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Pretreatment tumour immune microenvironment predicts
clinical response and prognosis of muscle-invasive bladder
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BACKGROUND: We examined the relationship between the tumour microenvironment and the clinical efficacy of neoadjuvant
chemotherapy in patients with cT2-4aN0M0 bladder cancer using multiplex fluorescence immunohistochemistry.
METHODS: The study retrospectively evaluated 51 patients who underwent radical cystectomy following neoadjuvant
chemotherapy for cT2-4aN0M0 muscle-invasive bladder cancer. Patients were divided into responders (<pT2) and non-responders
(≥pT2). We assessed the density of each immune cell type in intratumoural and peritumoural areas in both groups via multiplex
fluorescence immunohistochemical analysis.
RESULTS: The median age was 69 years; 39 patients were male. Twelve (23.5%), 17 (33.3%), 10 (19.7%) and 12 (23.5%) patients
were pT0, pT1, pT2 and ≥pT3, respectively. Responders had a significantly higher 5-year cancer-specific survival rate (96.6%) than
non-responders (48.4%; p= 0.0018). CD8+ T cell (p= 0.0056) and CD204+ cell (p= 0.0394) densities were significantly higher in the
intratumoural area in non-responders than in responders. Patients with higher CD204+ cell densities in cancerous areas had worse
prognosis.
CONCLUSIONS: This comprehensive analysis of the immune microenvironment of a muscle-invasive bladder cancer specimen
revealed that preexisting tumour-infiltrating proliferating CD8+ T cells and CD204+ cells are indicators of the response to
neoadjuvant chemotherapy and that CD204+ cells can be considered an unfavourable prognostic factor in these patients.
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INTRODUCTION
Muscle-invasive bladder cancer (MIBC) is an aggressive malig-
nancy that is associated with a poor prognosis, and the standard
treatment for MIBC is radical cystectomy. However, the 5-year
survival rate for total cystectomy alone is approximately 50% [1].
Therefore, cisplatin-based neoadjuvant chemotherapy (NAC)
administered before cystectomy is a standard treatment that is
recommended by several guidelines [2–4] for MIBC. The use of
cisplatin-based NAC for MIBC is underpinned by several rando-
mised clinical trials and meta-analyses, which found a 6% survival
benefit at 10 years [5]. Recently, the partial results of a randomised
phase III trial comparing the efficacy of dose-dense methotrexate,
vinblastine, doxorubicin, and cisplatin (dd-MVAC) or gemcitabine
and cisplatin in the MIBC perioperative setting have been
reported, and the full results are expected [6].
Although the efficacy of NAC is supported by these studies, NAC

remains underutilized in clinical practice for various reasons,

including the proportions of elderly patients with MIBC, poor
performance status, multiple comorbidities and impaired renal
function [7]. Particularly, 40% of patients are ineligible for
cisplatin-based NAC because of nephrotoxicity [8, 9]. Conse-
quently, it is important to identify a clear biomarker of NAC and
improve the outcomes in MIBC with novel therapies, such as
immune checkpoint inhibitors (ICIs).
The tumour microenvironment (TME) plays an essential role in

cancer therapy. The TME consists of immune cells, mesenchymal
cells, endothelial cells, inflammatory mediators and extracellular
molecules [10, 11]. The context of TME determined at diagnosis
reflects the immune response [12, 13] and the effect of
chemotherapy [14], and changes in the number of various
immune cells infiltrating the TME are associated with clinical
outcomes [15, 16]. For instance, the presence of increased tumour-
infiltrating lymphocytes (TILs), such as CD8+ T cells or CD4+ T cells,
has been established as a prognostic factor in various tumours,
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including urothelial cancer [17, 18]. In contrast, myeloid inhibitory
cells such as tumour-associated macrophages (TAMs) can limit
responses to chemotherapy, irradiation and angiogenic inhibitors
[19, 20]. Makino and colleagues [21] reported that the marked
pretherapy infiltration of M2 macrophages might be a useful
biomarker of the response to NAC in oesophageal cancer.
Therefore, a deeper understanding of TME should not only help
with NAC as it is currently practiced but could also be the basis for
immunotherapy including neoadjuvant settings.
Multiplex fluorescence immunohistochemistry (mFIHC) is a

powerful tool for the comprehensive analysis of the immune
cell type in TME, compared with traditional immunohistochem-
istry. This technology enables the separate assessment of the
immune profiles of intratumoural and peritumoural areas
in TME, excluding the subjectivity of the evaluator. In addition,
mFIHC enables a more detailed characterisation of each
lineage cell [22]. Previous studies reported on intratumoural or
stromal lymphocytes in addition to analysing TIL subsets and
reported that TIL localisation in the epithelial compartment of
tumours is important because the nonspecific infiltration of
lymphocytes into the tumour or stroma is often observed after
treatment [23, 24].
In this study, we assessed the association of TME and efficacy in

patients treated with NAC for MIBC using mFIHC. To the best of
our knowledge, this is the first study demonstrating immune
profiling by mFIHC before and after NAC treatment in MIBC.

MATERIALS AND METHODS
Patients
We retrospectively evaluated 51 patients who received NAC following
radical cystectomy at Iwate Medical University Hospital from October 2010
to October 2019. All patients were treated with curative intent. Tissue
samples were obtained through transurethral biopsy or resection before
the administration of NAC in all patients. The patients received two or
three cycles of NAC, following radical cystectomy.
We divided the patients into two groups according to the histopatho-

logical stage in surgical tissues after NAC. Patients with ≥pT2 and <pT2
were classified into the non-responder and responder groups, respectively.
Three patients who underwent immediate cystectomy without chemother-
apy were recruited for the control group.
The study was conducted in accordance with the principles of the

Declaration of Helsinki. The human ethics board of each institution
approved this study and written informed consent was obtained from all
patients prior to enrolment (Iwate Medical University; protocol no. 2019-
083, National Cancer Center Hospital East; Protocol No. 2019-194).

Multiplex fluorescence immunohistochemistry
Four-micrometre-thick tissue sections obtained from formalin-fixed,
paraffin-embedded (FFPE) blocks were subjected to mFIHC staining using
the Opal Kit (AKOYA Biosciences, California, USA). We prepared thin FFPE
sections of specimens obtained from all eligible cases, and immunostain-
ing was performed as soon as possible after specimen sectioning. The
antibodies, dilutions and activation conditions used are listed in
Supplementary Table S1. The slides were scanned using the Vectra slide
scanner (AKOYA Biosciences). For each marker, the mean fluorescent
intensity per case was determined as a base point from which positive calls
could be established. For multispectral analysis, each individually stained
section was used to establish the spectral library of the fluorophores. Five
to 20 random areas equally presenting the parenchyma and peritumor
portions of the tumour in each sample were blindly reviewed and analysed
by two pathologists at ×20 magnification. We selected these tumour areas
from within the area where viable cancer cells existed to the invasive edge
via visually inspecting H&E specimens according to the consensus of TIL
assessment in breast cancer [25].
The summary of the analysis is described below, following previously

reported methods [23, 26, 27]. An image analysis program (Inform;
AKOYA Biosciences) was used to segment tumour tissues into carcinoma
and stromal areas and to detect immune cells with specific phenotypes,
after which the distribution of immune cells was analysed. Training
sessions for tissue segmentation and phenotype recognition were

conducted (Supplementary Fig. S1). After phenotyping typical CD4+ and
CD8+ cells using Inform software, gated CD3+ populations based on the
mean fluorescence intensity of CD3, CD3+ CD4+ and CD3+ CD8+ cells
were determined as CD4+ and CD8+ T cells, respectively. A similar gating
strategy was used for the analysis of Foxp3, Ki-67, PD-1 and Tim-3
high population in CD4+ or CD8+ T cells using an analytical program
(Spotfire version 7.8; TIBCO Software, California, USA). The area of each
tissue category, divided into intratumoural and peritumoural areas, was
evaluated to assess the density of each immune cell type, as represented
below:

Density of immune cells

¼ counts of immune cells=intratumoural or peritumoural area ðmm2Þ:

T cells in the intratumoural and peritumoural areas were defined as
intratumoural and peritumoural T cells, respectively. Intratumoural area
was selected from the area where the tumour was viable and peritumoural
area from bordering the tumour.

Statistical analysis
Statistical comparisons of the NAC responder and non-responder groups
regarding clinicopathological features and mFIHC results were per-
formed using the Mann–Whitney U test, Pearson χ2 test and analysis
of variance. The paired t test was used to compare the densities of
immune cells between pre-NAC and post-NAC tissue, excluding the
analysis of patients with pT0. Receiver-operating characteristic (ROC)
analysis of the NAC response was used to determine the cutoff density
for each immune cell type, and patients were classified into ‘high’ and
‘low’ groups.
Progression-free survival (PFS) and cancer-specific survival (CSS) rates

were calculated using the Kaplan–Meier method. PFS was defined as the
time from radical cystectomy to radiographic or clinical progression. CSS
was defined as the time from the radical cystectomy to cancer-specific
death or loss-to-follow-up censoring. All statistical analyses were
performed using JMP 14.0 software (SAS Institute Inc., Cary, NC, USA).
For all statistical comparisons, differences with p < 0.05 were considered
statistically significant.

RESULTS
Patient characteristics
The clinical and pathological features of the patient cohort in
the NAC responder (n= 22) and non-responder (n= 29) groups
are described in Table 1. Patient characteristics were not
significantly different between the two groups. The median
follow-up duration after radical cystectomy was 38.1 (range,
0.1–114.6) months. The 5-year PFS and CSS were 70.8% and
76.3%, respectively (Supplementary Fig. S2a). In addition, the
NAC response was significantly related to PFS and CSS (PFS: p=
0.0018; CSS: p= 0.0011; Supplementary Fig. S2b), indicating a
strong association between tumour response to NAC treatment
and patient prognosis.

Analysis of various immune cells between NAC responders
and non-responders
We assessed the association between the NAC response and
tumour infiltration of various immune cells on pretreatment
specimens via haematoxylin/eosin staining and mFIHC (Fig. 1a–d).
The density of CD8+ T cells and CD204+ cells were significantly
higher in tumoural areas in NAC non-responders than in NAC
responders (CD8+ T cell: p= 0.0056; CD204+ cell: p= 0.0394,
respectively), whereas the density of CD4+ T cells, CD4+Foxp3+

T cells, CD20+ and CD38+ cells were not associated with the NAC
response (Fig. 1f). To investigate the relationship among those
immune cells that showed significant differences in the two
groups, we analysed the correlation of intratumoural immune cell
density among CD8+ T cells, CD4+Foxp3+ cells and CD204+ cells.
The results showed that CD204+ cells were positively correlated
with CD8+ T cells, while CD8+ T cells and CD204+ cells were
uncorrelated with CD4+Foxp3+ cells based on linear regression
models (Fig. 2a–c).
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Changes in intratumoural immune cells pre- and post-NAC
treatment
Next, we examined differences in the immune TMEs in pre- and
post-NAC treatment. We assessed the densities of each immune
cell type in the intratumoural area based on the pre-NAC tissue
compared with the matched post-NAC tissue among the
responder, non-responder, and control groups, excluding patients
with pT0. In responder and non-responder groups, we observed
decreased levels of CD8+ T cells and CD4+Foxp3+ T cells in
the post-NAC tissue compared with pre-NAC tissue, which were
significant or tended toward significance. Notably, we observed
increased levels of CD204+ cells in the post-NAC tissue compared
with pre-NAC tissue in the non-responder group (p= 0.0009),
while we observed no significant difference in the responder
group (Fig. 3).

Analysis of intratumoural CD8+ T cell function
To investigate the function of intratumoural CD8+ T cells, we
examined the frequencies of Ki-67 expression as a proliferative
marker, PD-1 and TIM3 expression as a suppressor, or exhausted
immune checkpoint molecules in CD8+ T cells between the
responder and non-responder groups. The proportion of Ki-
67+CD8+ T cells within the CD8+ T cells in pre-NAC tissue was
significantly higher in the responder group than in non-
responder group (p= 0.0413), while there were no significant
differences between the two groups regarding the proportion of
PD-1+ or PD-1+TIM3+CD8+ T cells within CD8+ T cells in pre-
NAC tissue (Fig. 4).

Impact of M2 macrophage infiltration on MIBC prognosis
Next, we assessed the association between intratumoural CD8+

T cells and CD204+ cells in pre-NAC tissue, which we divided into

high and low groups using ROC analysis, and the prognosis of
NAC patients with MIBC (Supplementary Fig. S3). Patients with
high tumour infiltration of CD8+ T cells had a significantly shorter
CSS than those with low infiltration, but this finding was unnoted
for PFS. Notably, patients with a high tumour infiltration of
CD204+ cells had a significantly poorer prognosis than those with
low infiltration (Fig. 5, 5-year PFS: 50.5% vs 80.2%, p= 0.0078;
5-year CSS: 65.2% vs 81.3%, p= 0.0435).

DISCUSSION
In the present study, the density of intratumoural CD8+ T cells
and CD204+ cells in pre-NAC tissue was higher in the NAC non-
response group than that in the response group. Furthermore,
NAC response was significantly associated with prognosis, and
patients with high intratumoural CD8+ T cells and CD204+ cells
(M2 macrophages) in pre-NAC tissue had a poorer prognosis
than those with low infiltration. A previous meta-analysis
reported a relationship between the high infiltration of TAMs
and a poor prognosis in most solid tumours [28]. In bladder
cancer, several studies have reported that TAMs were associated
with poorer survival with various treatment modalities, such as
Bacillus Calmette–Guerin therapy, chemotherapy and immu-
notherapy [29–32]. However, Aljabery et al. reported that TAMs
were associated with a lower rate of lymph node metastases and
higher CSS in patients with bladder cancer patients [33].
However, almost all the studies assessed TAMs using traditional
immunohistochemistry for CD68 as pan-macrophages, and only
a few reports focused on M2 macrophages. Therefore, the role of
TAMs has remained contentious in bladder cancer [34]. This is
the first report to demonstrate that intratumoural proliferating
CD8+ T cells and CD204+ cells in pre-NAC tissue are predictors
in the NAC setting for MIBC using mFIHC to localise each
immune cell in the TME.
TAMs are known to directly or indirectly inhibit T cell responses

in the TME. The direct inhibitory effects of TAMs on T cell
responses include the production of inhibitory cytokines such as
interleukin-10 and tumour growth factor-β, involvement in
immune checkpoints via the expression of molecules such as
PD-L1, and metabolic activities such as the depletion of
metabolites and production of reactive oxygen species. Moreover,
TAMs indirectly inhibit T cell responses by controlling the immune
microenvironment, including the recruitment of immunosuppres-
sive cells (e.g. Tregs) or by inhibiting stimulatory cells (e.g.
dendritic cells) [35]. Our data showed that intratumoural CD8+

T cells as effecter cells exhibited a strong positive correlation with
intratumoural CD204+ cells as immune-suppressive cells in pre-
NAC tissue. The data suggest that M2 macrophages directly inhibit
T cell function. In a recent study, Yang et al. reported that urinary
bladder cancer (UBC) can be classified based on immune gene
profiling using the following four subtypes: cold tumour, immune
ignorant, immune inactive and hot tumour. Among these
subtypes, only cold tumours were correlated with a favourable
prognosis and early-stage UBC, including luminal type with
chemosensitivity [36, 37]. To clearly evaluate the four immune
states and immune-excluded subtypes in the tumour specimens
analysed in this study, we analysed the correlation between
intratumours and peritumours of CD8+ T and CD204+ cells and
found a positive correlation between both intra- and peritumoural
CD8+ T cells and CD204+ cells (Supplementary Fig. S4). The results
suggest that immune-excluded subtypes are suitable, with some
exceptions. Thus, based on these results, the non-responder group
with high infiltration of CD8+ T and CD204+ cells could be
classified as a hot tumour subtype, whereas the responder group
with low infiltration of CD8+ T and CD204+ cells could be
classified as a cold subtype. However, in this study, intratumoural
CD204+ and CD8+ T cells were not correlated with intratumoural
CD4+Foxp3+ T cells as Tregs in pre-NAC tissue. Because Tregs are

Table 1. Patients characteristics.

Variable Level Responder
(n= 29)

Non-
responder
(n= 22)

Age Median 68 (43–78) 69 (44–74)

Sex Male 23 (79.3%) 15 (68.2%)

Female 6 (20.7%) 7 (31.8%)

Smoking Yes 17 (58.6%) 13 (59.1%)

No 5 (17.2%) 8 (36.3%)

Unknown 7 (24.1%) 1 (4.6%)

Clinical stage cT2 20 (68.9%) 10 (45.4%)

cT3 9 (31.1%) 11 (50%)

cT4 0 1 (4.6%)

Histology Pure UC 28 (96.6%) 21 (95.4%)

UC+ variant
histology

1 (3.4%) 1 (4.6%)

TURBT Yes 11 (37.9%) 6 (27.3%)

No 18 (62.1%) 16 (72.7%)

NAC regimen GC/CaG 25 (86.2%) 15 (68.2%)

MVAC 4 (13.8%) 7 (31.8%)

Pathological stage pT0 12 (41.4%) 0

pTis/1 17 (58.6%) 0

pT2 0 10 (45.4%)

≥pT3 0 12 (54.6%)

UC urotherial carcinoma, TURBT trans-urethral resection of bladder cancer,
NAC neoadjuvant chemotherapy, GC gemcitabine+ cisplatin, CaG carbo-
platin+ gemcitabine, MVAC methotrexate+ vinblastine+ doxorubicin
(adriamycin)+ cisplatin.
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Fig. 1 Assessment of tumor immune microenvironment. Representative image of haematoxylin–eosin staining in pre-NAC tissue in the
a responder group (×100) and b non-responder group (×100). Multiplex fluorescence immunohistochemistry in pre-NAC tissue in the
c responder group and d non-responder group for the following markers: CD3, CD4, CD8, CD204, FoxP3, cytokeratin and 4′,6-diamidino-2-
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areas between the responder and non-responder groups.

D. Ikarashi et al.

609

British Journal of Cancer (2022) 126:606 – 614



composed of functionally distinct subpopulations, including naive
Tregs, effector Tregs and non-suppressive Tregs, it is difficult to
distinguish the suppressive function of tumour-infiltrating Tregs
based on Foxp3 expression alone [38]. Furthermore, Foxp3 is not
only expressed in Tregs but also weakly in activated T cells, and it
would be difficult to distinguish these subpopulations by
immunohistochemistry, in which quantitative evaluation of
antigen expression levels is difficult [39]. However, Ki-67+CD8+

T cells in pre-NAC tissue showed a significantly higher expression
in the responder group than in the non-responder group. In
tumour immunology, T cells primed by antigen-presenting cells

are believed to be activated to initiate cell proliferation. Therefore,
we believe that higher infiltration of Ki-67-positive proliferating
T cells into the tumour reflects the occurrence of the adaptive
immune response. Imaizumi et al. reported that the evaluation of
activated T cells expressing Ki-67 with their localisation in tumours
is a reliable immunological marker for determining the prognosis
of locally advanced rectal cancer patients [24].
The present study has several limitations because of the

relatively small number of patients and the retrospective design.
However, our clinical outcomes were comparable to those
reported by other authors. In addition, we did not evaluate the
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association between TMEs and ICI response in the neoadjuvant
setting because neoadjuvant ICI is not approved for urothelial
carcinoma in Japan. We believe that the information presented
herein can contribute toward further understanding of intratu-
moural immune cell behaviour and expanding the potential
therapeutic spectrum of immunotherapy, including the neoadju-
vant setting. We are planning a prospective study with a larger
sample size to validate the results of this exploratory study. The
limitations of mFIHC analysis include the limited number of
antibodies that can be simultaneously stained and the inability to
guarantee the specificity of antibodies depending on the target
molecule. However, when carefully validated, they can contribute
to a more comprehensive and objective quantitative assessment
of the various intra- and peritumoural immune cells separately in
the TME [40].
In this study, the evaluation of CD204+ cells and CD8+ T cells

based on pre-NAC tissue obtained by transurethral biopsy or
resection was useful for predicting NAC response and unfavour-
able prognosis.
Once CD204+ and CD8+ T cells are identified in the

pretreatment specimen and a poor response to NAC is predicted,
conversion to neoadjuvant ICI or combination with radiotherapy
may be additional treatment options. Assessing the changes in
each immune cell type in pre- and post-NAC treatment tissues
revealed that the density of CD8+ T cells was higher in the non-
responder group in the pre-NAC tissue, and the densities of
CD8+ T cells and Tregs were significantly decreased in both the
responder and non-responder groups in the post-NAC tissue.
These results may indicate that neoadjuvant ICI will be effective
in cases where a poor response to NAC is predicted and may be

one of the reasons for the limited response to immune ICI after
second-line treatment. In fact, a clinical trial on neoadjuvant
pembrolizumab for localised MIBC has been reported with good
clinical response [41]. In a recent review, Topalian et al. [42]
reported the presence of tumour-specific CD8+ T cells and
tertiary lymphoid structures in pretreatment specimens as a
factor associated with the efficacy of neoadjuvant ICI therapy.
Particularly, they reported that the B cell component had a
potential role in mediating anti-PD-1 responses. Although our
results did not include neoadjuvant ICI cases and therefore
cannot be directly compared with the NAC response, the
presence of B and plasma cells in pretreatment specimens has
been confirmed, and we believe that understanding TMEs will
lead to the development of neoadjuvant ICI therapy. Moreover,
in this study, M2 macrophages were significantly increased in
post-NAC tissue compared to pre-NAC tissue, while no sig-
nificant change was observed in the responder group. Consider-
ing that M2 macrophages are a poor prognostic factor, M2
macrophage-targeted therapy might be an optional treatment in
the future. In fact, a previous study reported that targeting TAMs
could significantly improve the efficacy of conventional and
immunotherapeutics [35]. In addition, Wang et al. [43] found that
the balance between adaptive immune response and protu-
morigenic inflammation in the TME is associated with PD-1/PD-
L1 resistance in urothelial cancer, with the latter being
locally and systemically linked to the proinflammatory cellular
state of myeloid phagocytic cells. They also suggested that
overcoming myeloid-related ICI resistance improves the benefits
of ICIs in patients with UC. Hence, macrophage-targeting therapy
is expected to improve the therapeutic efficacy of existing
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low infiltration (p= 0.0238). Patients with a high tumor infiltration of CD204+ cells had a significantly shorter PFS and CSS than those with low
infiltration (p= 0.0078, p= 0.0435).
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conventional chemotherapy and radiotherapy through the
activation of anticancer immunity [44].

CONCLUSION
This is the first report to demonstrate that a preexisting tumour
immune microenvironment predicts the clinical response and
prognosis of MIBC in the NAC setting. The importance of the quality
of intratumoural effector CD8+ T cells in pretreatment specimens
was established, suggesting the significance of quantitative as well
as a qualitative evaluation of various immune cells in the TME. In
addition, intratumoural CD204+ cells as M2 macrophages were
found to be associated with NAC response and prognosis, indicating
the possibility of clinical development of combination immunother-
apy against M2 macrophages as a therapeutic target.

Disclaimer
The work presented in this article is original research. This article
has not been previously published and has not been submitted
for publication elsewhere while under consideration.
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