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Predicting the clinical outcome of oral potentially malignant
disorders using transcriptomic-based molecular pathology
Hans Prakash Sathasivam1,2, Ralf Kist 1,3, Philip Sloan1,4, Peter Thomson5, Michael Nugent6, John Alexander 7, Syed Haider 7 and
Max Robinson 1,4

BACKGROUND: This study was undertaken to develop and validate a gene expression signature that characterises oral potentially
malignant disorders (OPMD) with a high risk of undergoing malignant transformation.
METHODS: Patients with oral epithelial dysplasia at one hospital were selected as the ‘training set’ (n= 56) whilst those at another
hospital were selected for the ‘test set’ (n= 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic
biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral
carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as
well as prognostic modelling, were employed to develop and validate the gene signature.
RESULTS: A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model
was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant
transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio= 12.65, p= 0.0003].
CONCLUSIONS: This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when
analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant
transformation with promising clinical utility.
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BACKGROUND
Oral squamous cell carcinoma (OSCC) has a high rate of morbidity
and mortality worldwide.1–5 Around 30–50% of patients with
OSCC die from the disease within 5 years and survival rates have
not improved over many decades.2,5 Such adverse outcomes have
mostly been attributed to late presentation of the disease, as early
stage disease can be cured with effective treatment.1,2,6 Early
detection of OSCC is feasible as they are usually preceded by
clinically identifiable lesions termed ‘oral potentially malignant
disorders’ (OPMD).1,2,7,8

OPMD are defined as clinical disorders having an increased risk
of developing OSCC compared to clinically ‘normal’ oral mucosa.1,7

The majority of OPMD do not transform to cancer, consequently
the challenge is identifying those lesions that are most likely to
undergo malignant transformation.9–12

Clinical and histopathological features, though informative, are
not very accurate in predicting the clinical behaviour of these
lesions.13 Nevertheless, currently the presence and grade of oral
epithelial dysplaisa (OED) is considered to be the most useful
indicator of malignant transformation in OPMD and provides the
basis for patient stratification endorsed by the World Health

Organisation.1 A systematic review and meta-analysis indicates
that excision of oral dysplastic lesions reduces the risk of
malignant transformation by ~3-fold.11 Generally severe epithelial
dysplasia or high-grade epithelial dysplasia is treated empirically
by surgical excision;14–16 however, it is not clear how patient
outcomes can be improved across all grades of dysplasia and
those patients with non-dysplastic OPMD. Currently, it is unknown
whether all OPMD should be excised or if only certain lesions
benefit from a surgical intervention.
Numerous studies have assessed the prognostic ability of

various biomarkers in OPMD; however, no molecular test has
proved to be particularly useful in clinical practice.17–23 Discover-
ing a molecular signature that is altered in OPMD and indicative of
the progression to oral cancer could facilitate personalised
management protocols for individual patients.
Contemporary gene expression profiling is being used to

develop prognostic and predictive gene signatures in various
cancers, including head and neck cancers.24,25 A study by
Saintigny et al. (2011) proposed a gene expression-based
prediction model for OPMD that showed superior prognostic
accuracy when compared to models using clinico-pathological risk
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factors alone.26 However, the patients in their study were enrolled
in a clinical trial in which some patients received active
intervention in the form of drugs that may have influenced
clinical outcome and gene expression.26 Furthermore, the findings
of their study have yet to be validated.
Whilst formalin-fixed paraffin-embedded (FFPE) tissue is an

invaluable resource linked to longitudinal disease-related out-
come; it is often not possible to extract adequate amounts of high-
quality nucleic acid for downstream analysis. A novel gene
expression profiling system that relies on direct measurement of
transcripts using colour-coded oligonucleotide probes producing
molecular barcodes, the NanoString nCounter platform (Nano-
String Technologies, Seattle, USA), has been able to provide
accurate gene expression data using RNA obtained from FFPE
material.27,28 Recent studies have shown that mRNA expression
analysis using the NanoString platform were equivalent to that
achieved through quantitative real-time polymerase chain reac-
tion (qPCR) and possibly superior to microarrays.27–31 Further-
more, the Prosigna™ breast cancer prognostic gene-signature
assay is based on Nanostring technology and is approved by the
US Food and Drug Administration and recommended by UK
National Institute for Health and Care Excellence. The test is used
to guide adjuvant chemotherapy decisions for women with
oestrogen receptor positive, human epidermal growth factor
receptor 2-negative and lymph node-negative early breast cancer.
Despite the global health burden and relatively poor prognosis

associated with OSCC, a robust prognostic biomarker or prog-
nostic model for predicting malignant transformation in OPMD
has yet to be developed and validated. This study was undertaken
to discover and then validate a transcriptomic-signature that
identifies OPMD with a high risk of undergoing malignant
transformation using FFPE-derived RNA analysed on the Nano-
String nCounter platform.

METHODS
Inclusion and exclusion criteria
Consecutive OPMD cases were identified from a database at
Newcastle University. Cases with any one of the following
characteristics were excluded: (i) patients with hereditary condi-
tions that are linked to an increased risk of head and neck SCC
(such as ataxia telangiectasia, xeroderma pigmentosum, Fanconi
anaemia); (ii) history of head and neck cancer; (iii) history of
radiotherapy to the head and neck region; (iv) patients that were
diagnosed as having chronic hyperplastic candidosis/chronic
candidosis.
OPMD were classified as having undergone malignant trans-

formation (MT) when there was progression from an OPMD to
OSCC after a period of 6 months or more from the time of initial
diagnosis. Those patients with OPMD who were recorded as not
having developed OSCC at their last known follow-up appoint-
ment were classified as non-transforming (NT) cases with the
caveat that the patients were followed up for at least 12 months
after diagnosis. All cases were assessed for high-risk human
papillomavirus (HR-HPV), and positive cases were excluded from
the study.

Patients
Patients were selected from a database containing patients from
two different hospitals: (i) Newcastle upon Tyne Hospitals NHS
Foundation Trust and; (ii) City Hospitals Sunderland NHS Founda-
tion Trust. Patients from Newcastle Hospitals were selected as the
‘training set’ while patients from Sunderland Hospitals were
selected for the ‘test set’.

Clinico-pathological data
Demographic and clinico-pathological features as well as outcome
data were recorded for all cases. The following data points were

collected and entered into a Microsoft Excel spreadsheet: (i) age at
first diagnosis of OPMD: (ii) sex: (iii) clinical diagnosis of lesion: (iv)
clinical outcome of OPMD: (v) date of malignant transformation or
last follow-up: (vi) World Health Organization (WHO) 2017 OED
grading: (vii) binary OED grading.
OED grading was performed following a modified three-tier

system adapted from the work published by Speight et al.32 The
cases were graded using two different classification systems: (i)
WHO 2017 (mild, moderate or severe):1 binary (low-grade or high
grade).1,33 All data were coded, link-anonymised and stored in
password protected computer files.

RNA extraction
Ten-micrometres sections were cut from the FFPE blocks and
placed in 2 ml microcentrifuge tubes after discarding the first
two sections. Whole sections that included both epithelium and
underlying connective tissue were used. The number of sections
per sample was dependent on the size of the FFPE tissue; as a
guide four sections were taken for small samples (<5 mm of
epithelium), three for medium samples (5–10 mm) and two for
larger samples (>10 mm). If the amount of RNA extracted was
not sufficient, RNA extraction was repeated using an increased
number of sections. RNA extraction was performed using the
RNeasy® FFPE kit (QIAGEN, Manchester, UK) according to the
manufacturer’s protocol. FFPE blocks were sectioned immedi-
ately before RNA extraction. The concentration and the
quality of the isolated RNA were measured using a NanoDrop
2000 Spectrophotometer (Thermo Fisher Scientific,Swindon,
UK). RNA was diluted to 150 ng/μL, aliquoted and stored in a
−80 °C freezer prior to NanoString assay. RNA with a 260/280
ratio of 1.7–2.3 as well as a 260/230 ratio in the range of 1.8–2.3
were considered to be of acceptable quality for
downstream assays.34 RNA content for all samples was normal-
ised to 30 ng/μl, and 150 ng of total RNA per sample was used
for the assay.

NanoString nCounter customised panel
A list of target genes for the NanoString nCounter Customised
Panel (42 genes; 38 target and 4 housekeeping genes) was
compiled based on the results of previous experiments: a whole-
transcriptome analysis with total RNA sequencing (RNA-Seq),35

results of previous differential gene expression work performed by
our group and review of published literature. The selection of
candidate genes was discussed and finalised through consensus
by the authors; the gene list is shown in Supplementary Table 1.
Housekeeping/internal reference genes were selected on the basis
of low variation and even coverage across samples.36–39

NanoString nCounter hybridisation
The NanoString nCounter platform uses hybridisation of short
length probes (35- to 50-base sequence) that are subsequently
fixed to a biotin-coated cartridge, which is then digitally imaged
and counted to quantify mRNA expression. In-depth
details regarding NanoString technology can be obtained from
Geiss et al.27 NanoString assay was carried out at the Newcastle
NanoString Unit, Newcastle University using the nCounter MAX/
FLEX system (NanoString Technologies, Seattle, Washington, USA).
Each assay comes with engineered External RNA Controls
Consortium (ERCC) synthetic internal negative and positive control
probes. The summarised laboratory workflow for the Customised
CodeSet Panel gene expression assay according to the manufac-
turer’s protocol is outlined in the Supplementary Methods.34

Normalisation of data and development of prognostic gene
signature
Nanostring profiling of codeset was pre-processed using R
package NanoStringNorm version 1.2.1. Data were assessed for
batch effects using R package FactoMineR version 1.39. Data were
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normalised using grid search over parameter space as detailed
previously,40 resulting in the choice of parameters: ‘geometric
mean’ of positive controls, ‘mean’ of negative controls and
‘geometric mean’ of top genes, and finally log2 transformed.
Genes with zero counts in >50% samples were removed from
subsequent analyses. This resulted in the removal of genes:
CDKN2A, MMP1, DSPP, CERS1 and IBSP. All visualisations were
generated in R statistical environment version 3.6.1.

Statistical analysis and multivariable prognostic/survival modelling
Statistical analysis and prognostic model building were performed
using IBM-SPSS for Windows (version 24, IBM-SPSS Inc., Chicago,
Illinois, USA) and the R statistical environment version 3.6.1 (R
Foundation for Statistical Computing, Vienna, Austria). Continuous
data were always assessed for normality of distribution prior to
choosing appropriate statistical tests. Parametric and non-
parametric tests were used for initial analysis of demographic,
clinical, pathological and molecular variables. For continuous data,
descriptive results were appropriately expressed as either median
with interquartile range (IQR) or mean with standard deviation
(SD). For cross tabulations and Chi-squared tests, exact p-values
were calculated where possible.
The Newcastle cohort was used as the training set, while the

Sunderland cohort was used as a held-out test set. mRNA
abundance data for genes was transformed to z-scores. A
multivariable generalised linear model with L1-penalty was fitted
in cross-validation (four-fold) settings to identify features pre-
dictive of patient outcome. This process was repeated 100 times
to select optimal lambda minimising cross-validation error. The
final model was used to predict risk scores in the test set and
predicted risk scores were dichotomised into risk groups (using
median risk score from the training set). These risk groups were
tested for association with patient outcome using Cox propor-
tional hazards model. Survival modelling was performed using R
packages survival version 3.1–12 and glmnet version 4.0. All
visualisations were generated in R statistical environment version
3.6.1. Survival model was adjusted for age, sex, site, OED grade
and type of OPMD.
All statistical tests were two-sided and results were considered

statistically significant at p < 0.05 value unless stated otherwise.

RESULTS
Of the cases that fulfilled the selection criteria, 134 cases were
considered to have sufficient tissue for RNA extraction. The
majority of cases (91%, 122 of 134) yielded RNA of suitable quality
and quantity for the NanoString assay. All cases were successfully
analysed using this assay, and the raw data generated passed the
relevant quality control parameters. The training set (n= 56) was
comprised of 20 cases of OPMD that underwent malignant
transformation (MT) and 36 cases that were non-transforming
(NT). The clinico-pathological features of the training set are
shown in Table 1. The test set (n= 66) was made up of 23 MT and
43 NT cases. The clinico-pathological features of the test set are
shown in Table 2. All the OPMD in the study had oral epithelial
dysplasia. Kaplan–Meier time to event analyses (time to malignant
transformation) for low- and high-grade epithelial dysplasia are
shown in Supplementary Fig. 1 for both the training and the test
sets. An accompanying swimmer plot of the timing of individual
events and censor dates are presented in Supplementary Fig. 2.
Following pre-processing and normalisation of the NanoString

gene expression data (Materials and Methods), univariable
prognostic association of genes in the training and test sets was
assessed. Of the 33 genes, eight were prognostic in the
training set (Wald p < 0.05; Supplementary Table 2) and five
were prognostic in the test set (Wald p < 0.05; Supplementary
Table 3). Three genes (NOTCH1, CD274 and ITGB8) were
prognostic in both sets and also demonstrated consistency in

Table 1. Clinico-pathological features of training set (n= 56).

Variable Non-transforming
(NT) n= 36

Malignant
transformation
(MT) n= 20

p-value

Age at diagnosis (years)
Mean (SD)

58.5 (14.26) 61.3 (12.58) 0.462a

Time to last follow-up/MT
(months)

128.5 28.5 <0.001b

Median (IQR) (IQR= 110) (IQR= 48)

Sex

Male 22 (61.1%) 13 (65.0%) 1c

Female 14 (38.9%) 7 (35.0%)

OPMD

Leukoplakia 29 (80.6%) 16 (80.0%) 0.973d

Erythroleukoplakia 4 (11.1%) 2 (10.0%)

Erythroplakia 3 (8.3%) 2 (10.0%)

Site

Tongue 12 (33.3%) 6 (30.0%) 0.341d

Floor of mouth 16 (44.4%) 6 (30.0%)

Others 8 (22.3%) 8 (40.0%)

WHO

Mild 21 (58.3%) 8 (40.0%) 0.015d

Moderate 11 (30.6%) 3 (15.0%)

Severe 4 (11.1%) 9 (45.0%)

Binary

Low grade 31 (86.1%) 8 (40.0%) 0.001d

High grade 5 (13.9%) 12 (60.0%)

Bold values indicate statistical significance.
SD Standard deviation, IQR Interquartile range.
aIndependent samples t-test.
bMann–Whitney U test.
cFisher’s Exact test.
dPearson’s Chi-square test.

Table 2. Clinico-pathological features of test set (n= 66).

Variable Non-transforming (NT)
n= 43

Malignant
transformation (MT)
n= 23

p-value

Age at diagnosis (years)
Mean (SD)

56.2 (12.31) 62.2 (11.6) 0.058a

Time to last follow-up/MT
(months)

101 32 <0.001b

Median (IQR) (IQR= 95) (IQR= 47)

Sex

Male 27 (62.8%) 13 (56.5%) 0.792c

Female 16 (37.2%) 10 (43.5%)

OPMID

Leukoplakia 37 (86.0%) 17 (73.9%) 0.053d

Erythroleukoplakia 6 (14.0%) 3 (13.0%)

Erythroplakia 0 (0%) 3 (13.0%)

Site

Tongue 14 (32.6%) 12 (52.2%) 0.245d

Floor of mouth 14 (32.6%) 4 (17.4%)

Others 15 (34.8%) 7 (30.4%)

WHO

Mild 36 (83.7%) 9 (39.1%) <0.001d

Moderate 5 (11.6%) 6 (26.1%)

Severe 2 (4.7%) 8 (34.8%)

Binary

Low grade 39 (90.7%) 12 (52.2%) 0.001d

High grade 4 (9.3%) 11 (47.8%)

Bold values indicate statistical significance.
SD Standard deviation, IQR Interquartile range.
aIndependent samples t-test.
bMann–Whitney U test.
cFisher’s Exact test.
dPearson’s Chi-square test.
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the direction of the estimated hazard ratio (Training set: NOTCH1
HR= 0.26 and p= 0.009, CD274 HR= 2.76 and p= 0.032, ITGB8
HR= 3.04 and p= 0.023; Test set: NOTCH1 HR= 0.19 and p=
6.7 × 10−4, CD274 HR= 4.81 and p= 0.001, ITGB8 HR= 5.55 and
p= 0.002; Supplementary Fig. 3). Lower NOTCH1 transcription and
higher levels of CD274 and ITGB8 transcripts were associated with
malignant progression.
Next, we used the training set to identify a prognostic gene

signature associated with malignant transformation. A multi-
variable prognostic model (Cox model with L1-regularisation; 4-
fold cross-validation) was created, which constituted 11 genes.
The gene list together with the relevant weightage of each gene is
shown in Table 3. This prognostic model was used to predict
patient risk scores in the test set. The predicted risk scores were
dichotomised into high- and low-risk groups (using median risk
score derived from the training set). The risk groups demonstrated
two clusters of patients in the test set when assessed against the
mRNA abundance data of the underlying genes in the multi-
variable prognostic model (Fig. 1). These risk groups were further
tested for association with patient outcome using Cox propor-
tional hazards model adjusting for age at diagnosis, sex, site, type
of OPMD and binary OED grade. The prognostic gene signature
remained an independent predictor of malignant transformation
when assessed in the test set, with high-risk group showing worse
prognosis (hazard ratio (HR)= 12.65, p= 0.0003; Fig. 2a and
Table 4). In the multivariable setting, in addition to the

gene-signature-derived risk scoring, binary OED grading was also
statistically significant (p= 0.017). Predicted risk groups were also
tested for association with malignant transformation using
C-index, which also confirmed strong concordance between the
predicted risk groups and survival times (Concordance index=
0.82, 0.75–0.88).
The predicted risk groups were verified for potential bias in the

expression of the housekeeping genes (GAPDH, SDHA, TBP, TUBB),
which showed stable expression levels across both groups except
for a nominal difference in TUBB expression in the test set (log2
fold change= 0.23, p= 0.01, Wilcoxon rank-sum test) (Supple-
mentary Fig. 4).
Although our predictor was trained and tested using the

Nanostring nCounter platform, we tested it in an external cohort
(GSE26549),26 which was profiled using a microarray platform
(Supplementary Methods). Our classifier accurately predicted the
risk of oral cancer free survival in this independent cohort (HR=
2.38, p= 0.041) despite the differences arising from the RNA
quantifying platform (Fig. 2b). Furthermore, we used the gene
signature to explore the association with normal and malignant
states in another microarray profiled dataset (GSE9844).41 We
observed significantly elevated risk scores in tongue squamous
cell carcinoma samples compared to normal oral mucosa samples
confirming oncogenic roles of the signature genes exclusive to
tumour samples (p= 3.2 × 10−5, Wilcoxon rank-sum test, Fig. 2c
and Supplementary Methods).

Table 3. Characteristics of the genes in the prognostic signature, along with the estimated beta coefficients (weightage).

HGNC gene
symbol Ensembl
Gene ID

Function Role in cancer and oral carcinogenesis Association with
malignant
transformation in
current study
(Weightage)

Key
references

CCNE1
ENSG00000105173

Encodes cyclin E1, which is involved in the G1/
S transition of the cell cycle.

Over-expression in breast and oesophageal
cancer.

Reduced expression
(−0.396966)

51,52

TLX1
ENSG00000107807

Encodes a nuclear transcription factor that
belongs to the NK-linked or NK-like (NKL)
subfamily of homeobox genes.

De-regulated expression in T-cell acute
lymphoblastic leukaemia.

Reduced expression
(−0.2506933)

53

NOTCH1
ENSG00000148400

Encodes a transmembrane receptor that
regulates interactions between physically
adjacent cells through binding of Notch family
receptors to their cognate ligands.

De-regulated expression in several cancers.
The role in oral cancer is variable: some
studies suggest oncogenic and others
tumour suppressive.

Reduced expression
(−0.2417378)

54–56

CTSL
ENSG00000135047

Encodes for cathepsin L, a lysosomal cysteine
proteinase that plays a major role in intra-
cellular protein catabolism.

Over-expression in oral cancer. No
association with OPMDs that undergo
malignant transformation.

Reduced expression
(−0.1207851)

57,58

DUSP5
ENSG00000138166

Encodes a phosphatase that negatively
regulate members of the MAPK superfamily,
which are associated with cellular proliferation
and differentiation.

Putative role in oral carcinogenesis. Reduced expression
(−0.0590887)

59–61

TP53
ENSG00000141510

Encodes p53, which regulates cell cycle,
apoptosis, senescence, DNA repair and cellular
metabolism.

Inactivation is common in cancer and in oral
carcinogenesis.

Reduced expression
(−0.0177383)

62,63

CHEK2
ENSG00000183765

Encodes CHK2, a cell cycle checkpoint
inhibitor that is activated in response to DNA
damage.

De-regulated in breast and prostate cancer. Reduced expression
(−0.0119722)

64–66

COL4A5
ENSG00000188153

Encodes a subunit of type IV collagen a
component of basement membranes.

Over-expression implicated in oral cancer
vascular invasion.

Increased expression
(0.14162271)

67

ITGB8
ENSG00000105855

Encodes a member of the integrin beta family
of receptors and cell adhesion molecules.

De-regulated expression in hepatic, ovarian
and prostate cancer.

Increased expression
(0.3540842)

68–70

CD274
ENSG00000120217

Encodes programmed death-ligand 1 (PD-L1),
an immune inhibitory receptor ligand that
inhibits T-cell activation and cytokine
production.

De-regulated expression in cancers,
including oral cancer. Increased expression
in OPMDs that undergo malignant
transformation.

Increased expression
(0.41203335)

71,72

TP63
ENSG00000073282

Encodes the p63 protein, a member of the p53
family of transcription factors.

Over-expression of ΔNp63 in OPMDs that
undergo malignant transformation.

Increased expression
(0.48742717)

73–75
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estimated as the median risk score of the training set (a). The gene expression-derived classifier was informative in an independent cohort
(GSE26549 dataset)26 (b) and was biologically relevant as the predicted risk scores were significantly higher in tongue squamous cell
carcinoma samples compared with normal oral mucosa samples (GSE9844 dataset;41 Wilcoxon rank-sum test) (c).

Predicting the clinical outcome of oral potentially malignant disorders. . .
HP Sathasivam et al.

417



DISCUSSION
Currently, risk-stratification of OPMD patients in clinical practice is
usually based on a combination of clinical and histopathological
features.1,23,42 However, the prognostic utility of these features has
been found to be lacking and inconsistent.1,11,15,43 In this study,
when considering clinico-pathological parameters, only OED
grading was found to be statistically significant in the training
set. When the clinico-pathological variables were fitted together
using a Cox proportional hazards model, only the binary OED
grading of cases was found to be statistically significant. This
suggests that of all the clinico-pathological parameters, OED
grading is the most useful prognostic indicator for malignant
transformation in OPMD and supports the use of the binary
grading system in clinical practice. This is consistent with the
findings of most studies that have indicated that OED grading is
currently the ‘gold-standard’ for prognosticating clinical outcome
in OPMD cases.1,23 A confounding factor in the accurate risk
assessment of the patients in this study was the lack of data on
smoking habits. Smoking status is typically presented in broad
categories such as current smoker, ex-smoker, never smoker;
however, there are very few studies that provide detailed life-time
exposure in pack-years, furthermore there is evidence that
patients tend to under-report their smoking habits leading to
inaccurate risk estimates.44

Archived FFPE tissues are an invaluable resource that can be
successfully used for molecular-based assays despite the
degradation of nucleic acids that accompanies fixation and
embedding of samples in paraffin wax.27,28,45–48 Our study
provides evidence of the clinical utility of the NanoString
nCounter platform in providing robust gene expression outputs
using RNA from FFPE tissue.27,28,30,31,49,50 Although relatively
new, the NanoString nCounter assay has been shown by several
studies to be sensitive and reproducible, with sensitivity and
accuracy levels that are better than microarrays and comparable
to real-time quantitative PCR (qPCR).28,30,31 A recent study by
Veldman-Jones et al (2015) that evaluated the robustness of the
nCounter platform in analysing clinical samples showed that the
platform has high sensitivity of target detection and good
reproducibility even with low RNA amounts, making it suitable
for developing clinical tests.30 There are two main advantages
of NanoString technology compared to conventional gene
expression analysis methods such as qPCR and microarrays. In
the nCounter platform, transcript levels are measured from non-
amplified total RNA, unlike other platforms, thus reducing
errors/biases that may be introduced through increased
sample manipulation and enzymatic reactions.27,28 Another
advantage of NanoString is that it can be multiplexed to
measure up to 800 target genes in one sample, unlike qPCR-
based methods that are usually only able to measure the

expression of a few genes at a time.27,28,30,31 These features
were key to developing Prosigna™, which is a licenced
prognostic test for breast cancer.
The gene signature developed in our study using the NanoString

assay shows good potential in prognosticating clinical outcome.
Our findings are analogous to the findings reported by Saintigny
et al. (2011) where the authors showed that gene expression-based
methods were superior to clinical and histological variables in
determining clinical outcome in OPMD patients.26 In their study,
Saintigny et al. (2011) compared microarray-derived gene
expression-based models against a model that contained only
age, histology (dysplasia vs hyperplasia) and two biomarkers
(ΔNp63 and podoplanin).26 The two models containing microarray
data showed much better performance compared to the model
without any microarray data. Their final model, which combined
the microarray data with clinical and pathological covariates,
showed a slight improvement compared to the model with only
microarray data. However, only nine transcripts were similar
between the two microarray-based models, highlighting the rather
unstable methodology employed in constructing their prognostic
model. Aside from that, other major differences between their
study and the current study are the type of tissue, the platform
utilised to obtain the gene expression data and the statistical
methodology used to arrive at the final gene expression profile.26

Nevertheless, our gene classifier accurately predicted the risk of
oral cancer free survival in the Saintigny dataset.26 We also
discovered that our gene signature was significantly different in
matched normal oral mucosa samples and tongue squamous cell
carcinoma.41 Together, these data suggest that the gene
expression-derived classifier reported in this study is potentially
generalisable and is likely to be underpinned by biologically
relevant changes in oral carcinogenesis. Several novel genes (TLX1,
CCNE1, ITGB8 and COL4A5) with no known prior associations with
oral carcinogenesis contributed to the gene signature that was
developed. The characteristics of all the genes in the classifier are
summarised in Table 3.51–75

One major issue with prognostic/predictive models is clinical
validation. For example, the molecularly driven prognostic model
for malignant transformation of oral leukoplakia developed by
Saintigny et al. (2011), though initially promising, has not been
translated into clinical practice.26 To promote translation into
clinical practice, new prognostic/predictive models should be
validated by an independent research team using independent
patient cohorts.76 Lack of independence between the training and
test/validation cohorts can lead to an over-estimation of the
prognostic ability of such models. Another barrier for successful
validation of a prognostic gene signature is the presence of inter-
and intra-tumour heterogeneity in OSCC, as well as heterogeneity
in OPMD.

Table 4. Multivariable Cox proportional hazards model (test set).

Variable HR 95% CI lower 95% CI upper p-value

Age at diagnosis 1.0002 0.9485 1.055 0.9927

Sex (male, reference= female) 1.0227 0.3647 2.868 0.9659

OPMD (erythroplakia, reference= leukoplakia) 1.1140 0.2691 4.612 0.8816

OPMD (erythroleukoplakia, reference= leukoplakia) 0.4618 0.1149 1.856 0.2763

Site (tongue, reference= floor of mouth) 1.8956 0.4307 8.342 0.3976

Site (other, reference= floor of mouth) 0.6305 0.1445 2.750 0.5394

OED grade (high grade, reference= low grade) 3.4661 1.2498 9.613 0.0169

Gene-signature based risk group
(high risk, reference= low-risk)

12.6548 3.2058 49.954 0.0003

Bold values indicate statistical significance.
HR hazard ratio, CI confidence interval.
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Even though the current study has demonstrated the value of a
molecularly driven prognostic model over traditional risk-
stratification methods for OPMD patients, molecular-based
methods are not without their drawbacks. A major limitation of
the current study is the sample size and the almost equal number
of MT and NT cases that is not truly representative of the
population where MT is variable and ranges between 0.13 and
36.4% depending on the cohort.9 However, this study was
designed to be a proof-of-principle study to explore the possibility
of using FFPE-derived material for development of a gene-
signature prognostic of clinical outcome in OPMD patients. As
such, we acknowledge that our study is only the first step in the
development of a definitive gene expression-based prognostic
model for OPMD. We also recognise that Nanostring is an
expensive ‘research use only’ assay, nevertheless, it is conceivable
that development of a clinical test would reduce costs by
economy of scale. Prosigna™ a Nanostring-based breast cancer
test, is proof that the technology can be translated into a cost-
effective clinical test.
Although our study has successfully shown that the prog-

nostic model developed is superior to conventional risk-
stratification methods in a test set, the patients were obtained
in a retrospective manner and the number of samples was
small. Future studies require external validation in a sufficiently
powered, prospective cohort study, recruiting consecutive
patients with OPMD or as an observational component in a
clinical trial. Ideally, such studies should be large enough to
allow for data to be analysed by dysplasia grade, since this
would provide valuable insight into the strengths and limita-
tions of the molecular classifier against the current gold
standard for risk assessment.

CONCLUSIONS
We have shown proof of principle that RNA extracted from FFPE
tissue, when analysed on the NanoString nCounter platform, can
be used to model a gene expression signature that accurately
predicts the risk of oral potentially malignant disorders under-
going malignant transformation. The molecular classifier was
developed on a training set and validated on a test set, but still
requires external validation in an appropriately powered cohort
study before it can be used in clinical practice.
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