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Poor-risk (PR) cytogenetic/molecular abnormalities generally direct pediatric patients with acute myeloid leukemia (AML) to
allogeneic hematopoietic stem cell transplant (HSCT). We assessed the predictive value of cytogenetic risk classification at diagnosis
with respect to post-HSCT outcomes in pediatric patients. Patients younger than 18 years at the time of their first allogeneic HSCT
for AML in CR1 between 2005 and 2022 who were reported to the European Society for Blood and Marrow Transplantation registry
were subgrouped into four categories. Of the 845 pediatric patients included in this study, 36% had an 11q23 abnormality, 24% had
monosomy 7/del7q or monosomy 5/del5q, 24% had a complex or monosomal karyotype, and 16% had other PR cytogenetic
abnormalities. In a multivariable model, 11q23 (hazard ratio [HR]= 0.66, P= 0.03) and other PR cytogenetic abnormalities
(HR= 0.55, P= 0.02) were associated with significantly better overall survival when compared with monosomy 7/del7q or
monosomy 5/del5q. Patients with other PR cytogenetic abnormalities had a lower risk of disease relapse after HSCT (HR= 0.49,
P= 0.01) and, hence, better leukemia-free survival (HR= 0.55, P= 0.01). Therefore, we conclude that PR cytogenetic abnormalities
at diagnosis predict overall survival after HSCT for AML in pediatric patients.
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INTRODUCTION
Advances in risk stratification, therapy intensification, and suppor-
tive care have all contributed to improving the outcomes for
children with acute myeloid leukemia (AML) [1]. Genetic/molecular
features such as fusion genes and molecular aberrations of the
leukemic cells, as well as the response to induction therapy, play a
major role in determining which patients are at highest risk of

relapse with conventional chemotherapy [2, 3]. Although the overall
survival (OS) of children with AML has improved over the past
few decades, only 70% of these children become long-term
survivors [1]. For children with high-risk AML (HR-AML), defined
by a combination of poor-risk (PR) cytogenetic/molecular abnorm-
alities or an inadequate response to chemotherapy as assessed by
measurable residual disease (MRD), outcomes are inferior, with an

Received: 29 October 2023 Revised: 14 December 2023 Accepted: 2 January 2024
Published online: 15 January 2024

1Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA. 2EBMT Statistical Unit, Hôpital Saint-Antoine, Paris,
France. 3Anthony Nolan Research Institute, Imperial College Healthcare NHS Trust, London, UK. 4EBMT Paris Study Unit, Hôpital Saint-Antoine, Paris, France. 5Pediatric
Hematology and Immunology Department, Hôpital Robert-Debré, GHU APHP Nord Université Paris Cité, Paris, France. 6Department of Pediatric Hematology and Oncology, IRCCS
Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy. 7CHU Bordeaux Groupe Hospitalier Pellegrin-Enfants, Bordeaux, France. 8Paediatric Bone
Marrow Transplant Service, Bristol Royal Hospital for Children, Bristol, UK. 9Bone Marrow Transplant Unit, St. Sophia Children’s Hospital Oncology Centre, Athens, Greece. 10Unité
de coordination interne et externe, Institut d’Hématologie et d’Oncologie Pédiatrique, Lyon, France. 11Centro Trapianti Cellule Staminali, Onco-Ematologia Pediatrica, Ospedale
Infantile Regina Margherita, Turin, Italy. 12Oncopediatrics department, Nantes University Hospital, Nantes, France. 13Pediatric Hematology, Oncology and Stem Cell Transplant
Division, Padova University and Hospital, Padua, Italy. 14Blood and Marrow Transplant Unit, Department of Paediatric Haematology, Royal Manchester Children’s Hospital,
Manchester, UK. 15Département Hématologie Oncologie Pédiatrique, Hôpital de la Timone, Marseille, France. 16Dipartimento di Ematologia Pediatrica, Azienda Ospedaliera di
Rilievo Nazionale, Naples, Italy. 17Department of Paediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. 18King Hussein Cancer Center, Amman,
Jordan. 19Department of Paediatric Oncology, Royal Marsden Hospital, London, UK. 20Department of Pediatrics, Niño Jesus Children’s Hospital, Madrid, Spain. 21Department of
Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic. 22Bone Marrow Transplant Unit, II Children’s Clinic, University Children’s Hospital,
Bratislava, Slovakia. 23HSCT Unit, Department of Hematology and Oncology, IRCCS Institute G. Gaslini, Genoa, Italy. 24Department of Bone Marrow Transplantation, Great Ormond
Street Hospital NHS Foundation Trust, London, UK. 25Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg,
Germany. 26Hôpital Armand Trousseau, APHP, Sorbonne Université, Paris, France. 27The Royal Hospital for Children, Glasgow, UK. 28Clinical Research Division, Fred Hutchinson
Cancer Center, Seattle, WA, USA. 29Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wrocław Medical University, Wrocław, Poland.
✉email: akshay.sharma@stjude.org

www.nature.com/bmt

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41409-024-02197-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41409-024-02197-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41409-024-02197-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41409-024-02197-3&domain=pdf
http://orcid.org/0000-0003-3281-2081
http://orcid.org/0000-0003-3281-2081
http://orcid.org/0000-0003-3281-2081
http://orcid.org/0000-0003-3281-2081
http://orcid.org/0000-0003-3281-2081
http://orcid.org/0000-0001-9102-4427
http://orcid.org/0000-0001-9102-4427
http://orcid.org/0000-0001-9102-4427
http://orcid.org/0000-0001-9102-4427
http://orcid.org/0000-0001-9102-4427
http://orcid.org/0000-0002-1402-6549
http://orcid.org/0000-0002-1402-6549
http://orcid.org/0000-0002-1402-6549
http://orcid.org/0000-0002-1402-6549
http://orcid.org/0000-0002-1402-6549
http://orcid.org/0000-0002-7976-3654
http://orcid.org/0000-0002-7976-3654
http://orcid.org/0000-0002-7976-3654
http://orcid.org/0000-0002-7976-3654
http://orcid.org/0000-0002-7976-3654
http://orcid.org/0000-0002-9257-900X
http://orcid.org/0000-0002-9257-900X
http://orcid.org/0000-0002-9257-900X
http://orcid.org/0000-0002-9257-900X
http://orcid.org/0000-0002-9257-900X
http://orcid.org/0000-0002-3136-6270
http://orcid.org/0000-0002-3136-6270
http://orcid.org/0000-0002-3136-6270
http://orcid.org/0000-0002-3136-6270
http://orcid.org/0000-0002-3136-6270
http://orcid.org/0000-0002-6046-8428
http://orcid.org/0000-0002-6046-8428
http://orcid.org/0000-0002-6046-8428
http://orcid.org/0000-0002-6046-8428
http://orcid.org/0000-0002-6046-8428
http://orcid.org/0000-0002-0018-5709
http://orcid.org/0000-0002-0018-5709
http://orcid.org/0000-0002-0018-5709
http://orcid.org/0000-0002-0018-5709
http://orcid.org/0000-0002-0018-5709
http://orcid.org/0000-0002-9145-3691
http://orcid.org/0000-0002-9145-3691
http://orcid.org/0000-0002-9145-3691
http://orcid.org/0000-0002-9145-3691
http://orcid.org/0000-0002-9145-3691
http://orcid.org/0000-0002-8732-5611
http://orcid.org/0000-0002-8732-5611
http://orcid.org/0000-0002-8732-5611
http://orcid.org/0000-0002-8732-5611
http://orcid.org/0000-0002-8732-5611
http://orcid.org/0000-0001-5715-501X
http://orcid.org/0000-0001-5715-501X
http://orcid.org/0000-0001-5715-501X
http://orcid.org/0000-0001-5715-501X
http://orcid.org/0000-0001-5715-501X
http://orcid.org/0000-0002-1447-7286
http://orcid.org/0000-0002-1447-7286
http://orcid.org/0000-0002-1447-7286
http://orcid.org/0000-0002-1447-7286
http://orcid.org/0000-0002-1447-7286
http://orcid.org/0000-0001-8363-1622
http://orcid.org/0000-0001-8363-1622
http://orcid.org/0000-0001-8363-1622
http://orcid.org/0000-0001-8363-1622
http://orcid.org/0000-0001-8363-1622
http://orcid.org/0000-0003-2033-1125
http://orcid.org/0000-0003-2033-1125
http://orcid.org/0000-0003-2033-1125
http://orcid.org/0000-0003-2033-1125
http://orcid.org/0000-0003-2033-1125
http://orcid.org/0000-0003-1174-5799
http://orcid.org/0000-0003-1174-5799
http://orcid.org/0000-0003-1174-5799
http://orcid.org/0000-0003-1174-5799
http://orcid.org/0000-0003-1174-5799
http://orcid.org/0000-0003-1070-8486
http://orcid.org/0000-0003-1070-8486
http://orcid.org/0000-0003-1070-8486
http://orcid.org/0000-0003-1070-8486
http://orcid.org/0000-0003-1070-8486
https://doi.org/10.1038/s41409-024-02197-3
mailto:akshay.sharma@stjude.org
www.nature.com/bmt


OS of less than 50% [4]. Although an allogeneic hematopoietic stem
cell transplant (HSCT) is generally recommended for patients with
HR-AML with PR cytogenetics/molecular abnormalities in first
complete remission (CR1) [1], it is unknown whether these
cytogenetic and molecular features retain their prognostic value
after HSCT. The success of an allogeneic HSCT largely depends on
the graft-versus-leukemia (GVL) effect mediated by the alloreactive
immune system derived from the graft, which is distinct from the
cytolytic and cytostatic effects of antileukemic drugs. Additionally,
AML with PR cytogenetics is a heterogeneous category that
includes several distinct cytogenetic abnormalities. As a group,
patients with PR cytogenetics may not benefit from HSCT or,
alternatively, specific subgroups may benefit and others may not
[5–8]. In this study, we evaluated whether the specific cytogenetic
abnormalities present at the diagnosis of AML were predictive of
post-HSCT outcomes in pediatric patients with HR-AML.

METHODS
Study design and patients
This retrospective study was conducted using the data reported to the
Pediatric Diseases Working Party (PDWP) of the European Society for Blood
and Marrow Transplantation (EBMT) registry by 150 participating centers in
38 countries. The EBMT is a nonprofit medical and scientific organization
representing more than 600 transplant centers, mainly located in Europe.
Centers commit to reporting all consecutive HSCTs and follow-up data
once a year. Data are entered, managed, and maintained in a central
database and are validated by verification of the computer printout of the
entered data. All patients gave informed consent to the use of their
personal information for research purposes. This study was approved by
the PDWP of the EBMT institutional review board and was conducted in
accordance with the Declaration of Helsinki and Good Clinical Practice
guidelines. Eligible patients were younger than 18 years at the time of
HSCT for AML, had received their first allogeneic HSCT in CR1 between
January 1, 2005, and December 31, 2022, and had a recorded cytogenetic
assessment at diagnosis. Cytogenetic abnormalities considered as PR
were monosomy 7, del(7q), monosomy 5, del(5q), 11q23 abnormalities
excluding t(9;11), t(8;16), 12p13 abnormalities, del(12p), t(9;22), t(6;9),
inv(3), t(3;5), t(16;21), and 11p15 abnormalities [5, 9–13]. Patients
characterized by t(9;11), t(8;21), t(15;17), inv(16), or t(16;16) were excluded
from this analysis as they were considered to have intermediate-risk or
favorable-risk cytogenetic abnormalities.

Assignment to risk groups
Patients were assigned to one of the following subgroups according to
their cytogenetic assessment at diagnosis: (a) patients with monosomy 7/
del7q or monosomy 5/del5q, irrespective of the presence of any other
cytogenetic abnormality; (b) patients with 11q23 abnormalities; (c) patients
with a complex or monosomal karyotype; and (d) patients with other PR
cytogenetic abnormalities. A complex karyotype was defined as one with
three or more structural abnormalities. A monosomal karyotype was
defined as a monosomy with one or more structural abnormalities or two
or more autosomal monosomies. The subgroup for patients with other PR
cytogenetic abnormalities included those with t(6;9), t(3;5), t(9;22), t(8;16),
inv(3) or t(3;3), t(16;21), abn(11p15), or del(12p) or abn(12p13).

Statistical analysis
Qualitative variables are reported as frequencies and percentages. Quanti-
tative variables are reported as the median, quartile 1 and quartile 3, or
minimum and maximum values. The difference in the distribution of
qualitative or quantitative variables among the cytogenetic groups was
evaluated with chi-square tests or Fisher exact tests and with Kruskal–Wallis
tests, respectively.
The primary endpoint of the study was OS, defined as the time from

HSCT to death. Secondary endpoints were the leukemia-free survival (LFS),
defined as the time from HSCT to relapse or death, whichever occurred
first, and the relapse incidence and non-relapse mortality (NRM), defined,
respectively, as the time from HSCT to relapse and the time from HSCT to
death without relapse. Other secondary endpoints were the incidence of
grade II–IV and grade III or IV acute graft-versus-host disease (GVHD)
and the incidence of chronic GVHD. Finally, the GVHD-free relapse-free
survival (GRFS) was estimated, defined as the time from HSCT to the first

occurrence of grade III or IV acute GVHD, extensive chronic GVHD, relapse,
or death. All of the outcomes were censored at last follow-up. OS, LFS, and
GRFS curves were estimated by the Kaplan–Meier method. The cumulative
incidence function was used to estimate outcomes with competing events.
NRM and relapse were mutually competing events. Relapse and death
were competing events for acute and chronic GVHD. Median follow-up
was estimated using the reverse Kaplan–Meier method. Because of the
shorter median follow-up time in one group, outcomes were censored at 3
years. Multivariable analyses were performed by fitting Cox regression
models, and they included clinically relevant variables, including cytoge-
netic subgroup, age at HSCT, donor type, whether the HSCT was from a
female donor to a male recipient, patient/donor CMV status, time from
AML diagnosis to HSCT, and year of HSCT. Center effect was taken into
account as frailty. Point estimates of the outcomes and hazard ratio (HR)
are given with their 95% confidence intervals (CIs). Two-sided P values less
than 0.05 were considered to indicate statistical significance. Analyses
were performed using R software version 4.0.2.

RESULTS
Patient characteristics
We included 845 pediatric patients from 150 participating centers in
this study. Three hundred and sixty (42.7%) of the HSCT recipients
were female. The median age at HSCT was 8.6 years (inter-quartile
range [IQR]: 2.5–13.8 years), and the median follow-up after HSCT
was 4.1 years (95% confidence interval [CI]: 3.7–4.5). Three hundred
and four patients (36.0%) had 11q23 abnormalities, 199 (23.6%) had
monosomy 7/del7q or monosomy 5/del5q, 207 (24.5%) had a
complex or monosomal karyotype, and 135 (16.0%) had other PR
cytogenetic abnormalities. Only 62 patients (7.3%) had secondary
AML. Table 1 and the Supplemental Tables present the clinical
characteristics of these 845 patients, stratified by the different
subgroups. Pre-HSCT MRD data were available for 413 patients
(48.9% of the total), 352 (85.2%) of whom were MRD negative at the
time of HSCT. Patients received grafts from amatched related donor
(n= 222, 26.3%), a mismatched related donor (n= 102, 12.1%), an
unrelated donor (n= 385, 45.6%), or an unrelated cord blood donor
(n= 136, 16.1%). Four hundred and sixty patients (54.4%) received
bone marrow, 249 (29.5%) received peripheral blood–derived stem
cells, and the rest (n= 136, 16.1%) received cord blood as the stem
cell source. Myeloablative conditioning was used in 820 patients
(97.0%). Any regimens containing intravenous Busulfan greater than
9.6 mg/kg or oral Busulfan greater than 12mg/kg, total body
irradiation greater than 8 Gy, or any Treosulfan containing regimens
were considered as myeloablative.

Survival and GVHD
The 2-year OS and LFS for the entire cohort were 75.3% (95% CI:
72–78.3%) and 67.9% (95% CI: 64.4–71.1%), respectively (Table 2).
The cumulative incidence of relapse was 23.5% (95% CI: 20.5–26.7%)
and the incidence of NRM was 8.6% (95% CI: 6.7–10.7%) at 2 years
after HSCT. In this cohort, 9.5% of the patients (95% CI: 7.6–11.7%)
experienced grade III or IV acute GVHDwithin the first 100 days after
HSCT and 6.7% (95% CI: 5–8.7%) experienced extensive chronic
GVHD within the first 2 years after HSCT. The 2-year GVHD-free
relapse-free survival (GRFS) was 57.3% (95% CI: 53.6–60.8%).
Kaplan–Meier survival curves describing the OS and LFS and
cumulative incidence curves showing the relapse incidence and
NRM are shown in Fig. 1.

Effect of cytogenetic risk on post-transplant outcomes
In a multivariable model (Table 3), 11q23 (HR= 0.66 [95% CI:
0.44–0.97], P= 0.03) and other PR cytogenetic abnormalities (HR =
0.55 [95% CI: 0.33–0.91], P= 0.02) were associated with significantly
better OS when compared with monosomy 7/del7q and monosomy
5/del5q. OS was not significantly different for the complex/
monosomal karyotype group (HR= 0.98 [95% CI: 0.66–1.46],
P= 0.94). There were no significant differences in NRM among the
four subgroups (HR= 0.86 [95% CI: 0.45–1.66], P= 0.66; HR= 0.96
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Table 1. Demographics and patient characteristics.

Variable Modality No. of
patients
(N = 845)

del(7/7q)
and/or del(5/

5q)
(N = 199)

Complex/
monosomal
(N = 207)

Abn 11q23
excluding
t(9;11) and

without del(7/
7q) or del(5/5q)

(N = 304)

Other poor-risk
abnormalities
(N = 135)

P

Age at diagnosis
(years)

Median [IQR] 8.2 [2.1–13.4] 10 [5.1–14.2] 6.6 [2–13.1] 4.6 [1–12.7] 11.1 [6.2–14.2] <0.001

Patient sex Female 360 (42.7%) 83 (41.7%) 86 (41.7%) 126 (41.4%) 65 (48.1%) 0.57

Male 484 (57.3%) 116 (58.3%) 120 (58.3%) 178 (58.6%) 70 (51.9%)

Time from
diagnosis to
HSCT (months)

Median [IQR] 4.6 [3.8–5.6] 4.5 [3.7–5.3] 4.9 [3.9–6] 4.5 [3.8–5.5] 4.7 [3.9–5.5] 0.07

Age at HSCT
(years)

Median [IQR] 8.6 [2.5–13.8] 10.4 [5.6–14.5] 7.3 [2.4–13.6] 5 [1.4–13.1] 11.5 [6.7–14.6] <0.001

Age at HSCT
(categorical)

0–4 years 285 (33.7%) 42 (21.1%) 77 (37.2%) 143 (47%) 23 (17%) <0.001

4–12 years 258 (30.5%) 74 (37.2%) 62 (30%) 74 (24.3%) 48 (35.6%)

12–18 years 302 (35.7%) 83 (41.7%) 68 (32.9%) 87 (28.6%) 64 (47.4%)

Lansky
performance
score

<90 128 (16.6%) 32 (18.4%) 31 (16.5%) 42 (14.9%) 23 (18.4%) 0.73

≥90 641 (83.4%) 142 (81.6%) 157 (83.5%) 240 (85.1%) 102 (81.6%)

Missing 76 25 19 22 10

Molecular
remission at
HSCT

No 61 (14.8%) 12 (17.4%) 11 (11.2%) 19 (11.3%) 19 (24.4%) 0.03

Yes 352 (85.2%) 57 (82.6%) 87 (88.8%) 149 (88.7%) 59 (75.6%)

Missing 432 130 109 136 57

Donor type Matched related
donor

222 (26.3%) 45 (22.6%) 59 (28.5%) 86 (28.3%) 32 (23.7%) 0.12

Mismatched
relative

102 (12.1%) 30 (15.1%) 28 (13.5%) 31 (10.2%) 13 (9.6%)

Unrelated donor 385 (45.6%) 101 (50.8%) 91 (44%) 127 (41.8%) 66 (48.9%)

UCB 136 (16.1%) 23 (11.6%) 29 (14%) 60 (19.7%) 24 (17.8%)

Donor sex Female 328 (40%) 76 (39.4%) 81 (40.1%) 122 (41.1%) 49 (38%) 0.94

Male 493 (60%) 117 (60.6%) 121 (59.9%) 175 (58.9%) 80 (62%)

Missing 24 6 5 7 6

Graft source Bone marrow 460 (54.4%) 103 (51.8%) 116 (56%) 168 (55.3%) 73 (54.1%) Not tested

Peripheral blood 249 (29.5%) 73 (36.7%) 62 (30%) 76 (25%) 38 (28.1%)

Cord blood 118 (14%) 20 (10.1%) 28 (13.5%) 50 (16.4%) 20 (14.8%)

Double cord
blood units

18 (2.1%) 3 (1.5%) 1 (0.5%) 10 (3.3%) 4 (3%)

Female donor to
male recipient

No 644 (77.5%) 150 (76.9%) 160 (78.4%) 228 (76.3%) 106 (79.7%) 0.86

Yes 187 (22.5%) 45 (23.1%) 44 (21.6%) 71 (23.7%) 27 (20.3%)

Missing 14 4 3 5 2

Patient CMV
serostatus

Negative 319 (38.9%) 70 (36.8%) 68 (33.8%) 119 (39.8%) 62 (47.3%) 0.09

Positive 502 (61.1%) 120 (63.2%) 133 (66.2%) 180 (60.2%) 69 (52.7%)

Missing 24 9 6 5 4

Donor CMV
serostatus

Negative 402 (50.1%) 93 (48.7%) 84 (42.6%) 154 (53.3%) 71 (56.3%) 0.053

Positive 401 (49.9%) 98 (51.3%) 113 (57.4%) 135 (46.7%) 55 (43.7%)

Missing 42 8 10 15 9

CMV serostatus
(donor to
patient)

Negative to
negative

215 (27.3%) 47 (25.4%) 41 (21%) 84 (29.6%) 43 (34.7%) 0.24

Negative to
positive

177 (22.5%) 41 (22.2%) 42 (21.5%) 67 (23.6%) 27 (21.8%)

Positive to
negative

88 (11.2%) 20 (10.8%) 23 (11.8%) 30 (10.6%) 15 (12.1%)

Positive to
positive

308 (39.1%) 77 (41.6%) 89 (45.6%) 103 (36.3%) 39 (31.5%)

Missing 57 14 12 20 11

Conditioning
intensity

Reduced
intensity

24 (2.8%) 9 (4.5%) 3 (1.4%) 11 (3.6%) 1 (0.7%) 0.1

Myeloablative
conditioning

820 (97.2%) 190 (95.5%) 204 (98.6%) 293 (96.4%) 133 (99.3%)

Missing 1 0 0 0 1
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[95% CI: 0.48–1.94], P= 0.92; and HR= 0.73 [95% CI: 0.33–1.65],
P= 0.46, for the 11q23, complex/monosomal, and other PR
cytogenetics subgroups, respectively) when compared with the
monosomy 7/del7q or monosomy 5/del5q subgroup. Other PR
cytogenetic abnormalities were associated with a lower risk of
disease relapse after HSCT (HR= 0.49 [95% CI: 0.28–0.86], P= 0.01),
whereas the risk of disease relapse was not significantly different for
the other groups when compared with the monosomy 7/del7q or
monosomy 5/del5q subgroup (HR= 0.78 [95% CI: 0.52–1.16],
P= 0.22, and HR= 1.0 [95% CI: 0.65–1.53], P= 1.0, for the 11q23
abnormality group and the complex/monosomal karyotype group,
respectively). Accordingly, LFS was significantly better for the other
PR cytogenetic risk group (HR= 0.55 [95% CI: 0.35–0.87], P= 0.01)
but not significantly different for the two other groups when
compared with the monosomy 7/del7q or monosomy 5/del5q
subgroup (HR= 0.79 [95% CI: 0.56–1.12], P= 0.19, and HR= 0.97
[95% CI: 0.67–1.39], P= 0.86, for the 11q23 and complex/mono-
somal subgroups, respectively).
Receiving an HSCT from an unrelated donor, as opposed to a

matched related donor, was associated with lower relapse
incidence (HR= 0.66 [95% CI: 0.45–0.98], P= 0.04), whereas this
was not significantly different for the two other groups (HR= 0.86
[95% CI: 0.51–1.46], P= 0.58, and HR= 1.10 [95% CI: 0.68–1.79],
P= 0.7, for mismatched related and cord blood recipients,
respectively). Lastly, older age at HSCT (12–18 years) was
associated with the highest risk of NRM (HR= 2.23 [95% CI:
1.16–4.30], P= 0.02) and with worse OS (HR= 1.63 [95% CI:
1.14–2.35], P < 0.01) as compared to that of younger patients
(aged 4–12 years). NRM and OS were not significantly different
when very young patients (aged 0–4 years) were compared with
the group aged 4–12 years (HR= 1.46 [95% CI: 0.71–3.00],
P= 0.30, and HR= 1.10 [95% CI: 0.73–1.65], P= 0.66, respectively).

DISCUSSION
Allogeneic HSCT is the cornerstone of therapy for pediatric
patients with AML who have adverse cytogenetic abnormalities,
and it offers the best chance of long-term survival. However, the
current literature lacks detail on the impact of cytogenetic
abnormalities on post-HSCT outcomes in this population. Cytoge-
netic abnormalities remain the strongest predictors of outcomes
for patients with newly diagnosed AML, but the literature on
whether these abnormalities predict survival and relapse after
HSCT is contradictory. Whereas some studies suggest that
cytogenetic features continue to predict outcomes for adult
patients with AML after HSCT [14–18], others have inferred that
these abnormalities have no prognostic significance after HSCT
[19, 20]. In this large cohort of pediatric HSCT recipients, we found
that cytogenetic abnormalities remained highly predictive of
outcomes even after HSCT for AML in CR1. Whereas monosomy 7/
del7q or monosomy 5/del5q conferred a poor prognosis even
after HSCT, 11q23 abnormalities and other PR cytogenetic
abnormalities predicted a more favorable outcome. Patients with
other PR cytogenetic abnormalities had a decreased incidence of
relapse, leading to improved survival after HSCT.
Even though the relapse incidence was not significantly

different to that of the monosomy 7/del7q or monosomy 5/del5q
and complex or monosomal karyotype risk groups for patients
with 11q23 abnormalities, OS was better for the latter group. This
finding suggests that AML with 11q23 abnormalities is a
heterogeneous disease, with some fusions and abnormalities
being associated with a more favorable prognosis than others,
such that the overall effect appears variable [5, 8]. Although HSCT
continues to be recommended for patients with HR-AML and is
often attempted for patients whose disease does not respond
to traditional chemotherapy, the GVL effect of allogeneic HSCT
might be insufficient to overcome the chemoresistance of the
myeloblasts. Given the risk of NRM, short-term morbidity, and lateTa
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effects, the role of HSCT in CR1 for some children with HR-AML
requires further investigation [5–8].
We noted a statistically significant protective effect of transplants

from unrelated donors, as compared with those from matched
related donors, with respect to reducing the relapse incidence. The
hazard ratio for the relapse incidence for recipients of transplants
from mismatched related donors was favorable, but did not meet
statistical significance. Advances in high-resolution human leuko-
cyte antigen (HLA) typing, GVHD prophylaxis, and improved
supportive care have expanded the use of alternative donors.
Recent studies have shown comparable outcomes after allogeneic
HSCT from matched unrelated and HLA-identical sibling donors
[21–24]. Haploidentical-donor HSCT approaches using post-
transplant cyclophosphamide and selective alpha/beta T-cell
depletion of the graft have reportedly resulted in OS and LFS on
par with those after HLA-matched transplants in retrospective
studies, with haploidentical approaches being associated with lower
rates of severe acute and chronic GVHD [25–29]. Prospective
randomized evaluation of haploidentical donor HSCT to MUD HSCT
is ongoing in a Children’s Oncology Group clinical trial (ASCT2031,
NCT05457556). Our data suggest that grafts from alternative donors
exert a greater immunotherapeutic effect than those from matched
related donors as they provide an opportunity to leverage the
alloreactivity after HSCT to target refractory leukemias. This
observation should however be confirmed in larger prospective
studies. Relapse remains the most common cause of treatment
failure in this population, and the benefit of the GVL effect must be
optimized to improve outcomes.

Limitations
This study had several limitations. First, it was a retrospective
analysis and some data were missing, with information on pre- and

post-HSCT chemotherapy being unavailable. Also missing was
information on specific gene aberrations, such as those in FLT3,
NPM1, CEBPA, and TP53, which are clearly prognostically hetero-
geneous [30–32]. By adjusting for the time from diagnosis to HSCT,
we tried to avoid the potential bias of selecting patients who had
undergone fewer induction cycles than others. We further included
patients based on their cytogenetic abnormalities, irrespective of
whether they had de novo, therapy-related, or secondary AML.
Given that they historically have had a poor prognosis [33], patients
with therapy-related, or secondary AML are often excluded from
studies of this type. Monosomy 7/del7q or monosomy 5/del5q
subgroup was relatively enriched for these patients with secondary
AML and might have driven the poor outcomes in this subgroup.
Third, we focused exclusively on patients in CR1 who proceeded to
consolidative HSCT. Patients with PR cytogenetics with an early
relapse or toxicity that precluded HSCT were excluded. Fourth, pre-
HSCT MRD data were available for only half of the patients since this
data is not collected mandatorily in the registry. Poor response to
induction chemotherapy could have skewed the results of this
study in a way unrelated to the cytogenetic risk category.
Interestingly, however, despite the fact that many more patients
in the other PR cytogenetic abnormality subgroup (almost 24%, as
compared with just 11%–17% in the 11q23 abnormality, monosomy
7/del7q or monosomy 5/del5q, and complex or monosomal
karyotype risk groups) were not in molecular remission at the time
of HSCT, patients with other PR cytogenetic abnormalities had the
best outcomes. Lastly, as most patients had received a myeloa-
blative conditioning regimen, we could not explore the effect of
different conditioning intensities on outcomes. However, a retro-
spective study has shown that relapse rates are not higher after
reduced-intensity regimens, as compared with myeloablative regi-
mens, and that myeloablative regimens are not associated with
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higher transplant-related mortality when compared with reduced-
intensity regimens in children with AML [34].

CONCLUSIONS
PR cytogenetic abnormalities at diagnosis remain predictive of OS
after HSCT for AML in pediatric patients. Monosomy 7/del7q or
monosomy 5/del5q, which overlapped with the therapy-related or
secondary AML cohort, confer a poor prognosis even after HSCT,
whereas 11q23 abnormalities and other PR cytogenetic abnorm-
alities predict a more favorable outcome after HSCT. Our data also
suggest that an HSCT from an unrelated donor offers greater
protection against relapse than an HSCT from a matched related
donor, but this observation requires further validation.
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