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BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown.
METHODS: We pooled six European cohorts (N= 302,493) and assessed the association between residential exposure to nitrogen
dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron,
potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International
Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0–191.9/C71.0–C71.9, 192.0/C72.2–C72.5. We applied Cox
proportional hazards models adjusting for potential confounders at the individual and area-level.
RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of
the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 μg/m³ NO2, 1.17 (0.96, 1.41)
per 5 μg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10−5m−1 BC, and 0.99 (0.84, 1.17) per 10 μg/m³ O3.
CONCLUSIONS:We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM
elements were not consistently associated with CNS tumour incidence.

British Journal of Cancer (2023) 129:656–664; https://doi.org/10.1038/s41416-023-02348-1

INTRODUCTION
Over the past decades, the incidence of malignant neoplasms of the
brain and central nervous system (CNS) has risen in most parts of
the world, with the highest age-standardised rates observed in
Western European countries [1]. Globally, CNS tumours are still
relatively rare with an age-standardised rates of 3.9 and 3.0 per
100,000 in men and women, respectively [2]. The consequences are,
however, disproportionally severe because of the disabling nature
of the disease and the high rate of mortality among CNS cancer
patients [1]. The observed rise in incidence rates over the past
decades reflects to some extent improved imaging techniques,

diagnosis, cancer registrations, and sources of information, but also
suggests a potential causal role of environmental and lifestyle
factors.
Risk factors for malignant CNS tumours are largely unknown.

The CNS tumour incidence varies according to age, sex, and
ethnicity and a small fraction of all CNS tumours have been
ascribed to hereditary genetic conditions [3, 4]. Exposure to
ionising radiation is classified as a risk factor [5], and occupational
exposures such as arsenic, lead, mercury, petroleum, and
pesticides have been associated with CNS cancer [6, 7]. The use
of mobile phones has also been investigated in numerous studies,
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but the current evidence does not indicate an association [8].
Overweight and obesity in both men and women [9], as well as
female reproductive hormones and use of hormone therapy, are
also suspected of playing a role, but to date the current literature
is ambiguous regarding tumour subtypes and specific hormone
therapy preparation [10, 11].
Air pollution with particulate matter (PM) has been classified as a

human carcinogen based on evidence of associations with lung
cancer by the International Agency for Research on Cancer (IARC)
[12], and a few previous studies have investigated the association
between outdoor air pollution and intracranial CNS tumours with
mixed conclusions. The largest to date, a Danish, nationwide,
register-based case-control study, observed an association between
nitrogen dioxide (NO2), PM with a diameter of ≤ 2.5 μm (PM2.5),
black carbon (BC) exposure and malignant non-glioma tumours of
the brain and between NO2 exposure and meningioma [13]. The
European Study of Cohorts for Air Pollution Effects (ESCAPE) study
reported indicative evidence of an increased risk of malignant brain
tumours with higher PM2.5 absorbance (a marker for BC) exposure
[14]. Findings from the Danish Nurse Cohort study were suggestive
of an increased risk of total brain tumours with higher NO2 and
PM2.5 exposure [15].
Despite declining levels of air pollution over the past decades

in Europe and North-America, adverse health effects are still
observed in recent epidemiological studies, and more knowl-
edge concerning the strength of the association and the
contribution from specific sources and components is needed
for risk regulation. In the present study, we aim to investigate
the association between long-term exposure to NO2, PM2.5, BC,
ozone (O3), and eight elemental components of PM2.5 (copper,
iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and
the risk of CNS tumours in the Effects of Low-level Air Pollution:
a Study in Europe (ELAPSE). The ELAPSE collaboration builds on
and extends ESCAPE by pooling data across cohorts and
applying a more comprehensive standardised exposure assess-
ment, and a longer follow-up period.

METHODS
Study population
The ELAPSE collaboration pooled data from nine European cohorts. Key
covariates were identified from each cohort and harmonised, and the data
were stored on a secure server at Utrecht University. Of the nine pooled
cohorts, six were eligible for the analyses of malignant CNS tumour incidence:
Cardiovascular Effects of Air Pollution and Noise in Stockholm (CEANS)—
which is the collective name of four sub-cohorts (Swedish National Study on
Aging and Care in Kungsholmen [SNAC-K] [16]; Stockholm Screening Across
the Lifespan Twin study [SALT] [17]; The Stockholm Cohort of 60-year-olds
[Sixty] [18]; and Stockholm Diabetes Prevention Programme [SDPP] [19]); the
Danish Diet, Cancer and Health cohort (DCH) [20]; the Danish Nurse Cohort
(DNC) [21]; the Dutch European Investigation into Cancer and Nutrition (EPIC-
NL)—consisting of the two sub-cohorts EPIC-Monitoring Project on Risk
Factors and Chronic Diseases in the Netherlands (EPIC-MORGEN) and (EPIC-
Prospect) [22]; the Etude Epidémiologique auprés de femmes de la Mutuelle
Générale de l’Education Nationale (E3N or EPIC-France) [23]; and the Austrian
Vorarlberg Health Monitoring and Prevention Programme (VHM&PP) [24]. All
six cohorts contained baseline information on age, sex, smoking status,
amount and duration of smoking in current smokers (E3N and VHM&PP only
in classes), body mass index (BMI), employment status, and area-level socio-
economic status (SES). We included all participants who were free of cancer
at baseline (with the exception of non-melanoma skin cancer). Each included
cohort and the covariates have been described in detail previously [25].

Exposure assessment
The model developed for assessing air pollution exposure and its validation
has been described in detail elsewhere [26, 27]. In brief, Europe-wide hybrid
land-use regression (LUR) models were developed, which incorporated as
predictors satellite observations, chemistry and transport model (CTM)
estimates, land use, and road variables. For the modelling of PM2.5, NO2 and
O3 (warm season), routine monitoring data (2010 AirBase) maintained by the

European Environmental Agency (EEA) were used and for black carbon (BC)
and PM2.5 elemental composition ESCAPE monitoring data (2009–2010)
were applied [28]. For the PM composition models, Supervised linear
regression (SLR) and random forest algorithms were used for eight
components representing major air pollution sources: Cu, Fe and Zn (non-
tailpipe traffic emissions such as brake and tyre wear), S (secondary inorganic
aerosols from long-range transported sulfur containing fuel combustion), Ni
and V (mixed oil burning/industry emissions), Si (crustal material), and K
(biomass burning) [27]. For PM2.5, BC, NO2 andO3 we only used SLR. Negative
(SLR) predictions of PM components were truncated to zero, and a few
unrealistically high predictions at close distance to industrial sources to a
maximum modelled concentration for each element.19 No truncation was
needed for the exposures modelled with random forest. The SLR and
random forest models explained within-area variability similarly [27], and we
therefore interpret the two models equally. We assigned exposures from the
produced air pollution raster surfaces (100 x 100m spatial resolution) to the
geocoded baseline residential addresses of all cohort members.

Outcome
Participants were followed up in national cancer registries, death certificates
or medical records with the exception of participants in the E3N cohort, which
relied on self-reports from biannual questionnaires or death certificates. These
were confirmed through pathological reports and reviewed by an oncologist.
We defined malignant intracranial tumours according to the International
Classification of Diseases and Related Health Problems, 10th Revision (ICD-10)
codes C70.0 (cerebral meninges), C71.0–C71.9 (brain), C72.2–C72.5 (cranial
nerves) and correspondingly the International Classification of Diseases and
Related Health Problems, 9th Revision (ICD-9) codes 192.1, 191.0–191.9,
and 192.0.

Statistical analysis
We modelled the association between the air pollutants and malignant
CNS tumours using Cox proportional hazards models with age as the
underlying time-scale. Each cohort member was censored at time of first
occurrence of any cancer other than in the CNS, date of death, emigration,
loss to follow-up, or at the end of follow-up. We modelled each pollutant
as a linear function and presented hazard ratios (HRs) for increments of 10,
5, 0.5 and 10 μg/m3 for NO2, PM2.5, BC and O3, respectively. The HRs for PM
components were presented for increments of 5 ng/m3 Cu, 100 ng/m3 Fe,
50 ng/m3 K, 1 ng/m3 Ni, 200 ng/m3 S, 100 ng/m3 Si, 2 ng/m3 V, and
10 ng/m3 Zn. We included strata per sex and individual (sub) cohort to
account for baseline hazard heterogeneity across the cohorts and to relax
the proportional hazards assumption.
We defined three confounder models á priori: (1) accounting for age

(underlying time-scale), (sub) cohort ID (strata), sex (strata), and adjustment
for year of enrolment to take into account time-trends in exposure and
outcome; (2) further adjusted for marital status (married/cohabiting,
divorced, single, widowed), employment status (yes vs. no), smoking
status (never, former, current), duration (years of smoking) and intensity
(cigarettes/day) for current smokers, and BMI ( < 18.5, 18.5–24, 25–29, and
30+ kg/m2); (3) (main model) further adjusted for SES at the area-level,
which we defined as mean income in 2001—most consistently available
variable and year across cohorts. The spatial scale of these areas varied
from smaller neighbourhoods and city districts (CEANS, EPIC-NL, E3N) to
municipalities (DNS, DCH, and VHM&PP). We excluded participants with
incomplete information on model 3 variables from all analyses. We
evaluated the shape of the concentration-response function by natural
cubic splines (3 degrees of freedom).
Sensitivity analyses included (1) alternative exposure definitions by (a)

back-extrapolating to the baseline address for all cohort members and (b)
time-varying air pollution exposure extrapolated according to address
history from enrolment to end of follow-up in cohorts with the available
information (excluding DNC and E3N). For the time-varying analyses, we
specified a 1-year calendar time-period strata to handle time-trends in air
pollution and intracranial CNS tumours. The extrapolation estimated
concentrations from the Danish Eulerian Hemispheric Model (DEHM),
which includes hourly values of a number of chemical species, averaged
into monthly concentrations across Europe at 26 × 26 km spatial resolution
[29]. We applied the trends predicted by the DEHM for NO2, PM2.5, BC, and
O3 to calculate annual average concentrations for all years from baseline to
the end of follow-up, allowing different spatial trends within Europe, and
used the absolute difference and the ratio between the baseline and 2010
periods. (2) We additionally performed two-pollutant models to test the
sensitivity of the estimates of one pollutant to inclusion of others. For the
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elemental components, we performed two-pollutant models with PM2.5

mass and NO2—the latter representing traffic exhaust emission. (3) We
investigated potential effect measure modification by sex, BMI (<25, 25–29,
30+ kg/m2), and smoking status, by including an interaction term in the
model tested by the Wald test. (4) Lastly, we investigated the sensitivity of
the pooled effect estimates to exclusion of single cohorts.
We evaluated violation of the proportional hazards assumption of the

Cox models for all covariates by test of a non-zero slope in a generalised
linear regression of the scaled Schoenfeld residuals on time. We performed
all analyses in R version 3.4.0.

RESULTS
Cohorts were recruited between 1985 and 2005 with a follow-up
until 2011 to 2015 (Table 1). In total, we included 302,493
participants of whom 623 developed a malignant intracranial CNS
tumour during 5,497,514 person-years of follow-up. Of the 623
cases, 593 originated in the brain and only few in the cerebral
meninges (N= 27) or the cranial nerves (N= 3). The mean age at
baseline for the pooled cohort was 48.2 years ranging from 41.7 to
72.5 years in the individual (sub)cohorts. The mean age at baseline
for cases was slightly higher (mean 52.0 years, SD 10.9). The main
air pollution exposures varied across the (sub)cohorts as a
consequence of differences in climate, urbanicity, and sources
(area-level of industrialisation, population density, road density,
types of vehicles (diesel vs. gasoline), abatement strategies etc.),
with the highest levels in the more southern cohorts. Especially for
BC and NO2, contrasts within cohorts were substantial (Fig. S1).
Particularly BC and NO2 were highly correlated in all cohorts and
PM2.5 was moderately to highly correlated with BC and NO2. O3

was negatively correlated with PM2.5 and with especially NO2 and
BC (Table S1). For the PM elemental components, all concentra-
tions except PM2.5 Ni, Si, and V were lower in the Northern
compared to more Southern cohorts. The two exposure model
algorithms provided similar concentrations overall, however, with
large differences within individual cohorts (Fig. S2).
The baseline characteristics of each (sub)cohort and the pooled

cohort are presented in Table 2. The pooled cohort consisted of
66% women, 42% were overweight or obese, 29% were not
employed, and 72% were married or cohabiting at baseline. The
fraction of current smokers was 24%, ranging from 13% in the
French E3N cohort to 37% in the DNC-1993. The mean income at
the area-level varied considerably across cohorts, with the lowest
levels observed in the French and Dutch cohorts and the highest
in the Swedish CEANS cohort.
The results of the linear analyses of air pollutants and malignant

CNS tumours with increasing levels of confounder-adjustment are
shown in Table 3. In the fully adjusted model 3, we observed a HR
of 1.07 (95% confidence interval [CI]: 0.95, 1.21) per increment of
10 μg/m3 NO2, 1.17 (95% CI: 0.96, 1.41) per 5 μg/m3 PM2.5, and 1.10
(95% CI: 0.97, 1.25) per 0.5 10−5m−1 BC. For ozone in the warm
season, we observed a HR of 0.99 (95% CI: 0.84, 1.17) per
increment of 10 μg/m3. Stricter covariate adjustment increased
the HRs for NO2, PM2.5, and BC, especially the inclusion of area-
level income (model 3 versus model 2 HRs). The natural cubic
splines showed a linear increase in the exposure-response
function for PM2.5 and BC (Fig. 1). An indication of a decreasing
trend at the end of the exposure range for PM2.5 and BC was
found, however, with very wide CIs, related to sparse data. For
NO2, a linear increase followed by levelling off at about 20 μg/m3

was found. The HRs for PM2.5 elemental components and splines
are provided in Fig. 2 and Supplement Fig. S3. We observed (non-
significantly) elevated risks in association with PM2.5 Ni, S, and V
predicted by the SLR- and the random forest-model, also after
adjustment for PM2.5 and NO2 (Fig. S5). For some elements
including S, HRs had wide confidence bounds.
Supplement Table S5 shows the means, standard deviations

(SD) and effect estimates of exposures extrapolated to the

baseline year of the cohort participants and for the time-varying
analysis. In general, the back-extrapolated baseline exposures
were higher and more variable than the 2010-concentration,
especially for PM2.5 with a mean (SD) of 28.9 (7.8) and 28.4 (8.4) for
the difference and ratio method, respectively, compared to a
mean of 14.9 (3.2) for the 2010 main exposure model. The effect
estimates for the back-extrapolation and the 2010-exposure
model did not vary considerably for NO2 and O3, whereas for
PM2.5—and to some extent for BC—the HR estimates and
confidence intervals for the baseline exposure (expressed for
the same increment) were considerably lower than those of the
2010-exposure model. In the time-varying analysis applying
exposure extrapolated across the address history, we observed
similar effect estimates for PM2.5 compared to the 2010-exposure
model. The estimates for the time-varying exposure of NO2 and
BC were somewhat lower than those of the main 2010-exposure.
The effect estimate for PM2.5 and CNS tumours was not sensitive
to the inclusion of co-pollutants (Figs. S4 and S5). The association
for NO2 was attenuated by the inclusion of PM2.5 and BC. The HR
for BC increased with additional adjustment for NO2. Models with
BC and NO2 are difficult to interpret because of the high
correlation. For O3, a higher HR was observed with additional
adjustment for NO2, PM2.5, and BC.
In stratified analyses, the HR for NO2 in relation to malignant

CNS tumours was elevated for current smokers with a HR of 1.23
(95% CI: 1.00, 1.52) compared to ex-smokers (HR: 1.07; 95% CI:
0.85, 1.34) and never-smokers (HR: 1.00; 95% CI: 0.85, 1.17) and
likewise for BC with corresponding HRs of 1.20 (95% CI: 0.98, 1.47),
1.07 (0.86, 1.33), and 1.07 (95% CI: 0.91, 1.25) (Fig. 3). These
differences of HRs across smoking categories were not statistically
significant (P-value for interaction >0.23). For PM2.5, we found no
differences between smoking categories. For BMI, we observed
higher HRs in the category of overweight persons compared to
normal weight and obese for both PM2.5 and BC, whereas the HR
for O3 was highest in the group of obese persons. The effect
estimates for NO2, BC, and O3 were similar for men and women,
but for PM2.5 HRs of 1.33 (95% CI: 1.04, 1.74) and 1.07 (95% CI: 0.86,
1.33) was observed in men and women, respectively. All p-values
for interaction were above 0.09.
The estimates were generally not sensitive to exclusion of single

cohorts (Fig. S6). The highest estimates for NO2 and PM2.5 were
observed in a pooled cohort excluding the E3N cohort, whereas
we found the highest estimates for BC and O3 when excluding the
DCH cohort.
We detected deviation from the proportional hazards assump-

tion for employment status, smoking intensity and duration. A
sensitivity analysis incorporating these in strata (grouping
intensity per 10 cigarettes per day and the duration in categories
per 5 years) did not show results deviating from the main analysis.

DISCUSSION
In this large Europe-wide pooled analysis study, we observed
some indication of a higher risk of malignant intracranial CNS
tumours with higher exposure to NO2, PM2.5, and BC. None of the
eight evaluated elements was consistently associated with CNS
tumour incidence.
Our findings are in line with those reported from the ESCAPE

study for NO2 and BC, yet with a somewhat lower effect estimate
for BC in our study, which was based on a more comprehensive
standardised exposure assessment and a longer follow-up period
[14]. In ESCAPE, no association between PM2.5 and malignant brain
cancers was reported, with a HR of 0.98 (95% CI: 0.62, 1.56) per
5 μg/m3 in the fully adjusted model. Our current effect estimates
are much more precise than the ESCAPE estimates, related to
longer follow-up and pooling of data. A large, Danish, register-
based case-control study, reported an OR of 1.042 (95% CI: 0.992,
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1.095) for malignant intracranial tumours per interquartile range
(IQR: 10.78 μg/m3) of NO2 and correspondingly, an OR of 1.034
(95% CI: 1.005, 1.065) for BC (IQR: 0.39 μg/m3), and 1.021 (95% CI:
0.926, 1.126) for PM2.5 (IQR: 5.39 μg/m3), respectively [13]. The
study also observed indications of differential effects according to
tumour subtypes, with stronger associations for PM2.5 and non-
glioma tumours of the brain (OR: 1.267, 95% CI: 1.053–1.524 per
IQR). The Danish Nurse cohort study reported an increased risk of
total brain tumours with higher NO2 and PM2.5 exposure, however,
in sub-analyses the increased risk was restricted to benign brain
tumours, with no association observed for malignant brain
tumours [15].
Air pollution may influence cancer development and progres-

sion through mechanisms of oxidative stress and inflammation
[30]. PM has been found to exert DNA damage, promotion of
cell turnover, and proliferation beyond the respiratory tract by

entering the blood circulation [31, 32]. By crossing the blood-brain
barrier, particles may enable toxicological damage of the CNS [33].
In addition, when particles are inhaled through the nasal cavity,
they affect respiratory and olfactory epithelia, and thereby reach
the brain via olfactory receptor neurons or the trigeminal nerve
[34, 35]. The CNS may also be adversely affected via an indirect
pathway of systemic inflammation, triggering the release of
inflammatory mediators from other organs [34].
The findings of our study were strengthened by the relatively

large sample size, the detailed information on SES factors at both
the individual and the area-level as well as data on individual
lifestyle, which were harmonised across the (sub)cohorts specifically
for this project. We were thus able to adjust for a range of potential
confounders. Compared to the ESCAPE study, we included a more
comprehensive standardised hybrid exposure assessment devel-
oped within the ELAPSE collaboration, which ensured comparable

Table 2. Baseline characteristics of the included (sub)cohort studies.

%
women

% BMI
≥ 25 kg/m2

% Not
employed

% Married/
cohabiting

% Current
smokers

Cigarettes/
daya

Years of
smokinga

Mean income
area-levelb

CEANS
Stockholm, Sweden

SDPP 59 51 9 84 26 13.5 (7.4) 27.8 (8.6) 24.3 (4.2)

SIXTY 50 65 32 74 21 13.3 (7.7) 36.2 (10.1) 24.7 (6.8)

SALT 53 41 33 68 21 12.7 (8.0) 37.6 (9.1) 25.4 (6.6)

SNAC-K 62 53 76 46 15 11.7 (8.3) 43.2 (13.5) 28.7 (2.2)

DCH, Copenhagen/
Aarhus, Denmark

53 56 22 71 36 16.5 (9.0) 36.3 (7.7) 20.1 (3.4)

DNC, Denmark

DNC-1993 100 28 29 68 37 13.8 (8.1) 31.4 (9.9) 19.2 (2.5)

DNC-1999 100 30 5 76 28 13.2 (7.4) 27.1 (7.1) 19.0 (2.4)

EPIC-NL, Netherlands

MORGEN 54 49 31 65 35 15.7 (8.6) 24.5 (10.6) 12.2 (1.6)

PROSPECT 100 55 49 77 23 13.6 (8.7) 36.7 (7.6) 13.1 (1.4)

E3N, France 100 21 31 84 13 11.3 (9.1) 28.5 (7.6) 11.2 (3.0)

VHM&PP, Vorarlberg,
Austria

56 42 29 69 20 15.6 (8.9) 13.4 (8.2) 22.9 (1.7)

Pooled cohort 66 42 29 72 24 15.1 (8.9) 25.2 (13.1) 19.8 (5.3)

CEANS Cardiovascular Effects of Air Pollution and Noise in Stockholm, SDPP The Stockholm Diabetes Preventive Programme, SIXTY The Stockholm cohort of 60-
year-olds, SALT Screening Across the Lifespan Twin Study, SNAC-K The Swedish National Study of Aging and Care in Kungsholmen, DCH Diet, Cancer and
Health, DNC Danish Nurses Cohort, EPIC-NL European Prospective Investigation into Cancer and Nutrition, the Netherlands, MORGENMonitoring Project on Risk
Factors and chronic diseases in the Netherlands, HNR Heinz Nixdorf Recall study, E3N Etude Epidémiologique auprès de femmes de la Mutuelle Générale de
l'Education Nationale, VHM&PP Vorarlberg Health Monitoring and Prevention Programme.
aAmong current smokers.
bEuros x 1000, year 2001.

Table 3. Pooled analyses of air pollution exposure and risk of malignant CNSa (N= 623).

Model 1b

N= 302,493
Model 2c

N= 302,493
Model 3d

N= 302,493

Increment HR 95% CI HR 95% CI HR 95% CI

NO2 10 µg/m3 1.03 0.91 1.16 1.03 0.91 1.16 1.07 0.95 1.21

PM2.5 5 µg/m3 1.14 0.94 1.38 1.14 0.94 1.38 1.17 0.96 1.41

BC 0.5 10−5m−1 1.06 0.94 1.20 1.06 0.94 1.20 1.10 0.97 1.25

O3w 10 µg/m3 1.00 0.85 1.18 1.00 0.85 1.18 0.99 0.84 1.17

HR hazard ratio, CI confidence interval, O3w Ozone in the warm season.
aICD 10: C70.0, C71.0–71.9, C72.2–C72.5/ ICD9: 191, 192.1, 192.0.
bAdjusted for study (strata), age, sex (strata), year of baseline visit.
cFurther adjusted for smoking status, duration, intensity, BMI, marital status, and employment status.
dFurther adjusted for 2001 mean income at the area-level.
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exposure estimates for the whole study population, and the longer
follow-up provided us with approximately 150 additional CNS
tumour cases. We were also able to include specific elemental
components of fine PM and to perform two-pollutant models to
investigate potential inter-dependencies between pollutants due to
the large sample size of our study.
Despite the large cohort and long follow-up, the number of

cases was modest, consistent with CNS cancer being a relatively
rare cancer. As a result, our effect estimates had relatively wide
confidence intervals. We did not have access to information on
tumour localisation or subtype (histology and morphology)
adding to this uncertainty. If air pollution affects tumour subtypes

differently, as suggested by some of the previous studies
mentioned above, our results could be diluted. Also, under-
reporting of CNS tumours could bias our results if related to the
levels of exposure (i.e., specific to certain areas/hospitals). In
addition, we only included primary cancers, but cannot rule out
the possibility that some of the cases were misclassified
metastases from cancers in other organs. However, generally the
completeness and the quality of the cancer registration in each
included study is considered high [36–39]. Because risk factors for
CNS cancer are relatively unknown, we cannot exclude residual
confounding. The adjustment for individual and area-level SES
probably has accounted for some confounding by known and
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unknown lifestyle factors. For a risk factor to be a confounder, it
needs to be linked with air pollution exposure and SES provides a
plausible mechanism for such a link. It is important to acknowl-
edge that assigning exposure to air pollution based on a model
imposes some degree of misclassification due to uncertainties in
input data and because exposure modelled at the residential
address is not equivalent to personal exposure [40]. Also, we do
not have any information on time-activity patterns, ventilation
rates or indoor sources of air pollution. We consider the potential
misclassification of exposure associated with these uncertainties
to be non-differential with respect to CNS tumour incidence,
which would cause bias of the effect estimate towards the null.

We also lacked data on more distant air pollution exposures, such
as during childhood or adolescence, which could be of relevance
to the development of CNS tumours. Also, the exposure model
was developed for the year 2010 and applied to the baseline
address of the study participants. The time span between baseline
and 2010 varied between cohorts from a mean of 7.7 in the CEANS
SNAC-K cohort to 20.0 years in E3N (Table S6). Previous studies
from Europe have shown that the spatial distributions of NO2,
black smoke, and traffic intensities were stable over several years
[41–43]. Our exposure model was validated and compared for
different time points in order to evaluate the stability of the
spatial structure [26, 44], and the predictions from the 2010-model
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showed high correlations with models developed for 2000 and
2005 (2013 for PM2.5) at the European scale. Our sensitivity
analysis, where we back-extrapolated exposures to the baseline
year of participants, showed lower HRs for PM2.5 compared to the
2010 exposure. This probably reflects that the exposures in 2010
were lower than at baseline resulting in smaller contrasts (on the
absolute scale) [45]. Also, some degree of misclassification as a
result of back-extrapolation may be at play. The cohorts selected
for the ELAPSE study represent areas in Europe within the lower
end of the exposure range. Thus, the results might not be
generalised to populations exposed to higher levels of air
pollution.
Concentration levels of the studied major air pollutants except

ozone have declined over the past decades in North-America and
Europe and increased in some other (Asian) countries. The
Incidence rates of CNS tumours are generally increasing. The
opposite temporal trends is consistent with air pollution being a
relatively weak risk factor among all potential determinants of CNS
tumour incidence. Temporal trends of disease incidence over
years is very complicated as many factors change, including
diagnostic procedures, access to health care, socio-economic
conditions, lifestyle, work conditions and the environment.
In conclusion, the results of the present study may indicate a

role of long-term ambient air pollution in the development of
malignant CNS tumours—even at relatively low exposure levels of
air pollution.
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