115 is a selective and potent dual inhibitor of mTORC1/2 and

DNA-PK. It has demonstrated anti-tumour activity in a large panel
of cancer cell lines in vitro [22]. In the first-in-human Phase I study
in patients with advanced solid or haematologic malignancies, CC-
115 had an acceptable safety and toxicity profile at 10mg twice a
day dosing, and an encouraging preliminary anti-tumour activity
in several tumour types [23]. Recently, another dual mTOR and
DNA-PK inhibitor, samotolisib, has demonstrated a tolerable safety
profile and an improved PFS when combined with enzalutamide
in a randomised, placebo-controlled Phase 1b/2 study in mCRPC
patients after progression on abiraterone [24].
In this current study, we report the results of a Phase 1b

multicentre trial evaluating the safety and preliminary efficacy of
escalating doses of CC-115 (5–10mg twice daily) in combination
with enzalutamide in AR pathway inhibitor-naive mCRPC patients
(n= 41) after progression on ADT. PK analysis, pre-clinical analysis
on target pathway inhibition, and exploratory biomarker analysis
with tumour genomic profiling and circulating tumour DNA
(ctDNA) targeted sequencing are also reported here.

MATERIALS AND METHODS
Patient selection
Patients 18 years of age and above with a life expectancy of at least
6 months and documented progressive mCRPC, serum testosterone
<50 ng/dl, ECOG performance status of 0–1, willingness to provide a
tumour sample via biopsy or adequate archival tissue from a metastatic
site of disease to be collected at screening if safe and feasible per treating
investigator discretion, and adequate haematologic, renal, and hepatic
function were eligible to enrol. Patients with central nervous system
metastases, and other major medical comorbidities were excluded from
the trial. Prior exposure to enzalutamide, apalutamide, or other investiga-
tional AR-directed therapy, abiraterone acetate, ketoconazole or other
specific CYP-17 inhibitors, agents specifically targeting mTOR complexes
(dual TORC1+ TORC2 inhibitors), PI3K/AKT pathway, DNA repair pathway
or chemotherapy for castration-resistant disease was not permitted.

Study design and treatment
This was a Phase 1b multicentre, open label trial testing enzalutamide
(160mg QD) with escalating doses (5 mg, 10mg and amended to include
7.5 mg BID) of oral CC-115 using a standard 3+ 3 dose escalation design in
AR pathway inhibitor-naive mCRPC patients. See schema for the study
design and consort diagram in Fig. S1A, B, respectively. The starting dose
for enzalutamide was 160mg QD, the standard approved dose for
enzalutamide monotherapy in prostate cancer. The starting dose for CC-
115 was 5mg BID, a lower dose than previously selected monotherapy
dose in the first-in-human trial [23], due to concern for possible PK
interaction and overlapping toxicity with enzalutamide. The trial was
registered at clinicaltrials.gov as NCT02833883. A Data Monitoring
Committee (DMC) was employed to determine whether the safety and
PK profile seen in the dose escalation phase of the study was favourable to
justify initiating the expansion cohort to further confirm safety and
tolerability of the combination and assess preliminary evidence of anti-
tumour activity. An interim analysis of 17 subjects in the Expansion Phase
was conducted and evaluated by the DMC. Due to the unacceptable
observed rate of grade 3 rash toxicities at the 7.5 and 10mg BID expansion

dose of CC-115 in the study, the protocol was amended to accrue an
additional 15 patients in the expansion phase treated at 5 mg BID.
Definition and evaluation of dose-limiting toxicities were provided
in Supplemental Method section.

Study assessments
Safety and laboratory. All adverse events (AEs), defined as any untoward
medical occurrence in a patient or clinical investigation subject
administered a pharmaceutical product and which does not necessarily
have to have a causal relationship with treatment (ICH E2A), were recorded
by investigators and graded per NCI-CTCAE version 4.0. Laboratory tests,
including serum PSA and testosterone, were monitored at screening and
during the study.

Pharmacokinetics. Each subject in the dose escalation portion of the
study and a minimum of six subjects treated at the 7.5 mg CC-115 BID
expansion phase had pharmacokinetic (PK) specimens obtained to
evaluate and compare CC-115 exposure in subjects administered CC-115
alone and in combination with enzalutamide to assess potential gross
drug-drug interaction. PK parameters (Cmax, Tmax, AUC(INF), AUC(TAU), AI
(Accumulation Index), Peak-to-trough fluctuation, Cmin and T½) were
derived from blood or plasma concentration versus time data.

Clinical response analysis. PSA response was calculated based on percent
change in serum PSA values (ng/ml) at 12-week of treatment (or earlier for
those who discontinue therapy prior to 12 weeks) from baseline Cycle 1
Day 1 PSA values. The maximum decline in PSA that occurs at any point
after treatment was reported for each subject. One patient was excluded
from this analysis because he withdrew consent after signing, and did not
have any treatment and PSA follow-up. Three patients discontinued the
treatment and withdrew from the trial prior to 12 weeks, and their last PSA
values (all at approximately 8 weeks) were used for PSA response
calculation. This is consistent with Prostate Cancer Working Group 3
(PCWG3) recommendation. Time-to-PSA progression and radiographic
progression-free survival were calculated according to PCWG3 [25].

Exploratory biomarkers associated with treatment response. The following
specimens were obtained from each subject, when possible: (A) a paraffin-
embedded (FFPE) tumour tissue sample from a metastatic site of disease
(via biopsy) at screening; (B) blood for Epic Sciences to evaluate CTC count,
CTC AR-V7 positivity, CTC chromosomal instability (measured by predicted
large-scale transition number or pLST) and single-cell low-pass sequencing
of CTCs as previously described [26–30]; (C) targeted tumour tissue
sequencing assays with MSK-IMPACT (Integrated Mutation Profiling of
Actionable Cancer Targets) or Foundation One genomic profiling to detect
pan-cancer driver gene mutations and other critical genetic aberrations
[31]; and (D) pre- and post-treatment plasma cell-free and leucocyte DNA,
subjected to deep targeted sequencing to quantify ctDNA fraction and
identify somatic mutations, copy number changes, and structural
rearrangements in established prostate cancer genes, as previously
described [32]. These biomarker analyses were exploratory and not pre-
specified in the study protocol.

Statistical analysis
The phase I component of the study was designed to establish the RP2D of
CC-115 combined with the standard dose of enzalutamide. Subjects were
treated in cohorts of size three and six and the dosage were escalated if
the clinical toxicity is acceptable. The maximum tolerated dose is defined
as the highest dose level with an observed incidence of DLT in no more
than one out of six subjects treated at a particular dose level. A DLT was
defined by Cycle 1 toxicity, although all-cycle toxicity was recorded. The
trial was designed to treat a minimum of two subjects and a maximum of
18 subjects. When considering the probability of escalating a dose level as
a function of the true DLT rate, the probability of escalation was high when
the risk of DLT is low.
In the expansion phase, a 28 subject Simon two-stage design that

differentiates between PSA response rates (≥90% by 12 weeks) of 0.50 and
0.75 was originally planned to assess treatment efficacy. Twelve subjects
will be initially enrolled. If six or fewer subjects respond, the trial would
have been terminated early and the treatment will be considered
insufficiently active. Otherwise, the enrolment will be extended to a total
of 28 subjects. If 18 or more of the 28 subjects respond, the treatment
would be considered active. The probability of declaring the treatment
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sufficiently active is approximately 0.10 when the PSA response rate (≥90%
at 12 weeks) in the population is 0.50 and increases to 0.90 when the
population response rate is 0.75. Of note, due to unexpectedly high
frequency of Grade 3 rash in the expansion phase, CC-115 was reduced
from 10mg to 7.5 mg and ultimately to 5 mg BID. This decision rule was
not evaluated because the trial did not recruit to 28 patients at RP2D (CC-
115 at 5 mg BID).
In order to monitor safety in the expansion phase, the design included a

stopping boundary in the event of excessive DLTs. The boundary is derived
using a repeated significance test. The boundary was based on an
acceptable DLT rate of 0.15 and an unacceptable DLT rate of 0.35. The
repeated significance test using this boundary has size 0.10 and
power 0.90.
The association of PI3K/mTOR pathway activations with PSA response

(≥50%, ≥90%) was evaluated using Fisher’s exact test. Time to PSA
progression was estimated using the Kaplan–Meier method, and the
association of PI3K/mTOR pathway activations with time to PSA progres-
sion was evaluated using the logrank test.

Preclinical in vitro cell growth and biochemistry assays
Human prostate cancer cell line (LNCaP) was treated with CC-115, NU-7441
(a specific DNA-PK inhibitor) and INK128 (a specific mTORC1/2 inhibitor) in

a range of concentrations in vitro. Western blot analysis on phosphor-DNA-
PKcs, phosphor-AKT (p473), phosphor-S6, phosphor-4EBP1, phosphor-H2-
AX, phosphor-ATM and actin were performed to evaluate the effects of
these drugs on the activation status of DNA-PK and PI3K/AKT/mTOR
pathways. Two prostate cancer cell lines (LNCaP and CWR-22PC sgPTEN)
were also treated with a vehicle control, CC-115, NU-7441, INK128 and a
combination of these drugs over 7 days in vitro. Cell growth was evaluated
by Celltiter-Glo assay.

RESULTS
Patients
Overall, 41 patients were enrolled in both dose-escalation (n= 9) and
expansion (n= 32) cohort in this Phase 1b study, including patients
who received CC-115 at 10mg (n= 13), 7.5mg (n= 10), and 5mg
(n= 18) twice daily. One patient (7.5mg cohort) was excluded from
the clinical response analysis because he withdrew the consent after
signing and did not receive any treatment. The demographic and
baseline disease characteristics were listed in Table 1. Overall, median
baseline PSA was 11.7 (range 0.7–627.4) ng/ml, and the majority
(58.5%) of patients had Gleason 8–10 disease. 61% of the patients

Table 1. Demographic and baseline disease characteristics.

No. (%) or Median (range)

Dose Level 0 + Expansion
5mg cohort

Dose level 1 + Expansion
10mg cohort

Expansion 7.5mg
cohort

Overall

Number of subjects,
N= treated

18 13 10 41

Age, years 69 (51–77) 67 (59–81) 70 (63–86) 69 (51–86)

Race

White 14 (77.8) 8 (61.5) 8 (80) 30 (73.2)

Black or African American 1 (5.6) 1 (7.7) 2 (20) 4 (9.8)

Asian – 1 (7.7) – 1 (2.4)

Unknown or not reported 3 (16.7) 3 (23.1) – 6 (14.6)

Performance status

ECOG 0 14 (77.8) 13 (100) 8 (80) 35 (85.4)

ECOG 1 4 (22.2) – 2 (20) 6 (14.6)

Primary therapy

Prior docetaxel 2 (11.1) 3 (23.1) 2 (20) 7 (17.1)

Prior prostatectomy 10 (55.6) 6 (46.2) 1 (10) 17 (41.5)

Prior radiation 3 (16.7) 1 (7.7) 2 (20) 6 (14.6)

Prior brachytherapy – 1 (7.7) – 1 (2.4)

None/unknown 5 (27.8) 5 (38.5) 7 (70) 17 (41.5)

Baseline laboratory values

PSA, ng/ml 19.5 (1.3–392.4) 12.9 (0.7–85.2) 9.2 (2.7–627.4) 11.7 (0.7–627.4)

Total Gleason Score at
diagnosis

Gleason Score 6 – 1 (7.7) 1 (10) 2 (4.9)

Gleason Score 7 3 (16.7) 2 (15.4) 3 (30) 8 (19.5)

Gleason Score 8–10 12 (66.7) 10 (76.9) 4 (40) 26 (63.4)

Not reported 3 (16.7) – 2 (20) 5 (12.2)

Site of metastases

Bone only 14 (77.8) 3 (23.1) 8 (80) 25 (61.0)

Lymph node only – 5 (38.5) – 5 (12.2)

Bone + lymph node 3 (16.7) 2 (15.4) – 5 (12.2)

Visceral Mets present

Liver – 2 (15.4) – 2 (4.9)

Lung – 1 (7.7) 2 (20) 3 (7.3)

Unknown or not reported 1 (5.6) – – 1 (2.4)
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had bone only metastases, while 12.2% had visceral metastases (liver
or lung) at the start of the trial. At the data cutoff date of July 15,
2021, 37 patients have discontinued the trial due to disease
progression, side effects or withdrawal of consent with 4 patients
remaining active on the trial.

Safety and tolerability
Treatment-emergent adverse events (TEAEs) are reported in
Table 2. The most common toxicity included rash (63.4%),
pruritus (43.9%), diarrhoea (36.6%), hypertension (26.8%) and
fatigue (24.4%). Grade 3 toxicity included rash (31.7%),
hypertension (9.8%) and increased lipase (7.3%). There was only
1 Grade 4 toxicity (hyperglycaemia) and no Grade 5 toxicity was
observed. The most common Grade 3 toxicity was rash, which
appeared to be related to the dose of CC-115. Rash was
maculopapular with histology showing interface and spongiotic
dermatitis with vasculopathic changes and associated eosino-
phils (Fig. S2). The rash occurred usually within the first cycle,
which resolved with a brief course of topical and/or oral steroids
and rarely recurred. The incidence of Grade 3 rash prompted
dose reduction of CC-115 from 10 mg to 5 mg twice daily,
leading to a corresponding reduction in Grade 3 rash from
46.2% to 16.7%. Hyperglycaemia, a common toxicity related to
the class of drugs inhibiting PI3K/AKT/mTOR pathway, occurred
in 19.5% of the patients, and was generally mild (Grade 1 or 2),
with the exception of one Grade 4 toxicity that happened at
10 mg dose after more than 1 year on treatment prompting
discontinuation. CC-115 at 5 mg twice daily was generally well
tolerated and selected as the RP2D when combined with
enzalutamide at 160 mg daily.

Pharmacokinetics (PK)
PK was measured in 6 patients after a single dose of CC-115 was
administered 48 h prior to Cycle 1/Day 1 (C1D1), and after a
combined dose of CC-115 and enzalutamide at 160 mg on C2D1
(Fig. S3). After a single dose of CC-115, 5 mg and 7.5 mg dosing
achieved similar serum concentration at 3 h (peak, 30 ng/ml) and
8 h (13-14 ng/ml) after administration, while 10mg dosing
achieved about a twofold higher serum concentration at 3 h
(61 ng/ml) and 8 h 31 (ng/ml) after administration. Serum
concentrations of CC-115 was comparable when administered in
combination with enzalutamide (Fig. S3). These results indicated
that no significant PK interaction was observed between CC-115
and enzalutamide. CC-115 at 5 mg and 7.5 mg achieved compar-
able serum drug concentration, which was more than 50% lower
than the serum concentration at 10 mg dosing.

Pre-clinical in vitro analysis of target pathway inhibition
CC-115 at 5 or 7.5 mg twice daily oral dose reached a peak serum
concentration of ~30 ng/ml (equivalent of 100 nM) based on PK
studies (Fig. S3). We performed experiments to investigate the
effects of CC-115 at this concentration on biochemical signalling
and prostate cancer cell growth in vitro. While CC-115 effectively
inhibited the downstream targets of PI3K/AKT/mTOR signalling
biochemically, including phosphor-AKT (pAKT), phosphor-S6
(pS6) and phosphor 4EBP1 (p4EBP1), starting at 100 nM in a
dose-dependent manner, it had no detectably inhibitory effect on
DNA-PK pathway measured by phosphor-DNA-PKcs (pDNA-PKcs)
and phosphor-H2-AX (pH2-AX) (Fig. S4A). Furthermore, CC-115
had a significant inhibitory effect on two human prostate cancer
cell lines (LNCaP and CWR-22PC sgPTEN) prostate cancer cell
growth in vitro, similarly to another specific mTORC1/2 inhibitor
(INK128). However, a specific DNA-PK inhibitor, NU-7441, had only
modest inhibitory effect on prostate cancer cell line growth
(Fig. S4B, C). Taking together, these pre-clinical data suggested
that CC-115 may predominantly inhibit mTORC1/2, but may be
insufficient to block the DNA-PK pathway at 5 or 7.5 mg dose.
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Clinical response
Percentage PSA reduction by 12 weeks from the baseline (Fig. 1),
median time-to-PSA progression (TTPP) (Fig. S4), median radio-
graphic progression-free survival (rPFS) (Fig. 2) and duration on
treatment (Fig. 3) were used to evaluate the preliminary
antitumour effects in this trial. In 40 evaluable patients, 80%
achieved a ≥50% reduction in PSA (PSA50) and 58% achieved a
≥90% reduction in PSA (PSA90) by 12 weeks (Fig. 1). Median TTPP
was 14.7 months and median rPFS was 22.1 months in all 40
evaluable patients (Figs. 2 and S5). Consistent with PK data, there
was a numerically higher PSA50 response in patients receiving
10mg (PSA50 of 92%) than patients receiving 5 mg and 7.5 mg
(PSA50 of 78% and 67%, respectively) of CC-115. In addition,
PSA50 response was observed in 12 out of 13 (92%) patients with
Grade 3 rash and in 20 out of 27 (74%) without Grade 3
rash although the comparison was not statistically significant
(Fig. 1a, b).

Exploratory biomarker analyses
Exploratory biomarkers from tumour tissue genomic analysis. To
explore whether tumour genomic alterations, in particular
mutations or copy number changes leading to activation of the
PI3K/mTOR pathway, may be potential biomarkers to predict
response to CC-115, for 33 patients we performed next-generation
sequencing (NGS) of biopsy tumour tissue samples using MSK-
IMPACT or Foundation One tests. Sample insufficiency resulted in
technical failure in two patients. Among the remaining 31
patients, 16 patients (51.6%) harboured mutations predicted to
lead to PI3K/AKT/mTOR pathway activation, including 11 (35%)
with PTEN loss-of-function mutation or deletion, 4 (13%) with TSC1
or TSC2 loss-of-function mutations, and 1 (3%) with PIK3CA
activation mutation. Interestingly, in this exploratory biomarker
analysis, PSA50 was 94% in the 16 patients with any PTEN/PI3K/
mTOR pathway activation mutations, including loss-of-function
mutations in PTEN, TSC1 and TSC2, and activating mutation in

Category N
PSA50

P value*PSA50 PSA90
PSA90

P value*

All patients All patients 40 32 (80%) 23 (58%)

PTEN status
PTEN WT 20

0.38
15 (75%) 11 (55%)

1.0
PTEN Mut/Del 11 10 (91%) 6 (55%)

PI3K pathway 
mutation status

PI3K pathway WT 15
0.08

10 (67%) 7 (47%)
0.48

PI3K pathway Mut 16 15 (94%) 10 (63%)

CC-115 dose

5 mg twice a day 18 14 (78%) 12 (67%)

7.5 mg twice a day 9 6 (67%) 4 (44%)

10 mg twice a day 13 12 (92%) 7 (54%)

a b

** ***

* TSC1/2 inactivating mutation or
PIK3C aactivating mutation

PTEN mutation/loss
Grade 3 ras h

* Fisher’s Exact test
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Category N Events Median rPFS (months) 95% CI
Logrank 
P value

All patients All patients 40 18 22.1 11.0–44.2

PTEN status
PTEN WT 20 12 19.6 7.4–44.2

0.16
PTEN Mut/Del 11 2 NR

PI3K pathway 
mutation status
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0.81

PI3K pathway Mut 16 6 19.6 10.1–NR
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PIK3CA, versus 67% in the 15 patients without such mutations
(Fisher’s Exact test, p= 0.08) (Fig. 1b). Because of small sample
sizes and low progression event rate at the time of data cutoff, in
particularly for radiographic progression, there were no statisti-
cally significant differences on median TTPP and rPFS with this
biomarker analysis (Figs. 2 and S5).

Exploratory biomarkers from liquid biopsy. Newer technologies
have emerged to allow less invasive analysis of circulating tumour
DNA (ctDNA) and circulating tumour cells (CTCs) overtime. We
have taken a systematic approach in this trial to serially collect
peripheral blood for ctDNA and CTC analysis to gain biological
insight into the potential biomarker of response and the
mechanism of drug resistance. Patients’ plasma was collected at
baseline, C3D1 and end-of-treatment in selected patients for
ctDNA analysis by NGS [31]. In addition, peripheral blood was also
collected at baseline, C3D1 and end-of-treatment in selected
patients for CTC analysis for cell enumeration, AR-V7 protein
detection, cellular phenotypic heterogeneity (Shannon index) and
chromosomal instability (pLST; large scale transition) analysis
[26–29, 33]. However, because of the small sample size and 92% of
the patients had 0 to less than 5 CTC count per ml of blood at
screening, consistent with other first line mCRPC patients, no

further analysis from CTCs would be presented here. Results from
ctDNA analysis will be presented below.

ctDNA analysis. A total of 45 baseline and 30 end-of-treatment
plasma samples were subjected to cell-free DNA (cfDNA)
sequencing using a custom panel that captures coding and non-
coding regions from 73 prostate cancer driver genes [34, 35]. After
using patient-matched leucocyte DNA to filter variants related to
clonal haematopoiesis, 57% (43 out of 75 samples) had detectable
ctDNA levels above the detection threshold (1%), which is
comparable to previously published results in a similar patient
population [35]. Twenty-four patients at baseline had ctDNA
detected in their plasma at baseline. For these 24 patients, the
most frequent mutations or copy deletions were TP53 (33.3%),
PTEN (25.0%), APC (25.0%), FOXA1 (16.7%), SPOP (16.7%) and AR
(8.3%; two patients with ligand-binding domain mutations)
(Fig. 4a). In addition, amplification/copy-number gain of AR and
MYC were detected in 50.0% and 20.8% of the 24 patients at
baseline, respectively (Fig. 4a). Further analysis of AR gene locus
revealed that 10/12 patients with AR amplification/copy-number
gain had co-amplification of both the gene body and upstream AR
enhancer element (Fig. S6). Six of the 12 patients had a high level
of AR copy amplification (≥8 copies, after normalising by ctDNA

*
*

*

TSC1/2 inactivating mutation or PIK3CA activating mutation
PTEN mutation/loss
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fraction), which has been shown to be associated with poor
response to AR-targeted therapies [35].
In addition, matched ctDNA samples at baseline and end-of-

treatment from 16 patients were also evaluable (Fig. 4b). Tracking
genomic alterations in plasma ctDNA allows minimally invasive
monitoring of the emergence or persistence of resistant tumour
cells overtime. Overall, the patients’ genomic profiles were similar
between baseline and end-of-treatment (EOT), suggesting that
enzalutamide/CC-115 treatment did not result in a dramatic shift
in clonal selection (Fig. 4b). Furthermore, ctDNA analysis revealed
the persistence and/or emergence of aggressive clones, including
TP53 and PTEN mutation/deletion (Patient A), and CDK12
mutations and MDM2 amplification (Patient B), in two patients
with early progressive disease within 3-4 months of enzalutamide
and CC-115 treatment (Figs. 3 and 4b).

DISCUSSION
This Phase 1b trial investigated the combination of enzalutamide
with a selective dual mTORC1/2 and DNA-PK inhibitor, CC-115, in
the first line patients with mCRPC that have progressed after ADT.
Overall, this trial demonstrated an acceptable safety profile of CC-
115 (5 mg BID) in combination with enzalutamide and a
preliminary efficacy signal.
Maculopapular rash was the most common treatment-

emergent adverse event, and was dose-dependent. Grade 3 rash
was observed in 46% of the patients taking 10mg twice a day
dosing, which necessitated dose-reduction ultimately to 5 mg
twice a day. At 5 mg dosing, Grade 3 rash was reduced to 16.7%.
Most of the rashes were successfully managed with a short course
of topical or oral corticosteroids, as has been reported previously
for the AR inhibitor apalutamide [36]. The rate of rash observed in
this trial appeared to be higher than that reported in the first-in-
human CC-115 monotherapy study [23]. This is likely due to some
overlapping skin toxicity between CC-115 and enzalutamide.
Although less common than apalutamide, enzalutamide can cause
skin toxicity, including pruritis (~3.8%) and rash (~2.6%) [37, 38].
Interestingly, 92.3% (12 out of 13) patients who developed a

Grade 3 rash had a PSA reduction of at least 50%. This is
reminiscent of EGFR tyrosine kinase inhibitors used in NSCLC,
where skin rash is predictive of clinical response [39]. In contrast,
another dual mTOR and DNA-PK inhibitor, samotolisib in clinical
development had a very different side effect profile with fatigue
and gastrointestinal side effects being the most common adverse
effects, while rash was not reported [24]. This is possibly due to
different chemical structures and differential kinase target
inhibition between CC-115 and samotolisib. Overall, CC-115 at
5 mg twice a day was well tolerated with acceptable safety profile
when combined with enzalutamide. There was no PK interaction
observed with the combination.
CC-115 plus enzalutamide showed encouraging preliminary

efficacy in patients with PTEN mutation/deletion or other PI3K
pathway alteration, such as PIK3CA activating mutation and TSC1/2
loss-of-function mutations. In 40 evaluable patients (irrespective of
mutation status), PSA50 and PSA90 response was 80% and 58%,
respectively. This is in line with the enzalutamide arm of the
PREVAIL trial, which showed PSA50 and PSA90 response of 78%
and 47% respectively in a similar mCRPC population post ADT [3].
However, when stratified by PI3K pathway mutation status,
patients with PI3K pathway alteration had a PSA50 response
reaching 94% (15 out of 16) and a PSA90 response of 63% (10 out
of 16), compared to PSA50 and PSA90 of 67% and 47%
respectively in patients without such mutations. It is important
to note that this comparison did not reach statistical significance
and the biomarker analysis was not a pre-specified subgroup
analysis. Given the limitation of such exploratory analysis, PI3K
pathway mutations as a predictive biomarker for PI3K/AKT/mTOR
pathway inhibitor in mCRPC patients require further validation.

The finding in this study is consistent with a randomised double-
blinded Phase 3 trial (IPATential150) that showed ipatasertib, an
AKT inhibitor, plus abiraterone improved rPFS in mCRPC patients
with PTEN-loss tumours, but not in the all-comer intention-to-treat
population [14]. Interestingly, in a recently published randomised
Phase 1b/2 trial in mCRPC, the combination of samotolisib and
enzalutamide showed an improved PFS compared to placebo plus
enzalutamide, but PTEN protein loss by IHC was not found to be a
biomarker for response. The patient populations were different
between these two studies. The current study and the Phase 3
IPATential150 enrolled first line mCRPC patients, while the study
with samotolisib enrolled patients who had already progressed on
abiraterone. In addition, the authors postulated several other
reasons and suggested that the overall response in PTEN-intact
patients was likely driven by samotolisib’s DNA-PK inhibitor
activity [24]. In contrast, CC-115 at the lower dosing level, such
as 5 or 7.5 mg, was likely primarily acting as an mTORC1/2
inhibitor. This is partly supported by in vitro Western blot analysis
of LNCaP prostate cancer cell line treated with CC-115, which
showed robust biochemical inhibition of AKT/mTOR pathway but
no evidence of DNA-PKcs inhibition by CC-115 at the concentra-
tion (0.1 μM) that is roughly equivalent to peak serum concentra-
tion of ~30 ng/ml (Fig. S4A). Furthermore, CC-115 had a significant
growth inhibitory effect on two human prostate cancer cell lines
(LNCaP and CWR-22PC sgPTEN) in vitro, similarly to INK128, a
selective mTORC1/2 inhibitor without DNA-PK inhibitor activity
(Fig. S4B, C). Taken together, these data suggested that CC-115 at
the clinically tolerated dose in combination with enzalutamide
predominantly inhibits mTORC1/2, but may be insufficient to
block the DNA-PK pathway. However, this cannot be confirmed in
clinical samples as post-treatment biopsy and assay to measure
DNA-PK inhibition in real time in patients were not available.
The ability to understand the mechanism of therapeutic

resistance and monitor the emergence of resistant mutations/
genomic alterations non-invasively in patients has significant
scientific and clinical values. This study incorporated several
biomarker analyses, including tumour tissue mutation profiling by
NGS and ctDNA mutation analysis. In particularly, serial analyses of
ctDNAs before, during and after treatment provided insight into
the potential mechanisms of drug resistance to enzalutamide plus
CC-115. In two patients who progressed early within 3 months of
beginning treatment, ctDNA analysis revealed the persistence and
emergence of PTEN deletion and TP53 mutation in Patient A, and
CDK12 mutations and multiple additional gene amplification,
including MDM2, in Patient B at the time of disease progression
(Fig. 4). The presence of CDK12 mutation [40, 41] and TP53/PTEN
double mutations [42–44] have been shown in the literature to
confer resistance to targeted therapies in prostate cancer.
Although CC-115 is no longer being developed for prostate

cancer, this study is an important proof of concept supporting AR
and PI3K/AKT/mTOR co-inhibition in mCRPC and suggests that
PI3K pathway mutations may be a promising biomarker for further
studies involving targeted therapy against the PI3K/AKT/mTOR
pathway. Trials are now underway evaluating dual inhibition of AR
and PI3K/AKT/mTOR pathways in earlier hormone sensitive states
which have the potential to show even greater response
particularly if selecting for patients with an appropriate biomarker
[43, 44].
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