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Abstract
Prolonged T-cell immunodeficiency following HLA- incompatible hematopoietic stem cell transplantation (HSCT)
represents a major obstacle hampering the more widespread use of this approach. Strategies to fasten T-cell reconstitution in
this setting are highly warranted as opportunistic infections and an increased risk of relapse account for high rates of
morbidity and mortality especially during early month following this type of HSCT. We have implemented a feeder free cell
system based on the use of the notch ligand DL4 and cytokines allowing for the in vitro differentiation of human
T-Lymphoid Progenitor cells (HTLPs) from various sources of CD34+ hematopoietic stem and precursor cells (HSPCs).
Co- transplantion of human T-lymphoid progenitors (HTLPs) and non- manipulated HSPCs into immunodeficient mice
successfully accelerated the reconstitution of a polyclonal T-cell repertoire. This review summarizes preclinical data on the
use of T-cell progenitors for treatment of post- transplantation immunodeficiency and gives insights into the development of
GMP based protocols for potential clinical applications including gene therapy approaches. Future clinical trials
implementing this protocol will aim at the acceleration of immune reconstitution in different clinical settings such as SCID
and leukemia patients undergoing allogeneic transplantation. Apart from pure cell-therapy approaches, the combination of
DL-4 culture with gene transduction protocols will open new perspectives in terms of gene therapy applications for primary
immunodeficiencies.

Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT)
is a key treatment for a large number of acquired and
inherited diseases of the hematopoietic system. Initially
restricted to patients with HLA-identical siblings due to

risks of T-cell mediated graft rejection and graft versus-host
disease (GvHD), it is now widely used also for patients
without HLA-identical donors thanks to the use of antith-
ymocyte globulin (ATG), changes in graft handling (T-cell
depletion, CD34+ hematopopoietic stem, and progenitor
cell (HSPCs) selection) and, recently, the use of post-
transplant cyclophosphamide (PTC) [1–3]. Although these
modifications have greatly improved HSCT outcomes,
T-cell immunodeficiency following transplantation remains
a major obstacle in an HLA-mismatched setting and ham-
pers the more widespread use of this approach.

Whereas innate immunity recovers quickly, reconstitu-
tion of adoptive immunity is a long process. In the case of
T-cell replete haplo-identical HSCT, donor T cells present
in the graft survive and expand, but this expansion concerns
mainly a CD8+ memory T-cell population and leads to a
contraction and skewing of the TCR repertoire, thus pro-
ducing a partially ineffective immune response [4]. In CD34
+-selected haplo-identical transplantation, this first wave of
homeostatically expanded T cells is virtually absent.
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Consequently, in both settings, reconstitution of a func-
tional, fully diverse and naive peripheral T-cell pool relies
on de novo production of naive T cells from grafted CD34+

HSPCs [4–6]. Even in young patients (i.e., most of those
transplanted for severe combined immunodeficiency
(SCID)), donor-derived T-cells only appear in the blood
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Fig. 1 Immune reconstitution in SCID-X1 patients after gene therapy
and In vitro generation of human T-lymphoid progenitors (HTLPs).
a Reconstitution of naïve CD4 T cells over time in patients from trial
#1 (upper graph) and trial #2 (bottom graph). b Correlation of CD3
reconstitution over time in the absence (upper graph) or presence of
infection (bottom graph). Data include patients of both trials (indicated

by SCID#1 and SCID#2). c Descriptive scheme of human T-cell
development. d Experimental protocol for the 7-day generation of
CD7+ T-cell precursors (=HTLPs) from CD34+ hematopoietic stem
and precursor cells (HSPCs) by co- culture with immobilized notch
ligand DL4 and a cocktail of cytokines
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after 3–6 months” [7, 8]. A period of 6–12 months is
required to achieve CD4+ cell counts that provide protec-
tive immunity. More complete restoration of the overall
T-cell compartment (i.e. naive T-cells exhibiting a poly-
clonal T-cell receptor (TCR) repertoire) is an even longer
process and may require up to 2 years in adults [9–11].

In primary immunodeficiency patients transplanted in an
HLA-incompatible setting the profound immunodeficiency
following such a procedure leads to severe, opportunistic
viral, bacterial, and fungal infections accounting for ~40%
of the mortality. The importance of a functional T-cell
compartment early after HSCT is further highlighted by the
fact, that T-cell-depleted HSCT is associated with an
increased risk of graft rejection and, in patients with
malignant hematologic disorders, relapse [12].

Gene therapy constitutes a valid alternative treatment
for SCID-X1 patients without HLA-identical donor [13].
Indeed, the risk of vector-related leukemia has been greatly
reduced by the introduction of new generations of safer
vectors. Furthermore this treatment has been restricted to
patients without HLA-identical donors (either matched
related or matched unrelated). A restrospective analysis of
haplo-identical transplantion versus gene therapy treatment
for immune reconstitution of SCID-X1 patients showed
that T-cell reconstitution was significantly faster in the
gene therapy group (14 patients) as compared to the haplo-
identical group (13 patients) [8]. However, this overall
positive output veils some disparities (Fig. 1a). T-cell
reconstitution was very slow and incomplete in some
patients from both groups. All of them shared one common
feature: the presence of active infection at time of treat-
ment (disseminated BCGitis, adenovirus infection…)
(Fig. 1b).

Many well-established pre-transplant parameters influ-
ence immune reconstitution after HSCT: diagnosis, age of
the recipient, degree of HLA mismatches, conditioning
regimen, type of graft (origin and manipulation), but also
the infectious status of donor and recipient. Immune
reconstitution is further impacted by clinical complications
including leukemia relapse, infections and GvHD, or
treatments [14–17]. However, in the small comparative
study published by our group [8] as well as in the study
conducted by Clave and colleagues [12], GvHD did not
significantly impact the immunological outcome in young
patients.

Beside our own observations (Fig. 1a, b), the deleterious
impact of bacterial and viral infections on immune recon-
stitution has been observed by several groups in murine
models [18–20] as well as by clinical observations [21].
Some of these studies show a significant association
between infections (viral and bacterial) and poor thymic
output quantified by T-cell receptor excision circles (TREC)
in the blood [4, 22].

As mentioned above, delayed T-cell reconstitution
represents a major obstacle to the widespread use of HLA-
mismatched HSCT. In order to shorten post-transplant
immunodeficiency and thus improve clinical outcome, we
chose to implement a new treatment strategy consisting of
co- transplantion of human T-lymphoid progenitors
(HTLPs) together with non-manipulated HSPCs. These
progenitors are able to seed the thymus and generate a wave
of mature and polyclonal T-cells significantly faster than it
is usually observed [11, 13]. Herein we are going to
describe this approach as well as its potential applications
for both HLA-mismatched HSCT and gene therapy.

Ex vivo generation of human T-lymphoid
progenitors

T-cell generation proceeds through three main stages: the
first one consists in the production of lymphoid progenitors
able to leave the bone marrow (where they are generated
from HSCs) and seed the thymus; the second one is T-cell
commitment accompanied by the loss of other lineage
potentials and first T-cell rearrangements at the δ, γ, and β
loci leading to the production of either γδ TCR+ T cells
(<5% of circulating mature T cells) or immature single
positive cells that (stage 3) further rearrange TCR α locus
and undergo positive and negative selection to ultimately
give rise to functional, non autoreactive αβ TCR+ T cells
(95% of circulating T cells) (Fig. 1c). Of note, the first step
of thymic T-cell differentiation takes half of the time
required for the whole thymopoietic process. Finding a way
to produce quickly ex vivo large numbers of HTLPs
appeared thus as a promising approach to fasten T-cell
reconstitution after HSCT.

The early stage of T-cell development is dependant on
Notch signaling in mouse and human, in particular Delta-
like ligand 4 (DL-4) [23–25], as well as on key cytokines
implicated in the survival and proliferation of thymocytes
[26–28]. Based on these findings, we implemented a feeder
cell-free culture system relying on a recombinant fusion
protein composed of the extracellular domain of human DL-
4 and the Fc part of human IgG2 (Fig. 1d). The use of this
modification allowed immobilisation of DL-4 on the culture
surface and thus eliminated the necessity of using a stromal
cell line similar to a previous study implementing DL-1 for
the expansion of CB HSCPs [29].

Our DL4-Fc culture system allowed the generation large
numbers of CD34+/-CD7+CD5-icCD3+ HTLPs from cord
blood CD34+ HSPCs within 7 days (an average of 2.5
HTLPs per CD34+ HSPC,) [30]. HTLPs displayed the gene
expression profile of early thymic precursors as demon-
strated by significant levels of transcripts of PTA, IL7RA,
RAG1, and BCL11B. T-cell differentiation in limiting
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dilution conditions on OP9/DL-1 cells revealed a significant
increase in in vitro T-cell potential (from 1/350 at day 0 to
1/12 at day 7). Once transplanted into both, irradiated adult
or non-irradiated neonate NOD/SCID/γc(-/-) (NSG) reci-
pients, these T-cell precursors seeded the thymus and gen-
erated mature, polyclonal, and functional T cells [30].
Co-transplantation of HTLPs and untreated CD34+ HSCPs
was used to mimick future clinical applications. In
this setting reconstitution of the T-cell compartment from
cultured HTLPs was robust and rapid, with other hemato-
poietic lineages being produced from the non-
manipulated HSCPs.

Mobilized peripheral blood (mPB) is currently the main
source of HSPCs in allogenic HSCT as such adult HSPCs
are available in large quantity and exhibit several advan-
tages over cord blood grafts in the clinical setting. However,
the lymphoid potential of adult HSCPs, especially T-
lymphoid potential, is diminished as compared to the one of
CB [31]. We recently demonstrated the capacity to generate
HTLPs from adult mPB CD34+ cells in DL-4 culture
conditions in a very similar way as for cord blood cells [32].
Within 7 days, adult HSPCs produced CD7+ HTLPs
expressing T lineage master genes (TCF7, IL7Ra and
BCL11B, GATA3, and CD3E) and exhibited an in vitro T-
cell differentiation potential similar to the one of CB-
derived HTLPs (around 1/19). HTLPs derived from adult
HSPCs expressed chemokine receptors implicated in thy-
mus homing (CCR7, CCR9, and CXCR4) and efficiently
produced polyclonal T cells upon transplantation in NOD/
SCID/γc−/− (NSG) mice. However, due to intrinsic dif-
ferences in terms of T-cell potential, survival, and pro-
liferation, the yields of HTLPs recovered after 7 days were
lower (around 0.45 HTLP/CD34+ HSPC). The lower effi-
ciency of adult HSPCs to produce HTLPs in DL-4 culture
conditions was accompanied by a higher rate of apoptosis
and a lower rate of proliferation. To overcome this hurdle,
we tested several molecules aiming at either increasing
Notch signaling or enhancing T-cell differentiation and
HTLPs survival and proliferation. The addition of a human
fragment of fibronectin and Tumor Necrosis Factor alpha
(TNFα) improved the yields of production of adult HTLPs
by 10 fold (patents WO2016/055396, WO2018/146297).
Our improved results demonstrate that, like CB HSPCs,
adult HSPCs provide an effective and available source of
in vitro cultured HTLPs in the context of future clinical
applications directed to shorten T-cell recovery after HSCT.

Cell therapy based on HTLPs

Based on these preclinical data, the entire platform,
including all reagents, DL-4, medium, serum, cytokines,
was translated into a GMP grade process. Of note, results

obtained in GMP conditions in the clinical runs were
identical to the ones obtained following the research grade
protocol. Subsequently, we carefully monitored the com-
position of the day-7-cellular product, with a special focus
on cellular contaminants. Apart from HTLPs, DL-4 cultures
contain no or very rare T-cells (undetectable upon analysis
of TCR rearrangements by robust and highly sensitive
techniques used to detect minimal residual disease in
hematologic malignancies, coll. with Hematology Lab
directed by E. McIntyre, Necker Hospital) and mostly
myeloid precursors (around 12%).

As a third step, we tested the toxicity of the DL-4 protein
and the day 7-cellular product of DL-4 cultures by injection
of a 10 fold higher dose than used in any future clinical trial
into the mice.

Of note, quantification of residual DL-4 at the end of the
culture performed by a home-made ELISA using antibodies
specific for either the DL-4 extracellular domain or the Fc
part of DL-4 yielded negative results in all experiments but
one the dose of which was defined as reference for injection
into mice. We did not observe any toxicity or tumor-
igenicity upon injection of the DL-4 protein and the cellular
product in mice. Furthermore, we also analyzed the car-
yotype of the T-cell precursors and performed CGH array,
both of which were normal (data not shown).

Based on these results, we are currently implementing
two phase 1/2 clinical trials using human in vitro generated
HTLPs, with the financial support of the French Ministry of
Health and the sponsorship of Assistance-Publique Hopi-
taux de Paris. The first clinical trial will include 12 SCID
patients undergoing haplo-identical HSCT. In this trial,
patients will receive a first transplant of CD34+-selected
cells, followed 8 days later by the injection of HTLPs
generated from the residual CD34+ fraction at doses (0.1
up to 1.5 × 10e6 CD7+ cells/kg, one single dose of HTLPs
per patient). The protocol has been approved by the French
Drug Agency and is open to inclusion. The primary
objective will be to assess the procedure’s safety: dose-
limiting toxicity (DLT), including grade III-IV graft versus
host disease (GVHD) and grade III or higher CTCAE
adverse events (AEs). Secondary objectives will include:
graft failure, the presence of naïve CD4+ T cells at
6 months, kinetics of T-cell reconstitution, incidence of
infections, relapse rate, and overall survival.

The second trial will include 10 adult patients treated by
double cord blood HSCT for leukemia. One cord blood will
be injected without manipulation. The other one will be
exposed 7 days to DL-4 culture conditions before infusion
into the patient.

Both trials will allow not only evaluation of the proce-
dure’s safety, but also the ability of adult versus CB-derived
T-cell precursors to accelerate immune reconstitution in a
different clinical context.
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The first clinical trial for SCID patients will start in Q2
2019, followed by the second one in Q1 2020.

Gene therapy based on HTLPs

Our DL-4 culture system provides a unique plateform not
only for cellular but also for gene therapy applications. We
also explored the possibility to genetically modify HTLPs
by combining gene transduction by SIN-retroviral (SIN-
RV) and lentiviral (LV) vectors with DL-4 based culture.
Several conditions were tested, transduction followed by
DL-4 culture, DL-4 culture followed by transduction and a
combination of both using either a VSVG SIN-retroviral
vector and a BaEv –pseudotyped LV expressing either
IL2RG gene or mCherry. The presence of gene-corrected
HTLPs was evaluated at day 4 and day 7 of culture by the
frequency and number of mCherry+ HTLPs at day 4 and
day 7 and the quantification of T-cell potential in limiting
dilution assay as described elsewhere [27]. Healthy donor
HSPCs and SCID-X1 patients’ HSPCs were used, the
results were compared to the ones obtained in classical gene
transduction protocols. As a reminder, SCID-X1 patients
exhibit a severe T-cell defect due to an early-stage blockade
of T-cell differentiation caused by a loss-of-function
mutation in the γC gene. SCID-X1 γC deficiency can be
safely and efficiently corrected by the ex vivo transduction
of HSPCs, as demonstrated in patients included in gene
therapy protocols [33]. For both types of vectors (SIN-RV
and BaEv-LV) and samples (healthy or SCID-X1 HSPCs),
the combination of transduction and DL-4 culture condi-
tions led to the appearance of a population of gene-
corrected HTLPs from day 4 on (>30% [34]). Furthermore,
we demonstrated that upon co-culture on OP9/DL1 cells,
CD4+CD8+ double positive cells and TCR+ T cells
appeared earlier and in higher numbers when gene trans-
duction was combined to the DL-4 plateform. Our data
indicated the correction of γC deficiency in BM SCID-X1
CD34+ HSPCs under both conventional and DL-4 culture
conditions. However, T-cell differentiation was faster and
more efficient under the DL-4 condition.

The possibility to obtain gene-corrected HTLPs able to
accelerate T-cell reconstitution following gene therapy in
infected SCID patients, but also for other clinical indica-
tions, needs to be further evaluated. We therefor plan to
confirm both our in vitro and in vivo results in order to
develop a GMP compatible protocol combining DL-4 cul-
ture with gene therapy.

A gene therapy protocol for infected SCID X1 patients
including both, the infection of gene-corrected HSPCs and
gene-corrected HTLPs, remains the ultimate goal. This
proof of concept will be of key importance for the extension
of the DL-4 protocol to other clinical applications.

Methods

Search strategy and selection criteria The first three references
correspond to three major breakthroughs in HLA-partially
incompatible HSCT. We searched PubMed between 1 Jan
2007, and 31 August 2018, with the terms « allogeneic
hematopoietic stem cell transplantation », « haplo-identical
HSCT » in combination with « thymus », « thymopoiesis », «
immune reconstitution », « viral complications », « T-cell
receptor excision circles », « SCID », and « lymphoid pro-
genitors », « T-cell development » in combination with «
Notch », « Delta-like-4 ligand » and « Delta-like-1 ligand ».
We restricted our search to English publications. We selected
reports from the past 5 years but did not exclude important
and highly cited older publications. We searched the reference
lists of articles identified by this search strategy and selected
the 33 that we judged relevant. Review articles are also cited
to provide more detail.

Conclusions

We have demonstrated the possibility to generate large
amounts of HTLPs exhibiting the phenotypic and molecular
signatures of their thymic counterparts from any source of
CD34+ HSPCs.

Ex vivo generated HTLPs were able to colonize the thymus
of NSG mice and produce polyclonal mature T cells in vitro
and in vivo. The whole plateform has been moved to Necker
GMP facility to implement two clinical trials including SCID
and leukemic patients undergoing allogeneic transplantation in
different settings. If we successfully shorten the severe
immunodeficiency period following transplantation, the ben-
efit for the patients and public health will be immense:

First of all, the reduction of incidence and severity of
opportunistic infections (e.g., adenovirus, cytomegalovirus,
enterovirus, and fungi infections) would significantly
shorten the length of hospitalization for each patient. As a
consequence the use of partially incompatible HSC donors
could be extended to all patients requiring this procedure
(even in transplantation units that are not familiar with this
high-risk procedure), with a significant decrease in mortality
and morbidity.

Apart from pure cell-therapy approaches, the combina-
tion of DL-4 culture with gene transduction protocols will
open new perspectives in terms of gene therapy
applications.
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