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BACKGROUND: Cisplatin (CDDP) is a mainstay treatment for advanced head and neck squamous cell carcinomas (HNSCC) despite a
high frequency of innate and acquired resistance. We hypothesised that tumours acquire CDDP resistance through an enhanced
reductive state dependent on metabolic rewiring.
METHODS: To validate this model and understand how an adaptive metabolic programme might be imprinted, we performed an
integrated analysis of CDDP-resistant HNSCC clones from multiple genomic backgrounds by whole-exome sequencing, RNA-seq,
mass spectrometry, steady state and flux metabolomics.
RESULTS: Inactivating KEAP1 mutations or reductions in KEAP1 RNA correlated with Nrf2 activation in CDDP-resistant cells, which
functionally contributed to resistance. Proteomics identified elevation of downstream Nrf2 targets and the enrichment of enzymes
involved in generation of biomass and reducing equivalents, metabolism of glucose, glutathione, NAD(P), and oxoacids. This was
accompanied by biochemical and metabolic evidence of an enhanced reductive state dependent on coordinated glucose and
glutamine catabolism, associated with reduced energy production and proliferation, despite normal mitochondrial structure and
function.
CONCLUSIONS: Our analysis identified coordinated metabolic changes associated with CDDP resistance that may provide new
therapeutic avenues through targeting of these convergent pathways.
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INTRODUCTION
For more than three decades platinum-based chemotherapy has
been a frontline systemic treatment for advanced squamous cell
carcinomas of the head and neck (HNSCC), lung (LUSCC) and other
solid tumours, despite a high prevalence of innate and acquired

resistance among patients with these cancer types [1–10]. A more
precise understanding of how tumours survive the stress of
platinum agents or evolve into therapy-resistant populations is
paramount to overcoming treatment failure and maximising
disease control. Enhanced DNA repair, altered activation of
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programmed cell death cascades and differential transport of
platinum agents have all been linked to cisplatin (CDDP) response
and development of resistance [5, 10–13]. We and others have
proposed a fourth mechanism whereby reactive intracellular
CDDP becomes neutralised before it can damage vital macro-
molecules like DNA. Despite the clear metabolic requirements of
each of these processes and the need for wholesale metabolic
reprogramming, coordinated at a transcriptional level, the critical
components of this metabolic adaptation remain unclear
[2–5, 7–9, 11, 12, 14–16]. A better understanding of how
transcriptomic rewiring carefully meets the metabolic needs
generated by genotoxic stress will likely identify novel depen-
dencies that could be targetable by either direct metabolic
blockade, drugs inhibiting tyrosine or receptor tyrosine kinases
(i.e., TKi’s or RTKi’s), or miRNA-based inhibition of protein
signalling. Moreover, since metabolic adaptation to stress
generates distinct immunogenic cues, targeting tumour metabo-
lism may simultaneously enhance the effectiveness of current
immune therapy strategies [17, 18].
We have previously found that HNSCC and other tumours

respond to oxidative stress through temporary shifts in carbon
flux designed to ameliorate the burden on intracellular reducing
equivalent reserves, even at the expense of energy generation
[19]. In this study, we sought first, to determine whether the
acquisition of CDDP resistance in a conditioned exposure model is
associated with permanent shifts in carbon flux and second, to
identify the potential genomic and transcriptomic mechanisms
which support and underly this shift.

MATERIALS AND METHODS
Cells
HN30, HN31 and PCI13 are HNSCC tumour lines previously described and
obtained from an established cell line bank in the laboratory of Dr. Jeffrey
N. Myers. HN30 (TP53 wild type) and HN31 (TP53 mut) were originally
derived from a primary and metastatic site, respectively, of the same
patient [20]. We previously described an acquired CDDP resistance model
developed in HN30 [9], which we extended to HN31 and PCI13
(Supplementary Table S1; Supplementary Materials and Methods).

Genomic, transcriptomic and proteomic analysis
Detailed analysis of genomic and transcriptomic data along with gene data
preparation and gene set enrichment algorithms are summarised
in Supplementary Materials and Methods [18, 21]. Briefly, DNA was
extracted from cell lines with the DNeasy Tissue kit (Qiagen) and analysed
through the Baylor College of Medicine Genomic and RNA Profiling Core
(GARP) where size-selected DNA was captured using the Human All Exon
v6 panel and prepared libraries and ‘subjected to next-generation
sequencing on an Illumina NovaSeq 6000 instrument with an average of
200 million reads per sample. Total RNA from logarithmic phase growth of
samples, in biological triplicate, was prepared with the RNeasy Mini Kit
(Qiagen) and analysed through GARP via next-generation sequencing
which generated counts totalling more than 2 million reads per sample.
Triplicate biological replicates from parental and CDDP-resistant cells were
analysed using global profiling of proteins using an Orbitrap Elite Mass
Spectrometer (Thermo-Fisher Scientific, Waltham, MA, USA).

Metabolic profiling
Steady-state and flux metabolomic experiments were performed as
previously described and outlined in Supplementary Materials and
Methods [8, 9]. Oxygen consumption rates (OCR) and extracellular
acidification rates (ECAR) were assayed under basal conditions (25mM
D-glc, 1 mM pyruvate, 4 mM glutamine, 0% serum) using a Seahorse
Bioscience XF24 Extracellular Flux Analyzer (Billerica, MA) [22]. Biolog
metabolic assays were used to measure intrinsic mitochondrial activity in
individual cell lines. Cells (30,000/well) were prepared according to the
manufacturer’s instructions (Biolog, Hayward, CA, USA) and permeabilized
using saponin (30 µg/ml) prior to testing the effectiveness of individual
substrates in generating a reducing effect. Real-time imaging of
endogenous fluorescence for NAD(P)H and FAD was performed as

previously described (Supplementary Materials and Methods) [23–30].
HN30, HN30R4E1 and HN30R4F5 cells were seeded (~105) on 35-mm glass-
bottom dishes 48 h before imaging; 4 μM CDDP was added to the
HN30R4E1 and HN30R4F5 imaging dishes 24 h before imaging. Autofluor-
escence lifetime imaging was performed with a multiphoton fluorescence
lifetime microscope (Marianas, 3i). The fluorescence lifetime decays at each
pixel were fit to a two-component exponential decay, for the free and
protein-bound NAD(P)H and FAD states [27, 31] and analysed using a semi-
automated pipeline in CellProfiler [32].

Drug screening
Drug screening was performed by the Gulf Coast Consortia using
previously described methods, focusing on established and validated
compounds with known activity [33].

RESULTS
Generation of CDDP-resistant HNSCC cell lines
We previously described the generation of CDDP-resistant cell
lines derived from HN30 [9]. To expand the genetic background of
our experimental models, we also employed the same methodol-
ogy to select for acquired CDDP resistance in HN31 (a naturally
occurring TP53-mutant derived from a lymph node metastasis of
the same patient as HN30) and in PCI13, another TP53-mutant cell
line originating in the oral cavity (Supplementary Table S1). IC50
values of resistant clones are approximately 20–100-fold greater
than the previously described IC50 values for CDDP in a panel of
nearly 100 HNSCC cell lines [20, 34].

Somatic mutations in CDDP-resistant clones
The average number of new, detectable total mutations for CDDP-
resistant clones from HN30, HN31, and PCI13 was 414, 858 and
790, respectively (Fig. 1a, Supplementary Table S2 and Supple-
mentary Fig. 1A). We examined the degree to which novel
mutations could be explained by exposure to CDDP, a known
mutagen. All 12 CDDP-resistant clones had a significant mutation
signature previously associated with CDDP treatment (Supple-
mentary Table S3 and Supplementary Fig. 1B) which can be
identified by an abundance of A[C > A]C, C[C > A]T, G[C > A]G,
C[C > T]C, and C[C > T]T single base substitutions (SBS) [35]. Genes
with the highest ratio of mutations/nucleotide included: LCE4A,
KRTAP4-1, CLDN10, IGFBP2 and KRTAP9-1 (Supplementary Table S4).
We ignored genes with known mapping issues (e.g., MUC3A) and
focused on those with biological functions that could be linked to
surviving genotoxic stress including DNA transcription (MESP1,
MORF4L1), oxidative stress response (ADH4) and protein home-
ostasis (ATXN3). No enrichment was detected in mutational
frequency of traditional tumour suppressors or oncogenes such
as RAS, PIK3CA, NOTCH and TP53, nor in cancer drivers previously
linked to HNSCC except for KEAP1. Five unique de novo KEAP1
nonsynonymous mutations that suggested loss of function
(Supplementary Methods) were found among CDDP-resistant
clones derived from HN30 and HN31 (Fig. 1b and Supplementary
Table S4), but not PCI13.
To systematically distinguish mutated genes that may have

been selected for during acquisition of CDDP resistance, we
utilised a novel analysis technique we recently described [36],
referred to as cohort integral (CI). The CI technique compares the
distribution of pathogenicity scores of the variants in each gene,
estimated by the evolutionary action (EA) method [37], with a
reference distribution that was generated using the variants of all
genes. Therefore, the EA-CI method should detect CDDP
resistance driver genes enriched for impactful variants relative
to the reference distribution, which mostly consist of passenger
variants. Using the EA-CI approach, we identified 18 candidate
genes with recurrent (≥3) mutations and EA distributions with a
P value less than 0.05, which reduced to 10 mutated genes when
further filtered to exclude those with low RNA expression
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(Supplementary Table S5). As expected, KEAP1 was among the ten
candidate driver genes identified by this method (Supplementary
Fig. 2A, P < 0.009). In addition, we identified: EPPK1 (Supplemen-
tary Fig. 2A), linked to cell migration, EMT, and the cytoskeleton;
PROSER1, an epigenetic regulator; and VPS13A, involved in protein
transport. Since most mutated genes in the resistant clones had
less than three variants and were excluded from the gene-level
EA-CI analysis, we also performed a pathway-level EA-CI analysis.
For this we asked whether multiple genes from individual
pathways collectively had a CI indicative of selection, as we
showed previously [38]. Pathways were obtained from the
Reactome database [39]. Fifteen different pathways, including
Adenylate cyclase, mTORC1 signalling, mitochondrial tRNA

aminoacylation, and protein kinase A activation had mutational
CI bias consistent with selection during acquired CDDP resistance
(Supplementary Table 6 and Supplementary Fig. 2B).

Differential gene expression in CDDP-resistant clones
Whole transcriptome analysis (i.e., RNA-seq) was used to compare
gene expression for four different CDDP-resistant clones from
each genetic background with their respective drug-naive
parental lines. Because PCI13-resistant clones lacked KEAP1
mutations found in cells derived from HN30 and HN31, we first
looked at whether altered KEAP1 mRNA levels in the former might
represent an alternative mechanism for reduced KEAP1 function.
Indeed, levels of KEAP1 mRNA were approximately twofold lower
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in CDDP-resistant PCI13 clones compared to their parental cells
(Fig. 1c). Globally, we detected hundreds of genes significantly
upregulated and downregulated in resistant cells, with many
shared genes among individual clones (Fig. 1d, Supplementary
Fig. 3 and Supplemental Tables S7 and S8) derived from the same
cell line, and 217 genes commonly upregulated in two or more
resistant clones from all three parental backgrounds (Fig. 1d).
Overall, fewer genes were downregulated in the resistant cell lines
and far fewer of these (i.e., 28) were conserved across clones from
all three parental backgrounds. To broadly understand the biology
of genes differentially expressed, we categorised them as
“essential”, “selective” or “inert” based on public data (Supple-
mentary Materials and Methods). We then examined genes
upregulated or downregulated ≥1.5-fold (in at least two CDDP-
resistant clones from two or more parental backgrounds) for their
distribution of essential, selective, or inert categories (Fig. 1e, f).
Most genes upregulated in CDDP-resistant clones (i.e., 75%) were
classified as inert, suggesting they may only be critical for
proliferation/survival under conditions of stress, like growth in the
presence of CDDP. Interestingly, in both the upregulated and
downregulated gene lists there was significant enrichment for
genes categorised as selective.
Among the 217 commonly upregulated genes across all three

genetic backgrounds, we observed a large range of average fold
increases, which frequently exceeded 10-fold even for genes with
moderate to high expression levels (Supplementary Fig. 5).
Included in this group were genes which function in amino acid
transport/trafficking, chromatin remodelling, cytoskeleton, adhe-
sion, and catalysis of amine carcinogens. Gene Ontology (GO)
enrichment analysis of the 217 commonly upregulated genes
identified many different metabolic processes, including xenobio-
tic response to stress, glucuronidation, regulation of fatty acids,
carbohydrates, and monocarboxylic acid (Supplementary
Table S9). Although no GO enrichment was found for the
common 28 genes downregulated across all three cell back-
grounds, expanding the list to genes downregulated in at least
two clones from at least two backgrounds (i.e., 351 genes from
Supplementary Fig. 3) identified enrichment for processes related
to cell death/apoptosis, and nitrogen metabolism (Supplementary
Table S10). We further performed an unbiased gene set
enrichment analysis (GSEA) of differentially expressed genes using
Hallmark pathways defined by the Molecular Signature Database.
As shown in Supplemental Table 11, CDDP-resistant clones
consistently demonstrated depletion of pathways involved in:
proliferation (MYC, E2F, G2M checkpoint), DNA-damage repair,
oxidative phosphorylation (OxPhos) and a consistent enrichment
of the epithelial-mesenchymal transition pathway.

Transcriptomic analysis reveals activation of the NRF2
pathway, but not DNA-damage response, in CDDP-resistant
cells
Since resistance to CDDP may occur due to upregulation of
DNA-damage repair pathways, we focused on detecting this
phenomenon. A robust gene signature for DNA-damage
response (DDR) activation was developed by employing a
combination of bioinformatic steps (Supplementary Materials
and Methods, and Supplementary Fig. 6). Using this validated
DDR signature, we found that CDDP-resistant clones derived
from PCI13 had substantially lower DDR gene activation than
their drug-naive parental cells (P < 0.0001, Supplementary Fig. 7).
The majority of CDDP-resistant clones derived from HN30 and
HN31 showed no significant differences in DDR gene activation
scores from their drug-sensitive parental lines, demonstrating
that upregulation of DDR was not associated with the CDDP-
resistant phenotype. This was further supported by the
observation that SSRP1, an essential gene thought critical to
regulation of CDDP-induced DNA-damage response (not part of
the 69 gene signature) was also found to be significantly

downregulated in 9/12 CDDP-resistant clones (Supplementary
Table S8). Overall, this is consistent with a reduced dependence
on activation of DNA-damage repair possibly because less
CDDP-derived free radicals are able to reach the DNA in the first
place and matches our previously published findings in HN30
and its resistant clones showing reduced formation of γH2AX
foci in the context of CDDP exposure [9].
We previously derived a robust 138 gene signature of NRF2

activation using similar bioinformatic approaches, which was
validated in TCGA cohorts harbouring mutations in either KEAP1
or NRF2 [18]. Nrf2 activation measured by ssGSEA scores was
significantly higher in 8/12 CDDP-resistant clones derived from
all three parental backgrounds (Fig. 2a). Individually, expression
of many Nrf2 targets from the signature was elevated in the
resistant cell lines (Fig. 2b and Supplementary Table S7),
including multiple UDP-glucuronosyltransferases, glutathione
peroxidase 2 (GPX2), aldo-keto reductase family 1 members,
along with other canonical genes regulated by Nrf2 (e.g.,
Glutamate-cysteine ligase modifier/GCLM). To contextualise the
increased expression of Nrf2 targets in CDDP-resistant clones,
we used fold changes to normalise RNA values to an earlier
dataset with expression date from a panel of 60 HNSCC cell lines,
which also included the drug-naive parental lines (Fig. 2c). Using
a subset of 14 genes that were consistently upregulated across
all backgrounds and in all clones, we clustered our CDDP-
resistant clones against the panel of 60 other parental HNSCC
cell lines using normalised values. With one exception, CDDP-
resistant clones clustered together, and in proximity with other
cell lines containing de novo KEAP1 mutations (Fig. 2c).

Proteomic alterations associated with CDDP resistance
To determine whether transcriptomic alterations measured in the
CDDP-resistant clones are detectable at the protein level, we
globally profiled proteins in HN30, HN30R4E1 and HN30R4F5 by
mass spectrometry analysis (Supplementary Fig. 8A) and identified
257 proteins commonly upregulated and 224 commonly down-
regulated among CDDP-resistant clones (Fig. 3 and Supplemen-
tary Table S12). Of the 50 genes included in our Nrf2 signature
that were detected by the mass spectrometry platform, 19 (38%)
were significantly upregulated in both resistant clones, with an
additional five upregulated in at least one clone (Supplementary
Table S12). No proteins from the Nrf2 signature were down-
regulated in both clones and only three were downregulated in
one clone (Supplementary Table S12). In accordance with
inactivating KEAP1 mutations found in HN30R4E1 and HN30R4F5,
no Keap1 protein was detectable by mass spectrometry in either
clone despite being abundantly present in CDDP-sensitive
parental HN30 (not shown)—albeit we excluded Keap1 and other
undetectable proteins from downstream statistical analysis.
Globally, we detected a high concordance between proteins
differentially regulated in CDDP-resistant clones and changes in
their RNA (P < 0.0001, Supplementary Table S12). Individual
proteins of interest which demonstrated increased levels in both
clones compared to the parental cell line included AKRCCs, GGT2
(gamma glutamyltransferase), VAT1 (oxidoreductase), HSPB11
(protein stabilisation), ACOX1 (fatty acid oxidation) and CD109
(serine endopeptidase inhibitor). GO pathway enrichment utilising
proteins upregulated in either HN30R4E1 or HN30R4F5 identified
many upregulated processes in common (Supplementary Fig. 3A,
Supplementary Table S13), including metabolism of oxoacid,
glutathione, NADP, glucose 6-phosphate, prostanoids, and pro-
cesses associated with the pentose phosphate shunt, protein
transport, ribosome biogenesis, and detoxification. Integrated
analysis of several pathways revealed upregulation at both the
protein and RNA levels (Supplementary Fig. 8B), suggesting
coordinated regulation of gene transcription and protein transla-
tion were contributing to an altered metabolic state. DNA repair
and negative regulation of translation were among the top
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pathways associated with proteins downregulated (Fig. 3b and
Supplementary Table S14).
We then examined the functional contribution of Nrf2 signalling

to CDDP resistance in HN30E1, the HN30-derived clone which
demonstrated the most profound increase in the ssGSEA NRF2
score. The IC50 for CDDP in HN30E1 was roughly 10-fold higher in
HN30R4E1 compared to parental HN30 (Supplementary Fig. 9A).
Knockdown of NRF2 expression in HN30R4E1 with shRNA reduced

the IC50 of the resistant cells by about half in both a short-term
assay (Supplementary Fig. 9B), and in a standard clonogenic
survival assay (Supplementary Fig. 9D).

Proliferation/survival tradeoffs and drug resistance in CDDP-
resistant cells
All resistant cells survived and proliferated in the presence of
supra-therapeutic concentrations of CDDP for over 12 months,
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with normal nuclear and other organelle integrity as ascer-
tained using TEM (Supplementary Figs. 10A, 11). However, the
CDDP-resistant lines did have a greater preponderance of
lamellar bodies (Supplementary Fig. 11). Under CDDP-free
conditions, resistant clones demonstrate reduced rates of
proliferation compared to the parental cell line (Supplementary
Figs. 10B and 12) but maintain dependence on extracellular
glucose (Glc) for survival/proliferation compared to glutamine
(GLN) (Supplementary Fig. 10C–E) similar to the predominant
HNSCC metabolic phenotype we defined over a decade
ago [40].
To determine whether the acquisition of CDDP resistance is a

function of non-specific development of multi-drug resistance
(MDR) we performed two independent drug screens. We first
compared HN30 to pooled resistant populations (Supplemen-
tary Table S15 and Supplementary Fig. 13). GR50 values could be
calculated for 88 compounds distributed widely across drug
classes, targets, and mechanism of anti-cancer activity. Two
notable observations were made. First, we did not detect cross-
resistance to DNA damaging or other genotoxic agents among
the tested compounds in parallel with the known CDDP
resistance; this was further validated in two individual
compounds using clonogenic survival assays (Supplementary
Fig. 13B, F). Second, we did observe a trend toward cross-
resistance with proteotoxic agents, which was reproducible in a
second screen comparing two individual PCI13 CDDP-resistant
clones to the parental cell line (Supplementary Table S16). Since
the initial screens generated GR50 values based on a limited
dose range, we conducted a secondary more detailed analysis
for a broader range of doses in two HN30 and 2 PCI13 clones
and confirmed a moderate cross-resistance to proteotoxic
drugs in the resistant cells as shown in Supplementary
Table S17.

Enhanced reductive state and reduced conventional energetic
flux in CDDP-resistant cells
Combining our previous findings that some HNSCC cells focus on
enhancing reductive potential in response to oxidative stress with
the drug screening data led us to hypothesise this may represent a
fundamental shift away from energy generation toward biomass
synthesis and sought to determine whether this is a universal
phenotype regardless of genomic background using several
overlapping approaches. Using an individual cell analysis based
on autofluorescence lifetime imaging of NAD(P)H and FAD, we
found higher NAD(P)H intensities and lower FAD intensities in
CDDP-resistant HN30R4E1 cells compared to their corresponding
parental cell line (i.e., a decreased redox ratio [FAD/[FAD+ NAD(P)
H]), suggesting an increased reductive potential of the CDDP-
resistant cells (Fig. 4 and Supplementary Fig. 14). In addition, both
the free and protein-bound NAD(P)H lifetimes (τ1 and τ2) were
increased in the CDDP-resistant cells, indicating alterations in the
environments of free and bound NAD(P)H (Fig. 4). Changes in the
lifetime of bound NAD(P)H, τ2, suggest alterations in NAD(P)H
binding partners and a shift in metabolic pathways. In addition,
we found significant reductions in the fraction of bound FAD (α1;
Supplementary Fig. 15) in the CDDP-resistant cells indicating a
reduction in mitochondrial metabolism and OxPhos. We validated
this altered metabolism in six CDDP-resistant clones from all three
cell backgrounds using biochemical measurements of the NADH/
NAD+ ratio and confirmed an enhanced reductive state (Fig. 4).
CDDP-resistant clones had higher baseline levels of both total
glutathione (GS) measured biochemically, and reduced glu-
tathione (GSH) measured via fluorescence (Fig. 4).
HNSCC cells are highly dependent on glucose metabolism for

biomass and energy production, and though flux through LDH
from pyruvate into lactate is high for most lines, there is
significant, measurable oxidative phosphorylation (OxPhos)
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detectable under baseline and stress conditions [40]. Four lines of
evidence indicate that CDDP-resistant cells re-wire metabolism
toward an anabolic state. First, as shown in Fig. 5, LDH activity is
reduced by between 20% (PCI13 clones) and 50% (HN30, HN31
clones) in resistant cells compared to parental controls. Second,
despite unaltered mitochondrial morphology (TEM) and no
evidence of organelle depletion (conventional immunofluores-
cence; Fig. 5c and quantification), CDDP-resistant clones demon-
strate a significant reduction in OxPhos as demonstrated by a
>50% reduction in spare respiratory capacity, and a >50%
reduction in OxPhos dependent ATP production (Fig. 5 and
Supplemental Fig. 17). To determine whether this represents a
fundamental alteration of the mitochondrial TCA machinery, we
measured the reductive potential of parental and CDDP-resistant
cells in the presence of multiple metabolic substrates that require
varying combinations of TCA enzymes to generate reducing
equivalents. We found that CDDP-resistant clones maintained a
similar, and in some cases enhanced reductive potential (Supple-
mental Fig. 18), making it unlikely that the metabolic shifts related
to increased NAD(P)H, diminished LDH, and decreased OxPhos
activity were caused by intrinsic defects in mitochondrial function.

Metabolic adaptation to CDDP resistance
GO analysis of transcriptomic shifts accompanying CDDP resis-
tance demonstrated a profound upregulation of detoxification
processes (Supplemental Tables 9 and 10). Steady-state metabo-
lomics analysis identified significant increases in amino acid and
fatty acid intermediate metabolites across the CDDP-resistant
clones along with depletion of TCA, glycolytic and PPP
intermediates including metabolites indicative of oxidative stress
response (e.g., involved in cysteine synthesis) such as methyl
histidine and s-methyl-5-thioadenosine along with depletion of
Ser a critical component of glutathione synthesis (Supplemental

Table 18). De novo synthesis of Gly, Ala and Asp was variable
when comparing HN30 to its CDDP-resistant clones E1 and F5,
although both clones demonstrated increased incorporation of
13C from all 13C-labelled glucose (GLC) into Asp (m+ 1 and m+ 2)
with total and unlabelled Asp levels significantly higher only in the
F5 clone (Supplemental Fig. 19). In contrast, both CDDP-resistant
clones demonstrated a dramatic increase in total Ser, along with
significant higher incorporation of 13C from GLC into Ser (m+ 1,
m+ 2) (Fig. 6). To determine whether this shunting into Ser was
indicative of increased de novo production of reducing equiva-
lents, we analysed incorporation of 13C from the two principal
sources previously defined in the literature into reduced
glutathione (GSH). As shown in Fig. 6, CDDP-resistant cells
demonstrated coordinated and significantly higher incorporation
of 13C from both Gln (m+ 1, m+ 9, m+ 10) and GLC (m+ 1,
m+ 2, m+ 3, m+ 4).

DISCUSSION
Introduced into clinical practice in the 1970s, CDDP remains
essential in the setting of advanced-stage HNSCC in order to
decrease locoregional recurrence and reduce the risk of distant
metastasis [1, 6]. Despite its importance, our understanding of how
CDDP is processed within tumours and factors which drive
resistance remain unclear. Although multiple individual genes and
proteins have been linked to intrinsic or acquired CDDP resistance,
we have neither an accurate metric to predict CDDP sensitivity or
resistance nor effective means to improve response to this drug.
Previously, we developed a biochemical model that may explain
how tumours respond or adapt to genotoxic therapies like CDDP.
Reactive oxygen species (ROS) generated by CDDP or radiation can
be absorbed by primary reducing equivalents (e.g., glutathione),
with the latter subsequently regenerated using secondary reducing
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equivalents (NADH, NADPH) [8, 9, 14, 19, 41–45]. Depletion of NADH
pools forces cells to “borrow” NADH from normal reductive carbon
(C) reactions, such as the conversion of pyruvate into lactate by
lactate dehydrogenase (LDH), resulting in decreased C-flux through
these reactions. We have published experimental evidence support-
ing this model using biochemical measurements of LDH activity,
13C-flux mass spectrometry measurements (MS) and magnetic
resonance spectroscopic imaging of hyper-polarised 13C-pyruvate
(HP-MRI) [8, 9, 14, 19, 41–45]. We have confirmed the link between
genotoxic therapy and shifts in the cellular reductive state or C-flux
under both in vitro and in vivo conditions in multiple preclinical
tumour models, including HNSCC and anaplastic thyroid carcinoma
(ATC) [8, 9, 14, 19, 41–45]. In this study, we sought to determine first,

whether this “borrower” metabolic phenotype is imprinted in
HNSCC cells with acquired CDDP resistance and second, how cells
enact and support this phenotype at a genomic and
transcriptomic level.
Despite data from other tumour types, acquired resistance in

our HNSCC models does not seem to involve upregulation of
DNA-damage repair (DDR) pathways. We previously showed the
CDDP-resistant cells require much higher doses of CDDP to
activate DDR in the form of γH2ax foci [9] and trigger senescence
in the HN30 background; this is accompanied by a decreased
sensitivity of wild-type TP53 to CDDP-generated stress and
reduced binding of CDDP to DNA. At both mRNA and protein
levels, we detect absolutely no evidence of enhanced DDR in
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CDDP-resistant cells regardless of parental background, RAS or
TP53 mutational status. In fact, DDR gene expression is reduced in
PCI13-resistant clones and DDR-related proteins are among
proteins with decreased levels in HN30-resistant clones. Based
on our previous phenotypic data [9], extended here to two other
cellular backgrounds at a genomic, transcriptomic, and proteomic
level, our results do not support an essential role for enhanced
DDR in the context of acquired CDDP resistance for HNSCC.
Instead, our data from multiple platforms strongly suggests an

increased intracellular reductive state which simply prevents
CDDP from ever reaching the DNA in the first place. Here, we
provide several lines of evidence for this enhanced reductive state.
First, in three genomic backgrounds, acquired CDDP resistance is
accompanied by a substantial upregulation of Nrf2-modulated
genes. Interestingly, in HN30 and HN31 which share a patient
lineage, this appears to occur in large part through selection and
enrichment of cells with KEAP1 mutations resulting in enhanced
Nrf2 signalling. In contrast, in the PCI13 background, where

mutations cannot be detected, the effect is transcriptional, with
suppression of KEAP1 mRNA levels. In all cases however, activation
of Nrf2-dependent genes can be consistently measured and
validated at a protein level. Molecular suppression of Nrf2 via
shRNA partially reverses the acquired CDDP resistance phenotype,
functionally linking Nrf2 pathway activation to resistance.
Second, CDDP-resistant cells demonstrate an increased REDOX

state with higher levels of reduced NAD(P)H, an increased
biosynthetic capacity for total glutathione and higher levels of
reduced glutathione under normal growth conditions. This
enhanced reductive state appears to represent a trade-off of
biomass and energy, as it is accompanied by a dramatic reduction
in both LDH and OxPhos activity. In the context of normal
mitochondrial morphology, similar overall mitochondrial biomass
and retained ability to engage in REDOX activity when semi-
permeabilized, these findings strongly suggest that CDDP-
resistant cells engage in differential metabolic activity not because
mitochondria are defective or absent, but most likely to fulfil
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different biomass requirements. This is further supported by
transcriptomic and proteomic enrichment of biomass-generating
pathways, increases in steady-state intermediates involved in fatty
acid and protein synthesis and carbon flux. Third, at a phenotypic
level, CDDP-resistant cells appear to trade off proliferation for
survival. Although both Gln and GLC requirements are consistent
across CDDP-sensitive parental cell lines and their resistant clones,
the CDDP-resistant clones demonstrate increased flux from GLC
into Ser, a precursor to glutathione (via cysteine) and both sources
of carbon (Gln and GLC) are utilised at a higher rate by CDDP-
resistant clones. Evidence of this adaptive metabolic rewiring is
apparent at both the RNA and protein level, where changes were
observed in glucose and glutathione metabolism as well as the
pentose phosphate shunt pathway.
Taken together, these data support an imprinted “borrower”

phenotype whereby acquisition of CDDP resistance is accompa-
nied by a metabolic shift away from normal energy and biomass
toward a phenotype dominated by biomass generation for the
purposes of CDDP absorption and disposal (Fig. 6d), preventing
DNA damage and activation of cell death cascades. What does this
mean for translational applications? First, the fact that across
different backgrounds, the phenotype converges on upregulation
of Nrf2 signalling strongly suggests that this is a required step in
the adaptation process. Which component(s) of Nrf2 signalling are
required remains to be determined, but our data suggest it is likely
the primary enzymes involved in glutathione synthesis and
recycling. Given the evidence of enhanced C-flux from both GLC
and Gln sources and the essentiality of GSH enzymes, it is likely an
intermediate downstream step/dependency will need to be
targeted to attack this potential vulnerability while avoiding
significant solid organ toxicity [3, 5, 46–48]. Second, a consistent
metabolic shift suggests the potential for biomarker development
is real. We have shown that HP-MRI/MRS of C conversions such as
the pyruvate→ lactate conversion can detect both acute and
chronic shifts in metabolic activity reflective of differential
reductive states [14, 19, 41–45]. If in fact the “borrower”
phenotype is imprinted in CDDP-resistant cells and tumours, it
suggests that HP-MRI/MRS could act as a real-time biomarker of
response or resistance during the treatment of HNSCC. Whether
this can be operationalized will depend heavily on planned
validation experiments in both patient-derived xenograft (PDX)
models and human tumours from patients undergoing CDDP-
based treatment.
In addition to the absence of DDR upregulation, one additional

noteworthy negative finding requires mention. With the exception
of a moderate increase in resistance to proteotoxic agents, there is
simply no clear evidence of multi-drug resistance (MDR) in our
HNSCC model. This contradicts previous findings and calls into
question the impact of non-specific resistance mediators such as
p-glycoprotein. Nevertheless, this finding is encouraging for it
suggests conventional and/or targeted agents that do not
function through ROS generation may in fact remain effective.
One potential caveat of the present work is that selection for

CDDP resistance was performed in vitro with cell lines. However,
we have now have a compendium of parallel in vivo analyses
using our CDDP-resistant cells that confirms they remain
refractory to CDDP treatment and maintain an elevated
Nrf2 signature when grown orthotopically in mice, but can be
rendered sensitive by knocking down NRF2 or restoring a wild-
type KEAP1 gene [49]. Furthermore, activation of the Nrf2
pathway through somatic mutations in KEAP1 or transcriptional
regulation are unlikely to be artifacts of cell culture as alterations
in NRF2/KEAP1 are well documented in primary untreated
tumours, including HNSCC, where they are recognised to be
cancer drivers. We recently demonstrated elevated Nrf2 activity
in a substantial subset of primary untreated tumours derived
from the lung, bladder, and head and neck using the TCGA
transcriptomic data [18]. Our current analysis identified a trend

towards reduced survival among TCGA head and neck cancer
patients whose tumours had elevated Nrf2 signatures, when
treated with CDDP (Supplemental Fig. 20). Because the multiple
KEAP1 mutations we found in our CDDP-resistant clones lacked
the same CDDP mutagenic signature observed with many of the
other somatic mutations, it is possible they were pre-existing at
a low frequency (as has been observed with drug resistance in
many other systems) and were selected for during the stress of
CDDP exposure. This raises the possibility that the distinction
between acquired and innate CDDP resistance could be a
function of the degree to which elevated tumours with Nrf2
activation exist in a primary tumour and could explain why we
found decreased survival in head and neck cancer patients
treated with CDDP when their pretreated tumours had elevated
Nrf2 signatures. Our findings warrant future studies to examine
whether pre-existing NRF2/KEAP1 pathway mutations or an
elevated transcriptomic Nrf2 signature can predict CDDP failure
in patients and patient derived xenograft (PDX) models.
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