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BACKGROUND: Individualising treatment in breast cancer requires effective predictive biomarkers. While relatively few genomic
aberrations are clinically relevant, there is a need for characterising patients across different subtypes to identify actionable
alterations.
METHODS:We identified genomic alterations in 49 potentially actionable genes for which drugs are available either clinically or via
clinical trials. We explored the landscape of mutations and copy number alterations (CNAs) in actionable genes in seven breast
cancer subtypes utilising The Cancer Genome Atlas. To dissect the genomic complexity, we analysed the patterns of co-occurrence
and mutual exclusivity in actionable genes.
RESULTS: We found that >30% of tumours harboured putative actionable events that are targetable by currently available drugs.
We identified genes that had multiple targetable alterations, representing candidate targets for combination therapy. Genes
predicted to be drivers in primary breast tumours fell into five categories: mTOR pathway, immune checkpoints, oestrogen
signalling, tumour suppression and DNA damage repair. Our analysis also revealed that CNAs in 34/49 (69%) and mutations in 13/49
(26%) genes were significantly associated with gene expression, validating copy number events as a dominant oncogenic
mechanism in breast cancer.
CONCLUSION: These results may enable the acceleration of personalised therapy and improve clinical outcomes in breast cancer.
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BACKGROUND
The comprehensive analysis of human cancer molecular data by
The Cancer Genome Atlas (TCGA) and other studies supports the
notion that treatment could be tailored to a tumour’s specific
genetic signature (https://tcga-data.nci.nih.gov/tcga/) [1].
Although sequencing studies have provided a wide repertoire of
information on the cancer genome, the implementation of
genomic profiling in clinical decision-making remains under-
developed. Genomic events are defined as any detectable
alterations that results in a change in the gene or pathway.
Actionable alterations are those with clinically actionable targets
that are potentially responsive to targeted therapies available in
clinical trials, or the Food and Drug Administration (FDA)-
approved or experimental drugs. Detection of genomic aberra-
tions in potentially clinically actionable genes enables the rational
selection of existing or novel therapeutic agents and also helps in
predicting tumour response to targeted therapy.
Breast cancer is a complex and heterogeneous disease, compris-

ing multiple entities with a wide range of clinical behaviours,

disparate treatment responses, and differences in survival rates [2, 3].
Invasive ductal carcinoma (IDC) accounts for 80% of invasive breast
cancer cases, while invasive lobular cancer (ILC) represents ~10% of
all breast malignancies [4]. These entities can be further divided into
classes based on protein biomarkers or gene expression profiles that
can be used to design therapeutic approaches [5]. Perou et al. [6]
reported that hierarchical clustering analysis of gene expression
profiles segregate breast cancer into five different molecular
subtypes. The luminal A (LumA) subtype was defined as oestrogen
receptor (ER) and/or progesterone receptor (PR) positive, human
epidermal growth factor receptor 2 (HER2) negative; luminal B
(LumB) as ER and/or PR-positive, HER2 positive; HER2 enriched as ER
and PR-negative, HER2 positive; basal-like/ triple-negative breast
cancer (TNBC) as ER, PR and HER2 negative, and a normal breast-like
group as ER and/or PR-positive, HER2 negative. However, the
American Society of Clinical Oncology (ASCO) clinical practice
guidelines endorse that only the clinical-grade biomarkers ER, PR
and HER2 receptor status should be used to guide the selection of
adjuvant systemic therapy in breast cancer [7].
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Mutational loads vary substantially in human cancers [8]. The
systematic analysis of 21 cancer types from the TCGA ‘Pan-Cancer’
dataset has revealed a lower mutational burden in breast cancer
as compared to many other malignancies [9]. The Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC)
has performed an integrated analysis by combining gene copy
number and expression in primary breast tumours that may help
to identify targets for therapy using ten integrative clusters [10]. A
recent analysis of the genomic data from 12 cancer types from
TCGA suggests that M-class (mutation-driven) and C-class (CN-
driven) tumours are associated with different oncogenic signa-
tures and provide insights into potentially actionable alterations
[11]. In addition to these large-scale studies, the OncoKB database
has provided detailed information on therapeutically actionable
alterations with the level of evidence (levels 1–4 and level R1/R2)
for targetability of driver alterations in more than 50 tumour types.
Similarly, the European Society for Medical Oncology (ESMO) also
developed a scale to rank genomic alterations into different tiers
(I–V and X) based on clinical evidence of actionability in early
breast cancer [12]. These large-scale genomic and transcriptomic
studies enabled the identification of molecular alterations/
signatures for tumour classification and uncovered molecular
mechanisms necessary for tumour development. However, some
of these genetic alterations that might create therapeutic
vulnerabilities have not been extensively studied. Building on
the strengths of the publicly available TCGA dataset, our study is
based on the identification of genetic alterations in druggable or
actionable genes that are predictors of response or resistance to
existing cancer therapies in breast cancer.
The objective of our study was to evaluate the gene expression

and genomic alterations in potentially clinically actionable genes
present in a comprehensive genomic analysis of invasive breast
carcinomas from the TCGA dataset, with the goal of identifying the
most significant contributors to the variance in breast cancer
subtypes. A further goal of this analysis was to evaluate whether
RNA sequencing (RNA-Seq) or whole-exome sequencing (WES) is
more suitable for providing evidence of these actionable alterations.

METHODS
TCGA data and potentially breast cancer-related genes
We analysed somatic mutations, copy number alterations (CNAs) and RNA
expression data for clinically actionable genes in seven breast cancer
subtypes (127 ILC, 490 IDC, 201 LumA, 122 PAM50 LumB, 51 PAM50 HER2
enriched, 107 PAM50 basal-like and 82 TNBC). The TCGA breast cancer
study has followed the ASCO/College of American Pathologists (CAP)
guidelines for hormone receptor status definition [13]. Tumours with HER2
IHC level 3+ and FISH ratio >= 2.2 were called HER2 positive and <10%
ER/PR nuclear staining (10 for ER and 33 for PR) were ER/PR-positive cases.
Some of the cases with higher staining levels were not called ER/PR-
positive (six for ER and seven for PR). For <10% staining level, a different
threshold was used to call ER/PR-positive or negative. The data used in this
study are from the 2015 TCGA breast cancer publication [14]. The clinical
information for breast cancer subtypes was retrieved from the TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/). We developed a list of 49
potential gene targets based on an extensive literature query for
biomarker/drug pairs with evidence of preclinical and clinical effectiveness
in breast cancer [15]. We considered genes as clinically relevant or
actionable that are associated with FDA-approved or investigational drugs
in use in the clinic or in clinical trials [16]. As our study was based on
analysing specific genes of interest, we performed the analysis on the
processed data for mutations, CNAs, and normalised gene expression data
of RNA-Seq obtained from cBioportal. The study protocol 21–654 (Date of
approval: June 2, 2021) was approved by the Cleveland Clinic Institutional
Review Board (IRB) Committee. All breast cancer patient samples were de-
identified and encoded with TCGA sample codes.

Analysis of DNA mutations from exome-sequencing data
The Kruskal–Wallis test was applied to assess the prevalence of mutation
types and to characterise the variant allele fractions (VAFs) of somatic

variants in each breast cancer subtype. Based on the method described by
Chang et al. for defining the mutational hotspots [17], we retained the
mutational hotspots affecting ≥2% of the tumours. The R package Maftools
was used to calculate the frequency of mutation type, the most frequently
mutated genes, the identification of mutually exclusive or co-occurring set
of genes, and to perform a cancer-driver gene analysis [18].
Quantile–Quantile (QQ) plots were generated to compare the expected
and the observed distribution of the FM bias P values and to identify the
significantly mutated genes among actionable targets using the Onco-
driveFML approach [19].

Classification of actionable alterations
The OncoKB database, which comprehensively considered FDA and
National Comprehensive Cancer Network (NCCN) guidelines, was used to
identify and grade actionable alterations based on a four-level classifica-
tion system (version 2.0) [20]. Level 1 includes predictive biomarkers that
are responsive to FDA-approved drugs. Level 2 includes standard of care
predictive biomarkers recommended by the NCCN and are responsive to
FDA-approved treatments. Level 3A includes candidate predictive bio-
markers of drug response based on compelling clinical evidence in
reported tumour types and level 3B includes standard of care biomarkers
of response to FDA-approved or investigational drugs. Level 4 includes
alterations that are candidate predictive biomarkers of drug response
based on compelling biological evidence.

CNA calling and interpretation
To measure the burden of copy number, we applied a re-segmentation
approach using the CNApp tool [21]. For the identification of significant copy
number events, the genomic identification of significant targets in cancer
(GISTIC) was applied to the segmented data of each breast cancer subtype.
CNA was characterised by measured copy number (expressed as a log2 ratio),
and by the extent of change in the genome. The CNA thresholds were
determined according to the set of discrete copy number calls provided by
GISTIC: homozygous deletion (−2), hemizygous deletion (−1), low-level gain
(1) and high-level amplification (2). Fisher’s exact test was used to determine
the frequencies of high-level amplifications and homozygous deletions.

Analysis of RNA-Seq data
We downloaded the normalised RNA-Seq data processed by RSEM (RNA-
Seq by Expectation Maximisation) method from cBioPortal for each breast
cancer subtype. The z score cut-off was set at −2 and +2 and this
represents the standard deviation of expression value above or below the
mean in the reference sample [22]. We then transformed z score to P
values using one-tailed hypothesis testing. Multiple hypothesis testing was
performed on calculated P values to identify significant overexpressed/
downregulated actionable genes. Heatmap and clustering analysis was
performed in Morpheus (https://software.broadinstitute.org/morpheus/)
using Euclidean distance and average linkage.

Comparison of RNA-Seq with mutation/CNA data
We evaluated the possible association of somatic mutations and CNAs with
gene expression data. We selected only two classes of CNAs: high-level
amplification and homozygous deletion as these are more biologically
relevant and are known to be associated with cancer. The normalised
expression of wild-type/mutant cases and amplification/homozygous loss
versus diploid for each gene was evaluated using a Mann–Whitney test.

Ingenuity pathway analysis
Ingenuity pathways analysis (IPA) was used to identify key molecules and
signalling pathways affected by actionable alterations in breast tumours. A
list of genes with variants in 49 actionable genes was subjected to IPA
application (Qiagen Inc., https://www.qiagenbioinformatics.com/products/
ingenuitypathway-analysis). The variants that fit the American College of
Medical Genetics (ACMG) criteria for classification as pathogenic or likely
pathogenic were used to visualise the gene interactions [23].

Statistical analysis
Statistical analysis for comparing the mutations, CNAs, and gene
expression in breast cancer subtypes were performed using GraphPad
Prism 8.3.1 (GraphPad Software, San Diego, CA, USA). The two-stage linear
step-up procedure of Benjamini, Kreiger and Yekutieli by setting the false
discovery rate (FDR) (Q) to 5% was used to correct P values for multiple
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Table 1. Characteristics of breast cancer patients included in the TCGA dataset.

ILC (n=
127), n (%)

IDC (n=
490), n (%)

LumA (n=
201), n (%)

LumB (n=
122), n (%)

HER2
enriched (n
= 51), n (%)

Basal (n=
107), n (%)

TNBC (n=
82), n (%)

P value

Age *0.02

Mean ± SD 42.33 ± 34.1 163.3 ±
102.5

67 ± 35.5 40.67 ± 26.8 17 ± 14.7 35.67 ± 25.5 27.33 ± 21.2

26–40 5 (3.9%) 49 (10%) 26 (12.9%) 10 (8.2%) 1 (2%) 11 (10.3%) 8 (9.8%)

41–60 50 (39.4%) 247 (50.4%) 89 (44.3%) 60 (49.2%) 30 (58.8%) 62 (57.9%) 50 (61%)

61–90 72 (56.7%) 194 (39.6%) 86 (42.8%) 52 (42.6%) 20 (39.2%) 34 (31.8%) 24 (29.3%)

Ethnicity 0.51

Hispanic or Latino 6 (4.7%) 14 (2.8%) 7 (3.5%) 2 (1.6%) 1 (2%) 3 (2.8%) 4 (4.8%)

Not Hispanic or
Latino

106 (83.4%) 394 (80.4%) 160 (79.6%) 94 (77%) 43 (84.3%) 90 (84.1%) 70 (85.3%)

NA 15 (11.8%) 82 (16.7%) 34 (17%) 26 (21.3%) 7 (13.7%) 14 (13%) 8 (9.7%)

Race 0.42

White 107 (84.3%) 344 (70.2%) 165 (82.1%) 81 (66.4%) 24 (47.1%) 70 (65.4%) 52 (63.4%)

Black or African
American

9 (7.1%) 63 (12.9%) 13 (6.5%) 13 (10.7%) 8 (15.7%) 26 (24.3%) 18 (22%)

American Indian
or Alsaka Native

0 (0.0%) 1 (0.2%) 0 (0.0%) 0 (0.0%) 1 (2%) 0 (0.0%) 0 (0.0%)

Asian 3 (2.4%) 36 (7.3%) 9 (4.5%) 9 (7.4%) 12 (23.5%) 6 (5.6%) 8 (9.8%)

NA 7 (5.5%) 46 (9.4%) 14 (7%) 19 (15.6%) 6 (11.8%) 5 (4.7%) 4 (4.9%)

NE 1 (0.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0%) 0 (0.0%) 0 (0.0%)

Tumour stage 0.78

Early (Stage I–III) 126 (99.2%) 468 (95.3%) 193 (96%) 117 (95.9%) 47 (92.2%) 102 (95.3%) 78 (95.1%)

Metastatic 0 (0.0%) 13 (2.7%) 5 (2.5%) 4 (3.3%) 2 (3.9%) 2 (1.9%) 1 (1.2%)

NA 1 (0.7%) 4 (0.8%) 3 (1.5%) 1 (0.8%) 2 (3.9%) 3 (2.8%) 3 (3.6%)

Tumour grade 0.81

I 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

II 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

III 0 (0.0%) 4 (0.8%) 1 (0.5%) 1 (0.8%) 1 (2%) 1 (0.9%) 1 (1.2%)

NR 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

NA 127 486 (99.2%) 200 (99.5%) 121 (99.2%) 50 (98%) 106 (99.1%) 81 (98.8%)

Neoadjuvant
treatment

0.8

Yes 0 (0.0%) 6 (1.2%) 4 (2%) 2 (1.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

No 127 (100%) 483 (98.4%) 197 (98%) 120 (98.4%) 51 (100%) 107 (100%) 82 (100%)

NA 0 (0.0%) 1 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

TNM stage

T stage 0.2

T1 21 (16.5%) 135 (27.6%) 75 (37.3%) 26 (21.3%) 10 (19.6%) 22 (20.6%) 19 (23.2%)

T2 59 (46.4%) 299 (61%) 108 (53.7%) 79 (64.8%) 33 (64.7%) 73 (68.2%) 51 (62.2%)

T3 46 (36.2%) 31 (6.3%) 9 (4.5%) 9 (7.4%) 4 (7.8%) 8 (7.5%) 8 (9.8%)

T4 1 (0.8%) 24 (4.9%) 9 (4.5%) 8 (6.6%) 4 (7.8%) 3 (2.8%) 4 (4.9%)

TX 0 (0.0%) 1 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.9%) 0 (0.0%)

N stage 0.06

N0 54 (42.5%) 233 (47.6%) 92 (45.8%) 51 (41.8%) 20 (39.2%) 65 (60.7%) 49 (59.8%

N1 38 (30%) 171 (34.9%) 82 (40.8%) 43 (35.2%) 14 (27.5%) 30 (28%) 19 (23.2%)

N2 13 (10.2%) 53 (10.8%) 16 (8.0%) 21 (17.2%) 8 (15.7%) 6 (5.6%) 10 (12.2%)

N3 21 (16.5%) 24 (4.9%) 7 (3.5%) 5 (4.1%) 6 (11.8%) 6 (5.6%) 4 (4.9%)

NX 1 (0.8%) 9 (1.8%) 4 (2.0%) 2 (1.6%) 3 (5.9%) 0 (0.0%) 0 (0.0%)

M stage 0.7

M0 97 (76.3%) 441 (90%) 183 (91%) 105 (86.1%) 46 (90.2%) 99 (92.5%) 71 (86.6%)

M1 0 (0.0%) 13 (2.7%) 5 (2.5%) 4 (3.3%) 2 (3.9%) 2 (1.9%) 1 (1.2%)
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testing. The threshold for statistical significance was set at 0.05 for all
statistical tests.

RESULTS
Detection of breast cancer-associated mutations in actionable
genes
We analysed whole-exome sequencing data in seven breast
cancer subtypes in the TCGA dataset. Clinical features and patient
characteristics are described in Table 1. The majority of patients
included had early-stage breast cancer and 12 patients received
neoadjuvant treatment.
We first profiled the mutational landscape for 49 actionable

genes in all seven breast cancer subtypes. A total of 1614 somatic
variants comprising 1084 missense mutations, 489 truncating
mutations and 41 inframe mutations were identified in all TCGA
breast cancer patients. Among seven breast cancer subtypes, 100
(93%) basal, 47 (92%) HER2 enriched, 74 (90%) TNBC, 401 (82%)
IDC, 99 (81%) LumB, 149 (74%) LumA and 84 (66%) ILC samples
harboured mutations in 49 actionable targets. No statistically
significant differences were observed in regards to mutational
frequencies of these genes (Kruskal–Wallis test, P= 0.4) (Fig. 1a).
However, a significant difference was observed in VAFs in hotspot
mutations between the distinct subtypes (Kruskal–Wallis test, P <
0.0001) indicating a substantial degree of allelic heterogeneity in
breast cancer (Fig. 1b). No substantial variation was observed in six
classes of mutation types. The most frequent mutational signature,
characterised by a high prevalence of C>T transition substitutions,
was identified in all seven breast cancer subtypes (Fig. 1c). This
signature was also found to be the most dominant mutation in 21
primary breast cancer genomes [24].
We next utilised the Oncodrive function of Maftools to identify

driver genes and the top ten most frequently mutated genes in

each breast cancer subtype [25]. Missense mutations were found
to be more prevalent compared to truncating and inframe
mutations in all subtypes (Kruskal–Wallis test, P < 0.0001). Maftools
analysis showed that TP53 was the most frequently mutated gene
across IDC, LumA, HER2 enriched, basal and TNBC subtypes.
PIK3CA was the second most commonly mutated gene across ILC
subtypes (Fig. 1c). Interestingly, HER2-enriched subtype showed
the highest rate of TP53 mutations (86%, P= 1E-7), and the ILC
subtype showed the highest rate of PIK3CA mutations (48%, q=
1E-4). IDC subtype showed the significant enrichment of muta-
tions in 7/49 (14%) actionable genes when compared with other
subtypes. Notably, only in basal subtype 21/49 genes (43%) were
mutated in ≥2% of cases when compared with other subtypes,
suggesting that actionable changes predominantly differ among
different subtypes (Fig. 1d). Oncodrive favours the detection of
oncogenic events and is less efficient in identifying mutations in
tumour suppressor genes. We also applied the OncodriveFML
approach that identifies drivers by computing the functional
impact (FI) score using the set of somatic mutations in a gene
[19, 26]. Quantile–quantile plots and the most significant
genes for each breast cancer subtype are presented in Supple-
mentary Fig. S1a and Supplementary Table S1. A total of 9/
49 genes displayed a significant P value (P < 0.05) and a q value
<0.05 in all seven breast cancer subtypes. These nine genes fell
into five categories of tumour drivers: mTOR pathway (PIK3CA,
AKT1 and NF1), immune checkpoints (GATA3), oestrogen signalling
(ESR1), tumour suppressor activators (TP53, RB1) and PARP (ATM,
BRCA2).
The frequency of actionable mutations in 49 targets in ILC and

IDC subtypes were also compared between early breast cancer
(EBC) (TCGA cohort) and two metastatic breast cancer (MBC)
cohorts: Razavi et al. [27] and the Genomics, Evidence, Neoplasia,
Information, Exchange (GENIE) [28] cohort. We observed a higher

Table 1 continued

ILC (n=
127), n (%)

IDC (n=
490), n (%)

LumA (n=
201), n (%)

LumB (n=
122), n (%)

HER2
enriched (n
= 51), n (%)

Basal (n=
107), n (%)

TNBC (n=
82), n (%)

P value

MX 30 (23.6%) 36 (7.3%) 13 (6.5%) 13 (10.7%) 3 (5.9%) 6 (5.6%) 10 (12.2%)

Hormone status

ER status 0.5

ER-positive 117 (92.1%) 328 (66.9%) 185 (92.0%) 115 (64.3%) 16 (31.4%) 9 (8.4%) 0 (0.0%)

ER-negative 8 (6.2%) 133 (27.1%) 3 (1.5%) 2 (1.6%) 29 (56.9%) 94 (87.9%) 82 (100%)

NE 2 (1.5%) 27 (5.5%) 13 (6.5%) 5 (4.1%) 4 (7.8%) 4 (3.7%) 0 (0.0%)

Indeterminate 0 (0.0%) 2 (0.4%) 0 (0.0%) 0 (0.0%) 2 (3.9%) 0 (0.0%) 0 (0.0%)

Equivocal 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

PR status 0.4

PR-positive 100 (78.7%) 176 (35.9%) 169 (84.1%) 97 (79.5%) 8 (15.7%) 7 (6.5%) 0 (0.0%)

PR-negative 24 (18.8%) 284 (58%) 18 (9%) 20 (16.4%) 39 (76.5%) 94 (87.9%) 82 (100%)

NE 2 (1.5%) 28 (5.7%) 13 (6.5%) 5 (4.1%) 4 (7.8%) 5 (4.7%) 0 (0.0%)

Indeterminate 1 (0.8%) 2 (0.4%) 1 (0.5%) 0 (0.0%) 0 (0.0%) 1 (0.9%) 0 (0.0%)

Equivocal 0 (0%) 0 (0%) 0 (0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

HER2 status 0.06

HER2-positive 9 (7.1%) 83 (16.9%) 21 (10.4%) 25 (20.5%) 28 (54.9%) 8 (7.5%) 0 (0.0%)

HER2-negative 71 (55.9%) 242 (49.4%) 106 (52.7%) 58 (47.5%) 11 (21.6%) 62 (57.9%) 82 (100%)

NE 22 (17.3%) 71 (14.5%) 33 (16.4%) 16 (13.1%) 7 (13.7%) 14 (13.1%) 0 (0.0%)

Indeterminate 1 (0.8%) 5 (1%) 2 (1%) 2 (1.6%) 0 (0.0%) 1 (0.9%) 0 (0.0%)

Equivocal 24 (18.9%) 83 (16.9%) 36 (17.9%) 20 (16.4%) 5 (9.8%) 20 (18.7%) 0 (0.0%)

NA 0 (0.0%) 6 (1.2%) 3 (1.5%) 1 (0.8%) 0 (0.0%) 2 (1.9%) 0 (0.0%)

NA not available, NE not evaluated, NR not reported.
*Significant P value.
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frequency of mutations in metastatic cases than in primary breast
cancer in six genes (ESR1, BRCA2, RB1, TP53, ERBB2 and AKT1) in ILC
and seven genes (ESR1, GATA3, BARD1, CDKN2A, ERBB2, AKT1 and
NF1) in IDC subtype (Supplementary Fig. S1b). For HER2-enriched

cases, no significant differences were observed in the frequencies
of mutations in the TCGA breast cohort versus Angus et al. [29]
and Lefebvre et al. [30] metastatic cohorts. The frequency of
mutations in TNBC TCGA cases was also compared with Angus
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et al. [29] study and no significant differences were observed
between early and metastatic breast cases.

Mutual exclusivity and co-occurrence among actionable
alterations and therapeutic actionability
We identified 22 pairs of mutually exclusive alterations and 72
pairs of co-occurring alterations using Maftools (Fig. 2a and
Supplementary Table S2). TP53 was mutually exclusive with PIK3CA
in ILC, IDC and LumA subtypes. We also found numerous mutually
exclusive pairs of TP53 with GATA3, BRCA2 and NF1 in more than
one breast cancer subtype. Interestingly, AKT1mutations were also
found mutually exclusive with PIK3CA mutations in 45% of LumA
cases. Among co-occurrences, we found many alterations affect-
ing genes in different pathways rather than in the same pathway
(Supplementary Table S2). For instance, the co-occurrence of
BRCA2 and FGFR2 in IDC and LumB tumours, NF1 with RPTOR,
PIK3CB and ERBB3 in IDC and HER2-enriched tumours.
We also evaluated the level of clinical evidence of mutations in

49 genes in 7 breast cancer subtypes, using the OncoKB database.
Overall, >30% of tumours in ILC, IDC, LumA, LumB and >10% of
tumours in TNBC and basal subtypes harboured level 1 alterations
(FDA-approved) in PIK3CA gene. In OncoKB database, genomic
alterations in NF1 and ATM are classified as level 1 in neurofibroma
and prostate cancer, respectively. Likewise, genomic alterations in
BRCA1 and BRCA2 are classified as level 1 in the ovary and prostate
cancer. In basal and TNBC subtypes, we found that <10% of the
patients harbour same alterations in NF1, BRCA1, BRCA2 and ATM
genes that are classified as level 1 alterations in other cancers.
Among all breast cancer subtypes, very few cases (<10%) had
mutations in BRCA1, BRCA2, ERBB2, AKT1, ESR1, KRAS, MAP2K1,
ATM, PALB2, NF1, CDKN2A and FGFR2 genes that were annotated
as levels 2–4 (Fig. 2b). According to the OncoKB classification, ESR1
oncogenic mutations are classified as level 3A in breast cancer
[20]. Three missense ESR1 mutations (E380Q, Y537S and D538G)
are ranked tier IIA in breast cancer according to ESMO
classification. Both of these tools provide consistent variant
annotations based on their levels of clinical and/or experimental
evidence. Patients with ESR1 mutations gain less benefit from
aromatase inhibitor therapy but are predicted to benefit from
fulvestrant [31]. We also observed a significant association of gene
expression levels with mutations in 13/49 genes in mutated breast
cancer cases compared with wild-type cases (Fig. 2c).
Taken together, these results revealed that TP53 (34%) and

PIK3CA (35%) were the most frequently mutated genes in primary
breast cancer patients. PIK3CA mutations were enriched in ILC and
luminal tumours, especially LumA subtype. In addition, >30% of
the primary breast tumours in ILC, IDC, LumA and LumB
harboured potentially actionable mutations. A total of nine genes
(PIK3CA, AKT1, PIK3CB, NF1, RPTOR, TP53, GATA3, FGFR2 and BRCA2)
formed mutually exclusive pairs (group of genes that are
genetically altered, tend not to occur in the same patient and
are less common than is expected by random chance). Prolifera-
tion, stem cell signalling and mismatch repair targets were
frequently co-altered across breast cancer subtypes. The

landscape of somatic mutations affecting potentially actionable
genes varied markedly between different breast cancer subtypes,
revealing genetic heterogeneity between individuals.

Detection of breast cancer-associated CNAs in actionable
genes
The genome-wide landscape of CNAs indicates widespread
alterations across different breast cancer subtypes (Fig. 3a).
Consistent with previous studies [32–34], our analysis confirmed
high-level amplifications (>50%) in chromosome 1q and 8q as well
as deletions (>50%) in 8p, 16q and 17p in breast cancer patients
irrespective of intrinsic subtypes. We identified subtype-specific
CNAs such as amplification at 10p and deletions at 5q, 14q and
15p in basal and TNBC subtypes, 16p amplification in LumA, 16p,
17q, 20q amplification in LumB, and 17q in HER2-enriched
subtypes (Fig. 3a).
To identify the most clinically relevant alterations in breast

cancer subtypes, we focused on identifying CNAs in our list of 49
potentially actionable genes [15]. GISTIC analysis identified 17 loci
with amplifications and 30 loci affected by deletions in breast
cancer subtypes that were statistically significant (Fig. 3b and
Supplementary Table S3). Significant copy number amplification in
ESR1 and NF1 (q= 0.0001) was identified only in IDC patients.
Similarly, JAK2 was significantly amplified only in IDC (q= 0.02)
and basal (q= 0.03). Significant copy number deletions were
identified in the tumour suppressor gene RB1 in IDC (q= 0.0001)
and basal subtype (q= 0.01). Only IDC patients had significant
copy number deletions in proliferative signalling targets (CDKN2A,
CDKN2B and TP53). PIK3CA was most commonly altered in all
6 subtypes except ILC. Overall, we identified 28 actionable genes
that were amplified and 4 genes deleted across the TCGA breast
cancer dataset (Supplementary Table S3). A significant association
of CNAs with RNA expression was observed in 34/49 actionable
genes (Table 2).
These results indicate that copy number amplifications and

deletions do not occur randomly but instead arise at specific
genomic regions potentially affecting dosage of gene(s) and may
confer a growth advantage to tumour cells in breast cancer. The
subset of these alterations would result in the specific therapeutic
vulnerabilities of these subtypes. Although breast cancer is
complex and highly heterogeneous at the genomic level, these
results highlight subtype-selective dependencies that can poten-
tially guide treatment strategies for patients harbouring these
actionable alterations.

Transcriptomic profiling of actionable genes
We next analysed and compared the transcriptomes of actionable
genes in seven breast cancer subtypes. We considered candidate
genes with a z score ≥2 or ≤−2 to be significantly expressed. The
transcriptional landscape of actionable genes in seven breast
cancer subtypes is presented in Supplementary Fig. S2. We found
significantly upregulated expression of GRB7 a common target for
IDC (P= 0.001) and HER2-enriched (P-1E-5) tumours. ERBB2 was
overexpressed in these two subtypes. We also identified many

Fig. 1 Overview of mutations in potentially actionable genes in the TCGA dataset across various subtypes of breast cancer. a Bar graph
maps depicting the percentage of cases with mutations in actionable genes in different breast cancer subtypes. The Kruskal–Wallis test was
applied to identify the differences in mutation frequencies. b Violin plot showing the distribution of variant allele fractions (VAFs) in hotspot
mutations in breast cancer subtypes (Kruskal–Wallis test, P < 0.05). c Top panel: Oncoplot showing the ten most frequently mutated genes
colour-coded by type of mutations in breast cancer subtypes. The percentage to the right of the oncoplot shows the percent of samples with
variants for the corresponding gene. The x axis showed the total number of samples mutated and the y axis showed the frequently mutated
genes. By default, samples are ordered by the most frequently mutated genes. Bottom panel: Distribution of base substitutions in seven
breast cancer subtypes revealed a signature characterised predominantly by C>T transition substitutions. The percent mutations are shown
on the x axis and substitution mutation types are on the y axis. d Mutation landscape in breast cancer subtypes with different types of
mutations in each actionable gene. The right panel shows the percentage of cases with mutations in each actionable gene across breast
cancer subtypes. OncodriveFM analysis identifies the drivers by computing the mutation rate of each gene in each subtype and is significantly
greater than the background. Significant differences (P < 0.05) are shown in red.
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Fig. 3 Overview of CNAs in potentially actionable genes in the TCGA dataset across various subtypes of breast cancer. a Genome-wide
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Table 2. Significant association of CNAs with RNA expression in actionable genes in breast cancer subtypes.

Breast cancer
subtypes

Gene Copy
number event

Mean gene
expression (z score)

P value
(Mann–Whitney test)

q value

ILC BRCA1 Amplification 2.8 0.0001 0.0002

CCND1 Amplification 3.4 0.0001 0.0002

ERBB2 Amplification 11.9 0.0001 0.0002

FGFR1 Amplification 3.8 0.001 0.002

GRB7 Amplification 7.2 0.0001 0.0002

RB1 Deletion −2 0.002 0.002

IDC AKT1 Amplification 4.6 0.0001 0.000005

AR Amplification 2.6 0.001 0.0001

AR Deletion −1 0.02 0.0007

ATM Deletion −1.3 0.001 0.0001

BRAF Amplification 3.2 0.04 0.001

BRCA1 Amplification 2.3 0.006 0.0002

CCND1 Amplification 3.3 0.0001 0.000005

CCND3 Amplification 2.8 0.0001 0.000005

CCNE1 Amplification 8.8 0.0001 0.000005

CD274 Amplification 0.6 0.03 0.001

CDK4 Amplification 8.1 0.0001 0.000005

CDKN2A Amplification −0.4 0.01 0.0006

CDKN2A Deletion 3.9 0.0001 0.000005

CDKN2B Amplification 0.3 0.02 0.0008

CDKN2B Deletion −0.6 0.0001 0.000005

EGFR Amplification 1.5 0.04 0.001

ERBB2 Amplification 27.2 0.0001 0.000005

ERBB3 Amplification 3.8 0.0001 0.000005

FBXW7 Amplification 0.6 0.04 0.001

FGFR1 Amplification 3.3 0.0001 0.000005

FGFR2 Amplification 30.5 0.0001 0.000005

GATA3 Amplification −1.3 0.0001 0.000005

GRB7 Amplification 20.6 0.0001 0.000005

KRAS Amplification 3 0.0001 0.000005

MAP2K1 Amplification 3.6 0.001 0.00005

MET Amplification 1.1 0.05 0.001

NF1 Amplification 2.8 0.0001 0.000005

NOTCH1 Amplification 4.8 0.003 0.0001

PALB2 Amplification 2.1 0.0001 0.000005

PIK3CA Amplification 5 0.0001 0.000005

PIK3CB Amplification 1.7 0.006 0.0002

RB1 Amplification −2.3 0.0005 0.00002

RB1 Deletion −1.9 0.0001 0.000005

RPTOR Amplification 3.4 0.0001 0.000005

TP53 Deletion −1.4 0.001 0.0001

LumA CCND1 Amplification 3.9 0.0001 0.0002

CDK4 Amplification 4.6 0.0008 0.001

ERBB2 Amplification 13.5 0.0001 0.0002

FGFR1 Amplification 4.4 0.0001 0.0002

FGFR2 Amplification 48 0.03 0.04

GRB7 Amplification 8.8 0.0001 0.0002

NF1 Amplification 1.3 0.03 0.04

PALB2 Amplification 1.9 0.0001 0.0002
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Table 2 continued

PIK3CA Amplification 2.1 0.0006 0.001

PIK3CB Amplification 2.6 0.01 0.02

RPTOR Amplification 2.7 0.0001 0.0002

TP53 Deletion −1.7 0.007 0.01

LumB AKT1 Amplification 2.9 0.0011 0.002

AR Amplification 4.6 0.0008 0.002

ATM Deletion −1.4 0.009 0.01

BRCA1 Amplification 5.3 0.003 0.004

BRCA1 Deletion −1.1 0.003 0.004

BRCA2 Deletion −0.6 0.01 0.02

CCND1 Amplification 3.9 0.0001 0.0004

CCND3 Amplification 5.5 0.0005 0.001

CCNE1 Amplification 17.9 0.001 0.002

CD274 Amplification 1.9 0.02 0.03

CDK4 Amplification 11.5 0.0006 0.002

ERBB2 Amplification 26.8 0.0001 0.0004

ERBB3 Amplification 3.8 0.003 0.004

FGFR1 Amplification 4.1 0.0001 0.0004

FGFR2 Amplification 2.1 0.05 0.05

GRB7 Amplification 16.2 0.0001 0.0004

KRAS Amplification 4.2 0.0005 0.001

PALB2 Amplification 3.2 0.002 0.003

PIK3CA Amplification 1.1 0.03 0.04

RB1 Deletion −2 0.0002 0.0007

RPTOR Amplification 5.6 0.0001 0.0004

HER2
enriched

AR Amplification 3 0.007 0.01

CCND1 Amplification 1 0.001 0.003

CXCL9 Amplification 3.7 0.04 0.04

ERBB2 Amplification 35.7 0.0001 0.0005

FGFR1 Amplification 1.5 0.008 0.01

GRB7 Amplification 28.5 0.0001 0.0005

KRAS Amplification 4.2 0.003 0.007

MAP2K1 Amplification 3.4 0.02 0.03

NF1 Amplification 5.8 0.03 0.03

RB1 Deletion −1.8 0.03 0.03

Basal CCND3 Amplification 1.6 0.007 0.009

CCNE1 Amplification 7.6 0.0001 0.000

CDKN2A Deletion −0.4 0.0001 0.0004

CDKN2B Deletion −0.7 0.0001 0.0004

ERBB2 Amplification 10.7 0.006 0.009

FGFR2 Amplification 41.1 0.003 0.006

GATA3 Amplification −1.4 0.03 0.04

GRB7 Amplification 17.6 0.04 0.04

PIK3CA Amplification 10.6 0.001 0.003

KRAS Amplification 2.9 0.0005 0.001

RB1 Amplification −2.3 0.02 0.03

RB1 Deletion −2.1 0.0003 0.001

RPTOR Amplification 2.7 0.0001 0.0004

TNBC CCND1 Amplification 0.9 0.005 0.01

CCND3 Amplification 1.9 0.008 0.02

CCNE1 Amplification 5.8 0.04 0.04
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genes that can distinguish breast cancer subtypes based on RNA
expression of actionable genes. For example, cell cycle signalling
target (CCNE1 (P= 0.00009)) characterises the basal subtype.
Likewise, proliferative signalling targets (EGFR (P < 0.00001)), cell
cycle signalling targets (CCNE1 (P= 0.005) and stem cell signalling
target (MET(P= 0.006)) characterise TNBCs.

Pathway analysis
We performed IPA analysis to identify the pathways that were
altered by gene mutations in each breast cancer subtype. We
identified 281 signalling pathways in IDC, 253 in HER2 enriched,
246 in LumA, 243 in basal, 242 in TNBC, 236 in LumB and 221 in
ILC that have a −log(P value) greater than 1.3. Of note, we found
298 overlapping pathways in all 7 breast cancer subtypes primarily
involved in DNA damage repair pathway, ERBB signalling,
hereditary breast cancer signalling, immunoregulatory pathways,
NOTCH signalling, PIK3/AKT signalling and several others. The top
15 signalling pathways in each subtype are presented in Fig. 4.
The Fisher’s exact test was used to identify significant pathways (P
< 0.05).

DISCUSSION
The emerging field of precision oncology implies that compre-
hensive tumour profiling is required for the identification of
actionable alterations for targeted therapy. The FDA-approved
FoundationOne assay, MSK-IMPACT actionable gene panel and
Caris comprehensive tumour profiling offer a targeted approach
for the identification of actionable alterations. However, the major
challenge remains in the identification of truly actionable variants,
particularly when there is variation in their methodology,
sequencing platforms and data analysis pipelines. Moreover, this
variation also creates an additional level of complexity for
clinicians for diagnosis and/or guiding treatment. Recently,
Tsimberidou and Kurzrock [35] pointed out serious weaknesses
in the SHIVA trial by stating that monotherapies given to patients
with advanced cancer are less effective than combinations of
drugs. Thus, a deeper understanding of the detailed mechanism
and co-occurrence of these actionable alterations is critical for the
rational development of new therapeutic approaches that can
improve patient care.
In this study, our approach is primarily based on three steps: (1)

reducing the genomic complexity by selecting alterations of clinical
relevance; (2) to identify which actionable alterations are associated
with gene expression and if this association varies by breast cancer
subtype and (3) to identify biological networks affected by these

alterations by deciphering the mutations, copy number and gene
expression status of potentially actionable genes. We applied this
framework to analyse the TCGA breast cancer dataset to perform a
comprehensive characterisation of 49 potentially clinically actionable
targets relevant to breast cancer treatment [15]. The analysis
revealed similarities and differences in frequencies of alteration of
actionable genes in seven breast cancer subtypes. More generally,
we identified that there are relatively few genes that are associated
with high-frequency mutations in comparison to CNAs. In our
analysis, the nine most frequently altered genes correlated with five
key pathways of tumorigenesis: mTOR pathway (PIK3CA, AKT1 and
NF1), immune checkpoints (GATA3), oestrogen signalling (ESR1),
tumour suppressor activators (TP53, RB1) and PARP (ATM, BRCA2).
Both of the TCGA and METABRIC studies have also shown that CNAs
are the dominant feature in breast cancer [10, 14]. The first notable
finding in our study is that CNAs in actionable genes 34/49 (69%) in
the TCGA dataset displayed a significant association with gene
expression. For all seven breast cancer subtypes, we found variability
in the frequencies of amplifications and deletions in actionable
genes. Copy number amplifications were strikingly more common
than deletions in proliferative, cell cycle, stem cell, and mismatch
repair target genes in all breast cancer subtypes. This indicated that
amplification events could be the principal mechanism for the
deregulated gene expression in breast cancer. Interestingly, we also
identified some actionable genes such as GRB7, CCND1, FGFR1, AKT3,
RPTOR, ERBB2 and PALB2 whose expression level is tightly controlled
by copy number amplification only (Table 2), not by mutations, in
breast cancer subtypes. These results suggest that the majority of
the breast cancer genetic drivers are, in fact, the result of CNAs and
that perturbations of these actionable genes with altered expression
levels could therefore be potential therapeutic targets. These
findings provide a strong rationale for exploring copy number
changes for potentially actionable genes that are linked to FDA-
approved or investigational therapeutics.
Another notable finding in this study is that mutations in 13/49

(26%) genes were significantly associated with gene expression
(Fig. 2c), indicating that not all mutations are expressed and
actionable. Furthermore, 17/49 (35%) genes from our actionable
gene list were found to be significantly mutated in a significant
proportion of early-stage breast cancer patients (Supplementary
Table S1). These 17 genes are predicted to be the targets of drug
inhibitors including mTOR, RAS, CDKs, NOTCH, immune check-
points, oestrogen receptor and PARP. Consistent with the TCGA
study [14], we found that only three of these driver genes were
altered in ≥20% of cases (PIK3CA in ILC, IDC, LumA, LumB and
basal; TP53 in IDC, LumB, HER2 enriched, basal and TNBC; GATA3 in

Table 2 continued

CDKN2A Amplification 7.5 0.02 0.03

CDKN2A Deletion −0.4 0.001 0.01

CDKN2B Deletion −0.7 0.0001 0.001

EGFR Amplification 63.8 0.02 0.03

ESR1 Amplification −1 0.03 0.04

FBXW7 Deletion −0.4 0.04 0.04

FGFR2 Amplification 22 0.004 0.01

KRAS Amplification 4.6 0.001 0.006

MET Amplification 55.5 0.03 0.04

NF1 Deletion −2.5 0.008 0.02

PIK3CA Amplification 2.3 0.03 0.04

RB1 Amplification −2.3 0.008 0.02

RB1 Deletion −2.2 0.002 0.006

RPTOR Amplification 2.9 0.0001 0.001
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Fig. 4 Pathway analysis of clinically actionable genes in each breast cancer subtype. Bar chart showing the enriched canonical pathways
related to actionable genes in each subtype. The y axis on the left shows the percentage of genes overlapping in each pathway having
pathogenic (pink) and likely pathogenic (blue) variants. The y axis on the right shows the significance level. The number on the top of each
stacked bar indicates the total number of genes present in each pathway. The orange line represents the threshold value (0.05) for the
significance level for −log(P value). The graph is displaying only those entities that have a −log (P value) greater than 1.3.
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LumA). Other actionable genes were altered in 0–20% of breast
cancer cases. Importantly, we found that only basal subtype (≥2%
of cases) had mutations in 21/49 actionable genes. These results
suggest high variability of mutations in clinically actionable genes
and a lack of recognisable subtype-specific pattern of genomic
alterations, thus reflecting substantial heterogeneity.
Mutually exclusive or co-occurring alterations have been

frequently observed within several tumour types [11, 36–40].
The co-occurrence of genomic alterations contributes to the
heterogeneity of oncogenic drivers [41] and can generate
vulnerabilities that confer therapeutic resistance [42]. Our third
notable finding is that we identified a complex interplay of co-
occurring and mutually exclusive actionable alterations between
individual tumours and within each subtype, representing
attractive candidate targets for combination therapies. We found
a high prevalence of significant co-occurrence alterations and
many mutually exclusive alterations within proliferative signalling,
cell cycle, immunoregulatory, and mismatch repair targets. For
instance, TP53 mutations were found to be mutually exclusive
with mutations affecting GATA3, BRCA2, RPTOR, NF1 and PIK3CA in
more than one breast cancer subtype. BRCA2 and TP53 mutations
were mutually exclusive in HER2-enriched, basal and TNBC
tumours. These results suggest that one alteration is sufficient to
perturb the activity of the pathway associated with these genes.
Our correlation analysis suggested that both genetic alterations

and RNA expression are important in predicting actionability even
if they may not be associated with each other. Several ongoing
trials are evaluating the synthetic lethality of PARP inhibitors with
DNA-damaging agents (e.g., platinum-based therapies) in BRCA-
mutated tumours, few have translated to clinical success (https://
clinicaltrials.gov/ct2/show/NCT02000622?term=nct02000622&
rank=1; https://clinicaltrials.gov/ct2/show/NCT02032823?term=n
ct02032823&rank=1; https://clinicaltrials.gov/ct2/show/NCT0216
3694?term=nct02163694&rank=1; https://clinicaltrials.gov/ct2/
show/NCT02032277?term=nct02032277&rank=1) [43–45]. There-
fore, targeting the co-occurrence of mutual exclusive alterations
might be more effective in eliminating cancer cell population
[46, 47]. We identified many alterations among mutually exclusive
or co-occurrence pairs, such as TP53, which are still under
investigation as potential therapies (levels 3 or 4).
Pathway analysis showed alterations in many breast cancer-

related pathways such as hereditary breast cancer signalling,
HER2 signalling, TP53, PI3K/AKT and cell cycle regulation. We also
observed co-occurrence patterns in these genes indicating a
potential for combinational therapies in these breast cancer
subtypes. Many preclinical studies have shown that PIK3CA
mutations are the possible cause for therapeutic resistance in
HER2-positive breast cancer patients [48]. There is increasing
preclinical evidence indicating that the therapeutic effects of
certain drug combinations are superior to standard care and
monotherapy [49]. As an example, promising results were present
by the combination of PI3K inhibitors and HER2 inhibitors in HER2-
positive/PIK3CA mutant breast cancer [50].
There are several limitations to our approach. We focused on a

curated list of highly relevant genes that has no claim on being
complete. Few of these 49 biomarkers/drug targets are currently
available for clinical use outside of early phase clinical trials and are
usually reserved for metastatic breast cancer. Some exceptions to
this are HER2 (trastuzumab, neratinib, T-DM1, pertuzumab). For
hormone receptor-positive, HER2-negative disease, endocrine-based
therapy is a nice example of how utilising combination therapy to
target multiple pathways results in improved clinical outcomes. For
example, patients with an identified PIK3CA mutation are eligible to
receive fulvestrant (an oestrogen receptor degrader) in combination
with alpelisib (a PIK3CA targeted agent) [51]. Similarly, many patients
receive combination aromatase inhibitor with CDK4/6 inhibitors in
the metastatic setting. Alterations in the ESR1 gene have been
shown to predict resistance to aromatase inhibitors but the benefit

to fulvestrant [31]. Furthermore, sample size varies between different
breast cancer subtypes in the TCGA dataset (51–490) potentially
skewing the analysis in favour of larger sample groups. The current
analysis requires further exploration of certain actionable alterations
that occur at very low frequencies. In addition, the selection of
candidate functional events depends on the integrative analysis of
mutation, CNAs, gene expression and protein translation which has
not been addressed in this analysis in a systems biology approach.
The current landscape of precision medicine is characterised by

the availability of many targeted agents [52], yet very little is
known about potentially actionable therapeutic targets in
different subtypes of breast cancer. Other databases also provide
insight into specific potentially actionable molecular alteration—
although, these have varying degrees of curation. Thus, more
caution should be exercised when interpreting these genetic
alterations. There is some functional evidence where these
inhibitors seem to be effective in in vivo models, but the final
picture seems to be complex as these agents are often not
successful in clinical trials [53–55].
Through integrated genomic analysis, we have identified

clinically relevant genomic alterations across 49 genes in different
subtypes of breast cancer using one of the largest genomic
datasets. A key contribution of our study is that our results expand
the search for potentially targetable alterations combining
transcriptomic and genomic data that goes beyond a single-
gene approach by analysing co-occurrence gene-interaction
network that could also help for the identification of effective
personalised cancer treatment. Our strategy is also based on
identifying the molecular pathways affected by clinically relevant
alterations in breast cancer subtypes. Breast cancer clinical trials
have frequently shown that rational drug combination regimens
are more effective than monotherapy. Our results highlight an
opportunity to enhance single-agent therapeutic strategies
currently under investigation in clinical trials, as patients may
have more than one driver mutation or CNA. Such information, if
appropriately implemented, could help in the design of rational
clinical trials and eventually more effective therapies.
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