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BACKGROUND: Distinguishing between true indolent and potentially life-threatening prostate cancer is challenging in tumours
displaying clinicopathologic features associated with low or intermediate risk of relapse. Several somatic DNA copy number
alterations (CNAs) have been identified as potential prognostic biomarkers, but the standard cytogenetic method to assess them
has a limited multiplexing capability.
METHODS: Multiplex ligation-dependent probe amplification (MLPA) targeting 14 genes was optimised to survey 448 tumours of
patients with low or intermediate risk (Grade Group 1–3, Gleason score ≤7) who underwent radical prostatectomy. A 6-gene CNA
classifier was developed using random survival forest and Cox proportional hazard modelling to predict biochemical recurrence.
RESULTS: The classifier score was significantly associated with biochemical recurrence after adjusting for standard
clinicopathologic variables and the known prognostic index CAPRA-S score with a hazard ratio of 2.17 and 1.80, respectively
(n= 406, P < 0.01). The prognostic value of this classifier was externally validated in published CNA data from three radical
prostatectomy cohorts and one radiation therapy pre-treatment biopsy cohort.
CONCLUSION: The 6-gene CNA classifier generated by a single MLPA assay compatible with the small quantities of DNA extracted
from formalin-fixed paraffin-embedded (FFPE) tissue specimens has the potential to improve the clinical management of patients
with low or intermediate risk disease.
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INTRODUCTION
Prostate cancer (PCa) affected 1.4 millionmen worldwide and caused
375,000 deaths in 2020 [1]. While recent data indicate that the
incidence of high risk PCa is rising, likely due to the discontinuation
of routine prostate-specific antigen (PSA) screening [2], most
prostate tumours are still diagnosed at the localised stage, with
Grade Group (GG) 1–3—Gleason score (GS) ≤ 7—and a low-
intermediate risk of treatment failure, as indicated by biochemical
recurrence (BCR) after radical prostatectomy (RP) or radiotherapy.
Out of concerns about the overtreatment of indolent tumours, active
surveillance (AS) is now proposed to some low and favourable
intermediate risk patients as an alternative to immediate definitive
treatment [3]. While clinicopathologic parameters usually identify
patients at high risk of tumour recurrence, distinguishing the most
suitable patients for AS from those who would require immediate
curative treatments and, perhaps, may benefit from adjuvant
therapies is challenging in tumours displaying clinicopathologic
features associated with low or intermediate risk of relapse. Thus,

there is an unmet need for clinically applicable molecular biomarkers
that would aid the decision-making process particularly in the post-
widespread PSA screening era.
DNA copy number alterations (CNAs) targeting oncogenes

(gain) and tumour suppressors (deletion) drive PCa tumorigenesis
and increase in frequency as the disease progresses [4]. Several
CNAs such as PTEN deletion have been identified as potential
prognostic biomarkers independent of clinicopathologic para-
meters [5, 6]. Combinations of specific CNAs, as well as global CNA
burden (percentage of tumour genome affected by CNA), have
shown to further improve risk stratification [5, 7–9]. However,
fluorescence in situ hybridisation (FISH), the gold standard
method to assess CNAs, has limited multiplexing capability and
genome-wide approaches remain expensive and difficult to
implement outside academic centres. There is therefore a need
to optimise the selection of CNAs for prognostic purposes and
their assessment method that would ensure the integration of
CNA classifiers into routine clinical settings.
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Multiplex ligation-dependent probe amplification (MLPA) is a
PCR-based method of CNA quantification [10] allowing simulta-
neous assessment of up to 50 different loci, compatible with small
quantities of formalin-fixed paraffin-embedded (FFPE) extracted
DNA (50 ng). We recently developed and optimised an MLPA-
based assay for profiling 10 CNAs [11] either known to be
associated with PCa clinical outcome or with the potential to
improve risk stratification. The objective of the current study was
to assess CNA profile of PCa samples using MLPA and test whether
a combination of CNAs was associated with poor clinical outcome.
Here, we describe the expansion and application of the MLPA
assay in an RP cohort of patients with low or intermediate risk
disease GG 1–3 (GS ≤ 7). We developed and validated a CNA
classifier, which predicts BCR independently of clinicopathologic
features and, as a result, improved overall risk stratification.

MATERIALS AND METHODS
Patients and samples
The study was conducted in accordance with the REMARK guidelines [12].
The RP cohort consisted of formalin-fixed paraffin-embedded (FFPE) RP
specimens with clinical correlates that were collected between 1996 and
2013 at McGill and Queen’s University Health Centres. After slide review by
pathologists (FB and DMB) to identify the cancer area and assign the final
Gleason grade according to the International Society of Urological
Pathology/World Health Organization recommendations [13], 448 cases
GG 1–3 (GS ≤ 7) with no prior treatment were included in the study
approved by the Research Ethics Board of McGill University Health Centre
(Quebec, Canada, BDM-10-115) amended to include samples from
Kingston General Hospital collected with the approval of the Queen’s
University Research Ethics Board (Ontario, Canada, PATH-144-14). The
sample size was considered adequate based on our previous biomarker
studies [5, 14]. Biopsy slides were available for 286 of these cases and were
reviewed for Gleason grading by pathologists (FB and DMB). Two tumour
areas representing the highest (A sample) and lowest (B sample) Gleason
grade patterns were cored from the RP tissue blocks followed by DNA
extraction as previously reported [11]. In GG 1 (3+ 3) cases, two samples
were also cored and assigned to A or B randomly. DNA was successfully
extracted from both A and B samples, from sample A only, and from
sample B only in 317, 76 and 55 cases, respectively. DNA from an
independent set of 13 PCa samples described previously [11] was used to
test the expanded MLPA assay before profiling the cohort.

Expansion of the MLPA assay
Further literature search and data mining of our previous PCa CNA profile
data [4] to identify potential biomarkers has led to the design of four
additional MLPA probes targeting RWDD3, PDZD2, GTF2H2 and WRN, as
well as the new reference gene, DHRS4L2 as reported previously [11]. These
probes were added to the original 10-gene PCa probe mix [11]. The
expanded MLPA probe set (14 target genes plus 10 reference loci) used for
this study is shown in Supplementary Table S1. The sensitivity and
specificity of the additional CNA targeting probes were assessed by
comparing the MLPA results with fluorescence in situ hybridisation (FISH)
done on a tissue microarray (TMA) representing regions adjacent to those
used for DNA extraction [11]. The following BAC clones: RP11–335D10
(1p21.3), RP11–437P15 (5p13.3), RP11–195E2 (5q13.2) and RP11–363L24
(8p12) were labelled with spectrum Orange dUTP (Enzo Life Science) to
probe RWDD3, PDZD2, GTF2H2 and WRN, respectively. Spectrum green
labelled chromosome 1 subtelomere probe (Cytocell), RP11–530D2 BAC
(5p12), and CEP8 (Abbot Molecular) were used as control reference probes
where appropriate. The FISH procedure, including probe labelling and data
analysis, was done as previously reported [11]. Images were acquired using
an Olympus IX-81 inverted microscope at 96X magnification and Image-
Pro Plus 7.0 software (Media Cybernetics).

MLPA analysis
The MLPA analysis was performed blindly to the clinical outcome. Normal
control DNA consisted of healthy female genome (Promega) along with
DNA extracted from FFPE kidney tissue (McGill University Health Centre)
and breast lymph node (Ontario Institute for Cancer Research). The PC-3
cell line (ATCC Cat# CRL-1435) genome served as a positive control and a
no-DNA reaction served as a negative control. MLPA was performed on all

DNA samples in duplicate for a total of 22 batches with 50 ng of DNA per
reaction as described before [11] according to the manufacturer (MRC
Holland) guidelines using MLPA One-Tube general protocol and EK5-FAM
kit. MLPA data were processed with Coffalyser software (Version
140721.1958) and the P.I.N.P.2 protocol as previously reported [11]. Quality
control (QC) failure of a MLPA reaction was defined when a standard
deviation (SD) of more than 0.1 was computed in more than four probes
by the Coffalyser software or in the absence of a fluorescent signal in the
reaction. Intra-sample normalisation consisted of computing the median
value of the test probe divided by each of the reference probes, while
inter-sample normalisation consisted of computing the average value of
the intra-sample normalised probe signal of the test sample divided by the
signal of the three reference DNA samples separately. If the 95%
confidence interval of the probe for a test sample was above or below
the interval for a reference sample, a gain or deletion call respectively was
made, otherwise a normal copy number was assigned to that probe. CNA
in a gene was thus defined when both duplicate reactions showed the
same CNA in at least one of the probes targeting the gene and relative to
at least two of the three reference samples. Based on our previous report
showing a suboptimal performance of the PDPK1 Exon 14 targeting
probe [11], only the intron 10 probe was considered for calling a CNA for
this gene. MLPA calls for gain of MYC, PDPK1 and PDZD2 as well as deletion
of the remaining 11 targeted genes were considered as CNAs in the
analyses. Unless otherwise specified, the patient tumour CNA profile
combines, for each locus, the CNAs status of both A and B tumour’s
samples successfully profiled by MLPA.

Statistical analysis
The primary endpoint of this study was the prediction of BCR, defined as
two post-prostatectomy PSA measurements of more than 0.2 ng/ml for RP
cohorts, or a PSA level increase of more than 2 ng/ml above the post-
radiation nadir value for the radiation therapy cohort. Random survival
forest (R package “randomForestSRC” v2.9.3 [15]) was used to perform
variable selection (feature reduction) among the 14 genes assessed by
MLPA, where the CNA status of each gene defined a binary variable. For
patients in our RP cohort, the binary CNA data and survival data (time to
BCR with censoring) were used to build a random survival forest, where
1000 trees showing a stable out-of-the-bag error rate were generated
using the log-rank score to split nodes. Genes with positive variable
importance (VIMP) values and 95% confidence intervals above zero after
bootstrapping (100 times) indicated that the predictive power of the forest
depended on these variables and were selected, whereas those with zero
and negative values contributed nothing (zero) or even generated noise
(negative) to the prediction model and were discarded.
Cox proportional hazard regression (R package “survival” v3.2–7) was

used to build the CNA classifier model from variables previously selected
by the random rurvival forest and used the Wald test to evaluate univariate
and multivariate hazard ratios. The predictive power of the CNA classifier
alone or in combination with other clinicopathologic features or risk
assessment scores was assessed by calculating Harrell C-index (R package
“dynpred” v0.1.2). The optimal Cox CNA classifier cut-off score to stratify
patients into low and high risk group of BCR was determined by maximally
selected rank statistics with the adaptative method (R Shiny application
“Evaluate Cutpoints” [16]). Recurrence-free survival analyses were per-
formed using Kaplan–Meier method and the log-rank test (R package
“survcomp” v1.38.0). To validate our findings, we used CNA profiles of GG
1–3 (GS ≤ 7) and local disease (≤pT3) from three RP datasets: MSKCC [17],
Cambridge [18], CPC-GENE [19] and one radiation therapy pre-treatment
biopsy dataset: Toronto [8]. In all statistical tests, P values of less than 0.05
were considered as statistically significant.

RESULTS
DNA copy number analysis
The adequate performance of the new probes added to the
original 10-gene prostate MLPA probe mix [11] was confirmed in
13 independent clinical PCa samples previously used for the
development of the assay [11] and for which the gold standard
CNA status was determined by FISH (Supplementary Figs. S1 and
S2). The expanded 14-gene MLPA assay was then applied to 448
RP cases represented by samples A and/or B taken from the
highest and the lowest Gleason pattern areas whenever applic-
able, respectively. In 97% of cases (n= 433), both duplicate MLPA
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reactions of A or B samples passed the QC allowing CNA
assessment. Ratio charts of successful and failed MLPA reactions
are shown as examples in Supplementary Fig. S3. Clinicopatho-
logic data were retrieved for 412 of these cases which were
considered for subsequent analyses and referred to as the MLPA
cohort (Table 1). CNAs were detected in 75% of cases, of which the
majority harboured 1–3 CNAs (Fig. 1a). The most frequent CNAs
were on chromosome 8p with deletions of NKX3-1 (8p21.2) and
WRN (8p12) detected in 35% and 30% of the cases, respectively
(Fig. 1b). Overall, there was no statistical difference (Kruskal–Wallis
test, P= 0.847) in the CNA frequency of the assessed 14 genes
between the MLPA cohort and the previously reported CNA profile
generated by array-CGH or DNA sequencing of GG 1–3 (GS ≤ 7)
cohorts used for validation of the current study findings [8, 17–19].

Developing a CNA classifier
Random survival forest was applied on the MLPA data to identify the
best predictive CNAs for BCR and reduce the number of variables in
the classifier. Six CNAs were identified as contributing to BCR
prediction (positive variable importance) among the 14 CNAs (Fig. 1c)
and included in a Cox proportional hazard regression to build the final

6-gene classifier model. The score value was calculated according to
the Cox regression coefficients and the CNA status (0 vs 1):
0.83·RWDD3+ 0.37·WRN+ 0.41·PTEN+ 0.45·TP53+ 0.23·MYC+ 0.92·
PDPK1 – 0.32 (centring constant), which was able to predict BCR with
a univariate hazard ratio (HR) of 2.76 (Table 2A). Using an optimised
cut-off score of ≥0.09 for this model, patients with high risk of early
BCR can be distinguished from lower risk patients in Kaplan–Meier
analysis (Fig. 1d, P< 0.0001). As expected, the low risk group included
a higher proportion of GG 1 (3+ 3) (32% vs 16%) and a lower
proportion of GG 3 (4+ 3) (18% vs 31%) than the high risk group,
respectively (Supplementary Fig. S4, P= 0.0005). The prediction of
BCR by the model in Cox regression was superior to a single CNA
(PTEN deletion) already known as a prognostic marker (Harrell C-
index, 0.64 vs 0.57). In multivariate analysis after adjusting for standard
clinicopathologic features (Table 2A) or the CAPRA-S (cancer of the
prostate risk assessment post-surgical) [20] score risk group (Table 2B),
the 6-gene model retained its significance (Wald test, P< 0.01) with a
hazard ratio of 2.17 and 1.80, respectively. Moreover, the CNA model
improved the BCR prediction of the standard clinicopathologic
variables and CAPRA-S score risk group, as shown by the increased
Harrell C-index of the combinations (Fig. 1e).
From the perspective of patient management, the impact of

sampling performance on the CNA classifier was investigated in
cases with BCR information and a CNA call available for both
samples A and B representing, when applicable, the highest and
the lowest Gleason grade pattern, respectively (n= 293). For this
comparative analysis, the classifier was applied to the CNA data
generated from the combination of both sample A and B as done
so far in this study, sample A alone, sample B alone, and from a
randomly selected sample A or B. Harrell C-index results indicate
that the CNA classifier performed better when both samples were
considered (Fig. 1f) and thus this method continued to be applied
for the remaining outcome analyses of this study. There were no
significant differences in the 6-gene CNA calls made from sample
A and B except for two genes (MYC, WRN) which were more likely
to be called from the A sample (highest grade) in the GG 2–3
(GS= 7) cases (McNeimar’s test, P < 0.05, Supplementary Table S2).

CNA classifier validation in RP cohorts
The 6-gene model performance was then assessed on published
CNA and clinical data of GG 1–3 (GS ≤ 7) cases from three RP
cohorts: MSKCC [17], Cambridge [18] and CPC-GENE [19]. In all of
them, the model was able to stratify patients into low and high risk
of BCR as shown on Kaplan–Meier curves (Fig. 2a–c, left panels,
P < 0.05). The prognostic value of the model remained significant in
multivariate analyses (Table 2 C–G) with standard clinicopathologic
variables and the CAPRA-S score risk group (surgical margins and
CAPRA-S data not available for CPC-GENE cohort). In all instances,
the 6-gene model improved the prognostic value (C-index) of the
standard markers and the CAPRA-S (Fig. 2a–c, right panels) in the
post-treatment assessment.
To explore the potential value of the CNA model at the

diagnostic stage, multivariate analyses were performed with the
biopsy GG, clinical stage (cT) and preoperative PSA levels as well
as with three well-known prognostic indexes: CAPRA (cancer of
the prostate risk assessment) [21], D’Amico [22], and NCCN
(national comprehensive cancer network) [23] in MLPA cases for
which these pre-treatment data were available. As shown in
Table 3A–D, the 6-gene model remained a significant prognostic
marker of BCR with the standard pre-treatment variables and the
three risk classifiers. The contribution of the CNA model to the
prognostication was translated into an improved C-index when
combined with the clinicopathologic variables and the three
classifiers (Fig. 3a). Similarly, the CNA model was a significant
prognostic marker in multivariate analyses (Supplementary
Table S3A–I) and increased the C-index of standard pre-
treatment variables as well as of D’Amico and NCCN classifiers
in MSKCC, Cambridge and CPC-GENE datasets (Fig. 3b–d).

Table 1. Clinicopathologic features of radical prostatectomy cases
from the MLPA cohort.

Clinicopathologic variables Category n (%)

Total number of cases n 412

Patients with A samples 362 (88%)

Patients with B samples 343 (83%)

Patients with A and B samples 293 (71%)

Age (years) Median 60

Min–max 43–77

Pathological stage (T-stage) pT2 245 (59%)

pT3A 143 (35%)

pT3B 24 (6%)

Surgical margin status Positive 126 (31%)

Follow-up (months) Median
(min–max)

69 (1–226)

Biochemical recurrence (BCR) Positive 79 (19%)

Grade Group at surgery,
Gleason score indicated

1 (3+ 3) 112 (27%)

2 (3+ 4) 209 (51%)

3 (4+ 3) 91 (22%)

Grade Group at biopsy, Gleason
score indicated

na 286 (69%)

1 (3+ 3) 155 (54%)

2 (3+ 4) 106 (37%)

3 (4+ 3) 20 (7%)

≥4 (≥4+ 4) 5 (2%)

Preoperative prostate-specific
antigen (ng/ml)

na 406 (99%)

Mean (±SD) 7.81 (±5.26)

PSA ≤ 10 334 (82%)

PSA > 10 72 (18%)

Clinical stage (C-stage) na 252 (61%)

cT1 170 (67%)

cT2 81 (32%)

cT3A 0 (0%)

cT3B 1 (<1%)
aValues not available for all 412 cases (n noted for each variable).
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CNA-classifier validation in a radiation therapy biopsy cohort
Moving a step closer to a diagnostic application, the 6-gene model
was finally applied to a published radiation therapy cohort of GG
1–3 (GS ≤ 7) cases with the clinicopathologic parameters and CNA
profiles generated from pre-treatment biopsies (Toronto cohort [8]).

The Kaplan–Meier analysis shows that these patients can be
stratified in low and high risk group for BCR by the CNA model
(Fig. 3e, left panel). The 6-gene model was also a significant variable
in multivariate analyses with standard parameters and with both
D’Amico and NCCN classifiers (Table 3E–G). All combinations of the

Table 2. Univariate and multivariate Cox proportional hazard analysis for 6-gene model adjusted for clinicopathologic parameters and CAPRA-S
risk score.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% confidence
interval)

P value Hazard ratio (95% confidence
interval)

P value

MLPA dataset (n= 406)

(A) Standard clinicopathologic parameters

6-gene modela 2.76 (1.87–4.08) <0.0001 2.17 (1.44–3.27) 0.0002

Preoperative prostate-specific antigena 1.06 (1.03–1.09) 0.0001 1.04 (1.01–1.07) 0.02

GG 3 (4+ 3) vs. GG 1–2 (≤3+ 4) 2.27 (1.44–3.60) 0.0005 1.39 (0.86–2.25) 0.2

pT-stage (T3 vs ≤T2) 3.29 (2.06–5.26) <0.0001 2.22 (1.33–3.71) 0.002

Surgical margin (positive vs negative) 2.13 (1.36–3.34) 0.001 1.49 (0.92–2.41) 0.1

(B) CAPRA-S risk

6-gene modela 2.76 (1.87–4.08) <0.0001 1.80 (1.19–2.71) 0.005

CAPRA-S risk

Low (0–2) – – – –

Intermediate (3–5) 3.45 (1.69–7.04) 0.0007 3.34 (1.64–6.83) 0.001

High (≥6) 18.56 (9.19–37.49) <0.0001 15.57 (7.60–31.91) <0.0001

MSKCC dataset (n= 127)

(C) Standard clinicopathologic parameters

6-gene modela 2.82 (1.69–4.72) <0.0001 3.33 (1.89–5.89) <0.0001

Preoperative prostate-specific antigena 1.01 (1.00–1.01) <0.0001 1.01 (1.00–1.01) <0.0001

GG 3 (4+ 3) vs. GG 1–2 (≤3+ 4) 3.58 (1.67–7.67) 0.001 3.57 (1.52–8.40) 0.004

pT-stage (T3 vs ≤T2) 1.58 (0.77–3.22) 0.2 1.10 (0.51–2.40) 0.8

Surgical margin (positive vs negative) 2.71 (1.31–5.59) 0.007 2.73 (1.29–5.81) 0.009

(D) CAPRA-S risk

6-gene modela 2.82 (1.69–4.72) <0.0001 2.03 (1.16–3.54) 0.01

CAPRA-S risk

Low (0–2) – – – –

Intermediate (3–5) 7.10 (2.85–17.72) <0.0001 6.11 (2.41–15.47) 0.0001

High (≥6) 6.00 (1.83–19.70) 0.003 4.19 (1.20–14.68) 0.03

Cambridge dataset (n= 104)

(E) Standard clinicopathologic parameters

6-gene modela 3.96 (1.69–9.30) 0.002 2.96 (1.18–7.41) 0.02

Preoperative prostate-specific antigena 1.04 (0.93–1.17) 0.5 1.06 (0.94–1.20) 0.3

GG 3 (4+ 3) vs. GG 1–2 (≤3+ 4) 5.23 (1.92–14.28) 0.001 4.94 (1.56–15.59) 0.006

pT-stage (T3 vs ≤T2) 1.23 (0.40–3.81) 0.7 0.76 (0.24–2.45) 0.6

Surgical margin (positive vs negative) 1.90 (0.69–5.25) 0.2 1.71 (0.61–4.76) 0.3

(F) CAPRA-S risk

6-gene modela 3.96 (1.69–9.30) 0.002 4.01 (1.57–10.21) 0.004

CAPRA-S risk

Low (0–2) – – – –

Intermediate (3–5) 1.44 (0.43–4.79) 0.6 0.94 (0.26–3.42) 0.9

High (≥6) 3.08 (0.77–12.35) 0.1 2.18 (0.52–9.11) 0.3

CPC-GENE dataset (n= 135)

(G) Standard clinicopathologic parameters

6-gene modela 2.09 (1.18–3.69) 0.01 2.11 (1.06–4.20) 0.03

Preoperative prostate-specific antigena 1.03 (0.97–1.11) 0.4 1.00 (0.92–1.09) 1.00

GG 3 (4+ 3) vs. GG 1–2 (≤3+ 4) 2.19 (0.99–4.83) 0.05 1.63 (0.73–3.67) 0.2

pT-stage (T3 vs ≤T2) 4.42 (1.84–10.65) 0.0009 3.94 (1.61–9.61) 0.003
aAnalysed as a continuous variable; GG: Grade Group, Gleason score indicated; pT-stage: pathological stage.
P value Wald test.
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CNA model with the standard variables or the two classifiers
resulted in an increased C-index supporting its potential benefit at
the diagnostic stage (Fig. 3e, right panel).

DISCUSSION
MLPA provides a fast, easy and cost-effective approach for the
assessment of candidate CNAs in small quantities of DNA
extracted from archived FFPE samples. Here, we used an
expanded MLPA probe mix to generate the profiles of 433 low
or intermediate risk (GS ≤ 7) prostate tumours for 14 genes in
cytobands with recurrent alterations. The performance of the
assay was comparable to what we previously reported with the
first version of the MLPA probe mix with >90% of the tumours

sampled twice with good quality data [11]. The expansion of the
probe mix allowed the assessment of four additional CNAs,
including two that were selected by random survival forest for our
BCR classifier 1p21.3 (RWDD3) and 8p12 (WRN) deletion. Deletion
of 1p21.3 was previously detected in advanced prostate tumours
[4, 24] and the expression of RSUME, encoded by its putative
driver RWDD3, was reduced in neuroendocrine pancreatic cancer
[25]. RSUME enhances protein sumoylation, a post-translational
modification, that can increase PTEN stability and tumour
suppressor function [25, 26]. 8p12 (WRN) deletion has been
associated with BCR [27] and an aggressive molecular subtype of
PCa [4]. WRN is a RecQ-like helicase involved in the maintenance
of genomic stability (review in [28]) and germline variants have
been detected in castrate-resistant prostate cancer (CRPC)
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patients [29]. The association of RWDD3 and WRN deletions with
poor clinical outcome in our study provides further rationale for
future investigation of their potential involvement in the
pathobiology of PCa.

In addition to RWDD3 and WRN deletion, the 6-gene CNA
classifier included PTEN and TP53 deletion as well MYC and PDPK1
gain consistent with the biological function of these genes and
the reported ability of these CNAs to predict BCR [6, 14, 30–32].

Table 3. Univariate and multivariate Cox proportional hazard analysis for 6-gene model adjusted for pre-surgical or pre-radiation clinicopathologic
parameters.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% confidence
interval)

P value Hazard ratio (95% confidence
interval)

P value

MLPA dataset subcohort

(A) Standard clinicopathologic parameters (n= 249)

6-gene modela 2.23 (1.31–3.79) 0.003 2.17 (1.25–3.76) 0.006

Preoperative prostate-specific
antigena

1.05 (1.01–1.10) 0.01 1.05 (1.00–1.09) 0.04

Biopsy GG ≥3 (≥4+ 3) vs. GG 1–2
(≤3+ 4)

1.93 (0.59–6.28) 0.3 2.07 (0.62–6.87) 0.2

C-stage (T2 vs T1) 1.08 (0.56–2.09) 0.8 0.98 (0.50–1.92) 1.0

(B) D’Amico (n= 235)

6-gene modela 2.87 (1.62–5.11) 0.0003 2.73 (1.53–4.88) 0.0007

D’Amico risk

Low – – – –

Intermediate 1.67 (0.79–3.54) 0.2 1.58 (0.75–3.34) 0.2

High 3.60 (1.42–9.16) 0.007 3.23 (1.26–8.24) 0.01

(C) NCCN (n= 254)

6-gene modela 2.25 (1.35–3.74) 0.002 2.08 (1.24–3.49) 0.005

NCCN risk

Low – – – –

Intermediate 1.95 (0.97–3.91) 0.06 1.78 (0.88–3.58) 0.1

High 4.22 (1.66–10.75) 0.003 3.82 (1.49–9.76) 0.005

(D) CAPRA risk (n= 238)

6-gene modela 2.08 (1.18–3.69) 0.01 1.92 (1.06–3.49) 0.03

CAPRA risk

Low (0–2) – – – –

Intermediate (3–5) 2.42 (1.14–5.13) 0.02 2.27 (1.07–4.82) 0.03

High (≥6) 7.05 (2.40–20.71) 0.0004 6.39 (2.16–18.86) 0.001

Toronto dataset (n= 126)

(E) Standard clinicopathologic parameters

6-gene modela 3.82 (2.20–6.65) <0.0001 3.20 (1.82–5.65) <0.0001

Preoperative prostate-specific
antigena

1.13 (1.06–1.21) 0.0003 1.10 (1.03–1.18) 0.004

Biopsy GG 3 (4+ 3) vs. GG 1–2
(≤3+ 4)

1.01 (0.67–1.52) 1.0 1.25 (0.66–2.38) 0.5

C-stage (T2 vs T1) 0.97 (0.55–1.70) 0.9 0.99 (0.56–1.76) 1.0

(F) D’Amico

6-gene modela 3.82 (2.20–6.65) <0.0001 3.79 (2.16–6.65) <0.0001

D’Amico risk

Low – – – –

Intermediate 0.84 (0.37–1.86) 0.7 0.99 (0.44–2.21) 1.0

High 2.07 (0.43–10.08) 0.4 1.73 (0.35–8.43) 0.5

(G) NCCN

6-gene modela 3.82 (2.20–6.65) <0.0001 3.83 (2.19–6.68) <0.0001

NCCN intermediate vs. low riskb 0.86 (0.39–1.92) 0.7 1.01 (0.45–2.25) 1.0
aAnalysed as a continuous variable; GG: Grade Group, Gleason score indicated; C-stage: clinical stage.
P value: Wald test.
bNo NCCN high risk case in the dataset.
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Some of the CNAs included in our classifier such as PTEN deletion
and MYC gain were reportedly enriched in tumour displaying
Gleason pattern 4 with cribiform and intraductal gland architec-
ture [33]. In the current cohort, the different histological Gleason
patterns 4 or the presence of intraductal carcinoma were not
recorded at the time of histological characterisation. Given that
those histological patterns predict poor outcome after RP [34, 35],
it would be interesting to assess, in future studies, their association
with the 6-gene classifier score.
We previously showed that combining PTEN deletion and

PDPK1 gain improved the prognostic value of these two individual
CNAs assessed by FISH [5]. With the multiplex capability of MLPA,
the current study showed that a combination of 6 CNAs was
optimal and superior to a single CNA (PTEN deletion) to predict
BCR. The results also suggest that the classifier may help
determine which patients are more at risk of recurrence after RP
by providing additional prognostic information to the standard
clinicopathologic variables, including the CAPRA-S score. Recent
data indicate that adjuvant radiation therapy might be advanta-
geous to patients with adverse pathology at RP [36]; the 6 CNAs

may potentially identify additional patients who would benefit
from such adjuvant treatments. The classifier might also serve to
orient therapeutic decisions at diagnosis given that it remained a
significant prognostic factor after adjusting for the clinicopatho-
logic variables obtained before treatment, even in the validation
cohort for which the CNAs were surveyed in biopsy specimens
before radiation therapy. Further validation is warranted on
prospective cohorts using the MLPA assay on biopsy specimens.
An important advantage of this study was that each RP case was

sampled from two distinct tumour areas which were separately
processed for DNA extraction and CNA profiling. The double
sampling strategy ensured that a CNA profile can still be derived
in instances of inadequate DNA quality/quantity or failed MLPA
reaction of one of the samples. Our data showed that either the A
or B sample provided prognostic information suggesting that the
CNA classifier may work even in suboptimal sampling conditions
associated with prostate biopsies. Sampling two tumour areas
nevertheless provided a slightly better discrimination power as
shown by its C-index, which might be explained, at least in part,
by CNAs that were not detected in one sample but were in the
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other, a phenomenon that probably occurred in the other datasets
analysed in this project where only one area was sampled. In
support of this hypothesis, WRN deletion and MYC gain were
detected more often in sample A (highest grade) than B (lowest
grade). These results are in agreement with previous findings that
have highlighted the intra-tumoral heterogeneity of PCa [37]. In
contrast, no significant difference in CNA detection between A
and B samples was observed in our previous MLPA report, which
may be explained by the limited sample size (n= 20 cases)
representing mostly higher grade tumours (GG 3 and up,
GS ≥ 4+ 3) [11] than those in the current study.
Most of the PCa prognostic classifier reported are derived from

gene expression, but there are CNAs-based signatures that have
been developed recently [38–41], including one based on MLPA
assay [39]. While there is a certain level of overlap between the
regions of CNA assessed by the 6-gene classifier and those
signatures, their compositions vary. The 6-gene classifier was
derived and validated on GG 1–3 (GS ≤ 7) cases, while the studies
mentioned above were based on different cohorts that included
GG ≥ 4 (GS ≥ 8) cases, which may account for some of the
differences observed. Given that the MLPA assay can assess
more than 6 regions of CNA (14 in the current report), it would be
possible, in futures studies, to evaluate additional promising CNAs
to the 6-gene classifier by replacing probes that underperformed
as a prognostic variable in the random survival forest analysis.
In the context of molecular pathology, a seamless addition of

the 6-gene CNA classifier to the clinicopathologic assessment
workflow could be envisioned. The MLPA assay requires only
50 ng of DNA, which can be extracted from a standard FFPE
biopsy specimen without any additional procedure for the patient.
The histopathologic diagnosis is not compromised and allows the
selection of tumour cell areas optimal for DNA extraction. The
assay costs less than ten dollars in consumable supplies and can
be implemented in any laboratory that performs PCR and capillary
electrophoresis. Future studies would aim to specify its application
with the clinicopathologic classifiers and determine in which
subgroups of patients it could be most useful.
In conclusion, a CNA classifier improving risk prediction was

developed and validated in 492 additional patients from four PCa
datasets treated by RP or biopsied prior to radiation therapy. The
MLPA-based assay is robust and can be easily implemented
worldwide in the clinical setting to improve the management of
patients with localised PCa.
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