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Acute gastrointestinal graft versus host disease (GI-GVHD) is a common complication following allogeneic haematopoietic cell
transplantation (HCT), and is characterised by severe morbidity, frequent treatment-refractoriness, and high mortality. Early,
accurate identification of GI-GVHD could allow for therapeutic interventions to ameliorate its severity, improve response rates and
survival; however, standard endoscopic biopsy is inadequately informative in terms of diagnostic sensitivity or outcome prediction.
In an era where rapid technological and laboratory advances have dramatically expanded our understanding of GI-GVHD biology
and potential therapeutic targets, there is substantial scope for novel investigations that can precisely guide GI-GVHD management.
In particular, the combination of tissue-based biomarker assessment (plasma cytokines, faecal microbiome) and molecular imaging
by positron emission tomography (PET) offers the potential for non-invasive, real-time in vivo assessment of donor:recipient
immune activity within the GI tract for GI-GVHD prediction or diagnosis. In this article, we review the evidence regarding GI-GVHD
diagnosis, and examine the potential roles and translational opportunities posed by these novel diagnostic tools, with a focus on
the evolving role of PET.
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GASTROINTESTINAL ACUTE GRAFT VERSUS HOST DISEASE
(GI-GVHD)
Despite advances in donor selection and prophylaxis strategies,
acute graft versus host disease (aGVHD) [1–4] still occurs in around
40% (30–80%) of allogeneic haematopoietic cell transplantation
(HCT) recipients [5–8]. The pathophysiology of aGVHD involves
conditioning-associated tissue damage, release of proinflamma-
tory cytokine by recipient tissues, activation of donor immune
cells, and consequent immune-mediated destruction of recipient
target tissue, primarily the skin, liver, and gastrointestinal (GI) tract
[4, 9–13]. GI-GVHD [3, 4] accounts for up to 40% of aGVHD
[3, 5–8, 11, 14, 15], and is clinically characterised by the rapid onset
of profuse secretory diarrhoea, frequently resulting in death from
haemorrhage, perforation, or secondary infection [11, 16, 17].
Clinical presentation, severity and prognosis differ depending
upon GI tract regions involved [18]. GI-GVHD is a clinical diagnosis
based upon consideration of patient risk factors (Table 1) and
exclusion of differential diagnoses, such as conditioning-
associated mucositis, infections and cytomegalovirus (CMV) colitis
[4, 16].

ENDOSCOPIC BIOPSY
Endoscopic examination and biopsy is used to confirm or refute
GI-GVHD [16]. Macroscopic endoscopic findings include oedema,
erythema, erosion, ulceration, and sloughing [16, 19, 20]; however,
macroscopically normal mucosa frequently contains histological
GI-GVHD and should also be biopsied [16, 19, 21, 22].

Histologically, the characteristic finding is apoptosis of mucosal
epithelium [23–25], with sloughing and denudation in severe
cases [25–28].
Whilst endoscopic biopsy is the accepted “gold standard” for GI-

GVHD diagnosis, numerous limitations negatively impact upon its
diagnostic sensitivity and specificity, resulting in up to 26% of
patients requiring treatment for GI-GVHD despite negative
endoscopic biopsies [29]. Pre-test probability of endoscopically
identifying GI-GVHD is influenced by institutional practices
regarding GVHD prophylaxis [5–8] and extent of endoscopy
procedures [21, 22, 29–33]. Sampling error is compounded by
heterogeneous GI tract involvement by GI-GVHD, where involved
sites may be macroscopically normal [21, 30, 31] or inaccessible
[16]. Notably, however, sensitivity of upper endoscopy for GI-
GVHD appears relatively low [22, 29, 32–34] and routine omission
of this procedure results in few missed cases of isolated upper GI-
GVHD [29, 35]. Histologic results can be non-specific [4, 16],
correlate poorly with clinical severity [29], and can take
48–72 hours to determine [16, 21, 22, 28], thus potentially delaying
treatment.
Novel endoscopic techniques have been examined to improve

diagnostic sensitivity. Wireless capsule endoscopy (WCE) identifies
small bowel macroscopic GI-GVHD lesions in concordance with
distal lesions identified during conventional endoscopy; addition
of confocal laser endomicroscopy (CLE) can also detect sub-
macroscopic changes [36, 37]. Endoscopic ultrasound (EUS) with
double balloon enteroscopy (DBE) allows visualisation of the small
bowel [38]. Fundamentally, however, these procedures do not
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overcome the essential limitations of endoscopy itself: the GI tract
is not fully available for endoscopic biopsy, and thus histologic
confirmation of GI-GVHD is subject to sampling error [17].

CONVENTIONAL GI TRACT IMAGING
The potential advantage of GI tract imaging over endoscopy is the
capacity to non-invasively assess the entire GI tract, including
endoscopically inaccessible regions. Indeed, if an imaging
biomarker was sufficiently accurate, it could potentially diagnose
GI-GVHD without histologic biopsy. The challenge, however, has
been to develop imaging modalities with sufficient specificity for
GI-GVHD.
Conventional imaging techniques such as computed tomogra-

phy (CT) or magnetic resonance imaging (MRI) are limited by their
inability to detect microscopic or subtle macroscopic features of
GI-GVHD. Imaging features of GI-GVHD are similar to those seen in
any inflammatory or infectious enteritis: these include bowel wall
thickening, mural stratification, mucosal enhancement, oedema,
and mesenteric stranding [39, 40]. These have relatively poor
sensitivity and specificity for GI-GVHD in clinical studies. Plain CT
or MRI can support a clinical or histological diagnosis of GI-GVHD,
predict its onset, and identify radiologically severe features, but
does not improve diagnostic sensitivity or aid prognostication
beyond existing clinical and endoscopic methods [41–45].
Attempts to improve sensitivity for subtle lesions and describe
functional impact by mapping the luminal GI tract with oral
contrast (enterography) have been limited by poor patient
tolerance and inability to differentiate between GI-GVHD and
other causes of colitis [39]. MRI provides greater resolution than CT
but is limited by a relatively long scan duration (30–60min) and
the requirement for all metal (such as infusion pumps for
antibiotics, analgesia, or parenteral nutrition) to be disconnected
from the patient. Currently, CT/MRI+/− enterography is not
routinely employed for GI-GVHD diagnosis in most centres and is
not considered to be a requirement for GI-GVHD diagnosis.
Ultrasound is an attractive imaging modality because it is non-

invasive, radiation-free, relatively inexpensive, and can be
performed by the bedside. Ultrasound can be used to assess GI
tract wall thickness, dilatation, and obstruction, and also has the
advantage of highlighting the functional impact of GI-GVHD
lesions. Retrospective, non-randomised studies evaluating con-
ventional US performed contemporaneously with diagnostic
endoscopy reported high sensitivity but relatively lower specifi-
city, with up to one quarter false positives, without any clear single
sonographic feature that could reliably differentiate GI-GVHD from
mucositis or CMV colitis [46]. Modified ultrasound could improve
specificity: contrast-enhanced ultrasound (CEUS) allows mapping
of GI tract microvasculature and perfusion following intravenous
injection of contrast microbubbles [47, 48], and compound
elastography (CE) assesses luminal stiffness as a measure of

inflammation. In a prospective study in patients with biopsy-
proven GI-GVHD compared to asymptomatic HCT recipient
controls, CEUS and CE had a 92.9% sensitivity and 94.4%
specificity for GI-GVHD [49]. Notably, however, this study’s pilot
design did not allow CEUS to differentiate GI-GVHD from other
differential diagnoses (such as CMV colitis) in symptomatic
patients, and thus the reported specificity for GVHD in a clinical
context needs confirmation in larger studies. Interestingly,
diagnostic sensitivity was not improved by the additional
measurement of serum biomarkers such as REG3α. CEUS has
been used to monitor GI-GVHD response to therapy with only
modest correlation [50].
Overall, the principal limitation of conventional imaging

techniques for GI-GVHD is that they only identify macroscopic
anatomic changes, which are often similar between GI-GVHD and
differential diagnoses. Thus, conventional imaging provides
essentially similar information as endoscopy, albeit derived from
the entire GI tract. Novel imaging techniques such as positron
emission tomography (PET), however, can take advantage of
cellular and molecular changes in GI-GVHD.

POSITRON EMISSION TOMOGRAPHY (PET)
Molecular imaging using PET [51] could potentially improve the
specificity of conventional imaging by visually identifying tissue
GI-GVHD biomarkers. A PET radiotracer consists of a radioisotope
that is chemically bound to a ligand of the molecular biomarker.
Following intravenous administration, the radiotracer binds to
any target molecule accessible to the patient’s bloodstream. The
avidity of radiotracer uptake is visualised on PET, mathematically
calculated, and reported as the maximum standardised uptake
variable (SUVmax). Anatomic localisation is assisted by simulta-
neous low-dose CT (PET/CT) or MRI (PET/MRI) for visual
correlation. PET images are interpreted by qualitative (visual)
and quantitative (SUV) assessment of avidity in suspected
pathological tissues, and compared to background physiologic
avidity in a non-pathological “reference” tissue, such as the
mediastinal blood pool or liver. PET can precisely differentiate
normal and abnormal tissues even within organs that may
otherwise appear macroscopically normal if the target molecule
is significantly and specifically increased in the pathology of
interest. PET is thus attractive for diagnosing GI-GVHD because
of its potential to non-invasively demonstrate molecular
evidence of GI-GVHD across the entire length of the GI tract,
particularly when histologic or macroscopic evidence is other-
wise lacking or inaccessible.
The utility of PET is dependent upon the target molecule and

selected radiotracer. Most PET scans employ [18F]fluorodeoxyglu-
cose ([18F]FDG), a glucose-targeting radiotracer that is taken up by
any metabolically active cell. As glucose uptake is generally
increased in active malignancies, infections and inflammation,

Table 1. Risk factors for aGVHD.

Risk factor Subgroup at increased GVHD risk Reference

Age Older recipients [6, 79]

Donor other than HLA-matched sibling Matched unrelated, mismatched and/or haploidentical donors [6, 8, 80, 81]

HPC source Peripheral blood stem cells [5]

Conditioning Myeloablative [8]

Sex mismatch Female donor to male recipient [6]

Donor gravidity Recipients from multiparous donors [6, 82–85]

Intolerance of immune suppression Early organ failure, e.g. renal/hepatic, necessitating unplanned modifications to
GVHD prophylaxis

[86]

GI tract microbiome Decreased diversity post-HCT associated with increased incidence of GI-GVHD [74–76]

HPC haematopoietic progenitor cells, HLA human leucocyte antigen, GI gastrointestinal.
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[18F]FDG PET/CT is in routine use as a staging modality for many
malignancies [51–53]. However, whilst [18F]FDG is frequently
manufactured and thus reasonably inexpensive and ubiquitous,
it is limited by its lack of biological specificity for individual
diseases; anatomic regions containing increased avidity need to
be interpreted in the appropriate clinical or histological context.

[18F]FDG PET in GI-GVHD
Until recently, most PET research in GI-GVHD has been conducted
using [18F]FDG. Prospective clinical trials of diagnostic [18F]FDG
PET/CT, performed within 7 days of endoscopy and biopsy for
clinically suspected GI-GVHD, yielded sensitivity and specificity
similar to those of endoscopic biopsy (71% and 82% respectively)
[54, 55], however with a low PPV (57%). The most comprehensive
study, reported recently by Cherk et al. [56], prospectively enroled
51 patients with newly suspected GI-GVHD; subjects underwent 4
upper and 4 lower GI tract biopsies and an [18F]FDG PET/CT prior
to commencing corticosteroid therapy. Sensitivity was ~70%, and
specificity 57% and 76% for quantitative and qualitative assess-
ment respectively, with non-GVHD inflammation demonstrating
consistently higher SUVmax than GI-GVHD. Surveillance [18F]FDG
PET/CT, performed routinely at the time of neutrophil recovery
following HCT, can aid prediction of subsequent clinical GI-GVHD
[57, 58], with similar potential pitfalls as per the surveillance
approach used in cytokine biomarker studies. Subsequent retro-
spective analyses report high sensitivity (93%) but relatively
poorer specificity and negative predictive value (73% and 64%
respectively) [59]. Although [18F]FDG shows promising clinical
potential and is relatively inexpensive compared to other

radiotracers, its lack of specificity as a single modality is the major
limitation.

Novel radiotracers in GI-GVHD
An inherent challenge in developing novel PET radioligands in GI-
GVHD is that there is no one “specific” molecular hallmark.
Nevertheless, PET using radiotracers that identify immunological
components of the activation and effector phases of aGVHD, such
as donor T-cells, are of great interest. Early attempts at PET
radiotracer development in GI-GVHD targeted markers of acti-
vated T-cells such as HLA-DR [60], CD3 [61] and FLT3 [62]; these
studies illustrated proof of concept but were limited by lack of
specificity.
Recent studies have reported more promising results. [18F]AraG

is a compound that is taken up by activated T-cells, and is
cytotoxic when given at therapeutic doses. In a mouse model of
aGVHD, [18F]AraG PET/CT identified activated T-cells in secondary
lymphoid organs prior to aGVHD onset [63]. The potential
advantage of this radiotracer would be identification of high-risk
patients prior to aGVHD onset, rather than at the time of clinical
symptoms, thus potentially enabling early intervention. This
radiotracer is currently being evaluated in a clinical trial
(NCT03367962). The same group recently reported the use of a
novel radiotracer comprising a monoclonal antibody against OX40
(CD134), a T-cell costimulatory molecule that is a marker of
activated T-cells [64]. Using a similar mouse model and study
design, the authors demonstrated that [64Cu]OX40mAb PET/CT
consistently identified OX40+ activated T-cells in lymphoid organs
and the GI tract prior to aGVHD development. However, the
antibody clone used in [64Cu]OX40mAb radiotracer appears
unsuitable for clinical application because it was agonistic and
thus increased aGVHD onset time and lethality. Antagonist or non-
agonist OX40 monoclonal antibody clones will be required for any
future studies.
We recently performed a prospective pilot study of PET/CT

using the novel radiotracer [18F]GE-180 (GE Healthcare, Chicago
USA) [65] in adult HCT recipients with suspected acute GI-GVHD
[66] (representative images reproduced with permission in Fig. 1).
[18F]GE-180 targets the translocator protein 18 kDa (tryptophan-
rich sensory protein oxygen sensor; TSPO) [67], which is an outer
mitochondrial membrane protein that is overexpressed by
enterocytes in inflammatory bowel diseases (IBD) [68, 69] as a
self-preservation response to tumour necrosis factor (TNF) and
interleukin (IL)-8-driven reactive oxygen species (ROS) production
and apoptosis [70]. We hypothesised that TSPO expression is
increased in enterocytes during acute GI-GVHD and can thus serve
as a PET biomarker. Eight participants underwent [18F]GE-180 PET/
CT for diagnosis and response assessment; images were correlated
with histology and clinical findings. We showed that GI tract
avidity for TSPO ligand correlated with histology in 75% of
participants, with the sensitivity highest in small bowel (86%) and
colon (72%). Immunohistochemistry for TSPO showed that
enterocytic TSPO expression was significantly increased in GI-
GVHD compared to non-GVHD specimens (p < 0.0001) in the colon
(p= 0.0002) and, potentially, the rectum (p= 0.06). Our results
suggested that, similar to IBD, enterocytic TSPO protein expression
is increased in colorectal GI-GVHD; however, differences in
SUVmax were modest, rendering PET interpretation challenging.

CHALLENGES IN PET RESEARCH AND IMPLEMENTATION
IN GI-GVHD
Whilst PET evaluation of GI-GVHD is feasible and may be
clinically informative, these studies highlight important con-
siderations for future research design and clinical implementa-
tion (Table 2). A key challenge is determining the optimal
method of quantitatively reporting GI tract uptake in compar-
ison to reference tissue. Radiotracer uptake may vary across

Diagnostic [18F]GE-180 PET/CT

Response [18F]GE-180 PET/CT

641

641

Fig. 1 Examples of positive PET using [18F]GE-180. Representative
“True Positive” axial images of [18F]GE-180 PET/CT, reproduced with
permission from Scott et al. (full details available at https://doi.org/
10.1038/s41409-022-01571-3) [66]. Diagnostic imaging was per-
formed at GI-GVHD diagnosis and repeated 7-14 days following
treatment commencement, to evaluate correlation with diagnostic
histology and clinical response to corticosteroid treatment respec-
tively. Top panel contains study participants’ (1, 4 and 6)
“Diagnostic” images, bottom panel contains corresponding
“Response” images. Diagnostic [18F]GE-180 PET/CT: increased
activity in sigmoid colon (Participant 1), transverse colon (Participant
4) and small bowel (Participant 6), correlating with histological GI-
GVHD. Response [18F]GE-180 PET/CT: Complete metabolic resolution
of avidity in sigmoid (Participant 1, clinical complete response);
partial metabolic resolution in transverse colon (Participant 4,
clinical partial response); similar or partial increase in avidity in
duodenum (Participant 6, complete response at time of PET with
subsequent recurrence of GI-GVHD). [18F]GE-180 PET/CT was
performed using a Siemens Biograph mCT Flow 128 Edge 4R PET/
CT scanner, and PET SUV window threshold level is set 0-8.
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GI tract regions in both physiologic and disease states due to
differing background expression, tissue vascularity, and partial
volume effect (PVE); PVE reflects the effect of volume, in this
case bowel wall thickness, on background radiotracer uptake
[71]. In both our and Cherk’s studies, quantitative avidity in the
GI tract progressively declined from stomach to rectum, with
higher rates of false positive and false negative in stomach and
rectum respectively compared to the more consistent findings
seen in small bowel and colon, illustrating that this issue is likely
not just specific to radiotracer selection but an inherent
challenge when assessing the heterogeneous GI tract. Conse-
quently, conventional quantitative reporting techniques (such as
SUV > 1.5x reference, or SUV above a pre-defined cut-off) may
over or under-estimate radiotracer uptake in some GI tract
regions, potentially diluting the sensitivity and specificity
outcomes of PET studies assessing the entire GI tract.
Another challenge is that GI-GVHD is an end-organ manifesta-

tion of a blood-based disease; radiotracers targeting markers of
T-cell activation (for example) in affected GI tract regions are likely
to also report increased uptake in haematopoietic tissues such as
mediastinal blood pool (MBP), liver, spleen and lymphoid organs.
MBP and liver are typical reference tissues for conventional PET
radiotracers, but it may be challenging to report a relative increase
in GI uptake against a reference tissue that also contains increased
uptake due to the same pathophysiology. To be clinically
meaningful in individual patients, the candidate radiotracer would
demonstrate significantly increased uptake within the pathologi-
cal GI tract region compared to a non-GVHD reference tissue, and
compared to any non-GVHD GI tract regions - including normal GI
tract, and those affected by other differential diagnoses such as
mucositis or CMV colitis.
With these and other factors in mind, careful consideration

should be taken when designing studies of PET in GI-GVHD.
Reference tissue ideally should contain a consistent, similarly low
level of target molecule expression in both GI-GVHD and non-GI-
GVHD states. Co-reporting of both qualitative and quantitative
assessments is advisable, for reproducibility and subsequent
implementation. Specific mathematical methods of correction
may be required to accurately compare some GI tract regions’
uptake with that of reference tissue. PET reporting protocols could
be limited to only assess areas of clinical interest (e.g. colon, ileum,
and/or endoscopically inaccessible small bowel). Anatomic co-
registration using imaging modalities with high spatial resolution,
such as MRI instead of CT, may also improve precision and thus
reporting accuracy.

COMBINING PET WITH ESTABLISHED GI-GVHD BIOMARKERS
GI-GVHD biology is sufficiently complex that there is a surfeit of
potential biomarker options for radiotracer development. During
the last decade, numerous research groups have identified a
multitude of potential aGVHD biomarkers. These include: serum
cytokines (REG3α and ST2; the MAGIC Algorithm Probability/Ann
Arbor Score [MAP/AA]), where increased levels can predict GVHD
onset, and are associated with increased severity, inferior response
and survival [72, 73]; and stool assessment of GI tract microbiome,
where decreased microbial diversity has been correlated with GI-
GVHD incidence, severity, and mortality [74–76]. Insights into the
topography of gene and protein expression during GI-GVHD using
novel techniques such as spatial transcriptomics [77, 78], may yet
yield other tissue-based biomarkers. Whilst there are potential
challenges in translating measurement of cytokine or stool
biomarkers into routine clinical practice, these represent a very
promising advance in GI-GVHD prediction and diagnosis and are
poised to be integrated into clinical practice.
Whilst acknowledging their advantages and disadvantages

(Table 3), novel diagnostic modalities have great potential to be
more informative than conventional techniques. In particular, our
rapidly expanding understanding of GI-GVHD biology and
identification of potential biomarkers offers an opportunity to
develop PET in parallel. Despite the challenges discussed earlier,
PET assessment of tissue-based biomarkers has the potential to
have distinct advantages over peripheral blood or biopsy
sampling: namely, the capacity to evaluate the entire GI tract,
define the extent and location of pathological lesions, and return a
result in real-time on the day of the PET examination.

FUTURE DIRECTIONS AND CONCLUSIONS
As new radiotracers are developed, PET’s potential role may
evolve beyond non-invasive accurate GI-GVHD diagnosis. Sig-
nificant GI tract uptake at a clinically meaningful timepoint, with or
without contemporaneous blood and/or stool biomarker assess-
ment, may aid prediction of GI-GVHD onset and thus justify trials
of early intervention treatment. PET radiotracers with high
correlation for specific tissue-based biomarkers may be utilised
as surrogate measurements for existing laboratory assays, where
PET’s fast turnaround time may be significantly shorter than that
of the corresponding laboratory biomarker assay. Combining
multiple radiotracers could feasibly assess the relative contribution
to symptoms when GVHD and CMV co-exist. For patients treated
for GI-GVHD, PET radiotracer uptake may be a more informative

Table 2. Challenges for PET research and implementation in GI-GVHD.

Issue Description

Molecular target Ideal target is specific to GI-GVHD biology, present in significantly higher levels in pathological compared to reference
and non-GVHD tissues, sustained throughout the course of active GI-GVHD, and readily accessible at a cellular/
molecular level.

Radiotracer properties Properties of the radiotracer compound’s radionuclide (half-life, decay, ligand chemical compatibility) and ligand
(non-agonist to target molecule) influence research feasibility and clinical deliverability.

Radiotracer manufacture Radiotracer availability at short notice is desirable for clinical use. Radiotracers with short half-life generally require
on-site manufacture.

Infrastructure Institutional PET imaging modalities (CT+/− MR) require optimal spatial resolution for assessing the GI tract.

GI tract PET assessment Radiotracer uptake may vary across GI tract regions in both physiologic and disease states. Specific reference tissues
and mathematical quantitative assessment methods for different radiotracers are likely required. Reference tissue
should contain a consistently low level of target molecule expression in both GI-GVHD and non-GI-GVHD individuals.

Clinical expertise Clinical PET interpretation, including positive and negative cut-offs, are dependent on the radiotracer and require
institutional expertise.

Effect of treatment Depending upon molecular target, some anti-GVHD treatments may reduce molecule expression and thus PET
radiotracer uptake.

Cost Radiotracer development and research entail significant time and cost, similar to that of novel pharmaceutical agents.
Clinical manufacture costs vary depending upon radiotracer.
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assessment of response than crude measurement of daily stool
output; for example, by demonstrating initial increase and then
subsequent reduction in excess GI tract avidity on serial PET
assessment, or by demonstrating excess SUVmax beyond a
stipulated threshold at a meaningful timepoint.
More broadly, tissue-based biomarker detection by molecular

imaging has the potential to not only define sites of GI-GVHD but
also to understand its biology, and may be a highly informative
tool to guide further GI-GVHD research. For now, given the
limitations of endoscopy for GI-GVHD diagnosis, ongoing research
into novel PET radiotracers are warranted, and represent an
exciting potential advance in the field.
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