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Schisandrin B, a dual positive allosteric modulator of GABAA

and glycine receptors, alleviates seizures in multiple
mouse models
Jun Wu1, Miao Zhao1, Yu-chen Jin1, Min Li1, Ke-xin Yu1 and Hai-bo Yu1✉

Epilepsy is a prevalent and severe neurological disorder and approximately 30% of patients are resistant to existing medications.
It is of utmost importance to develop alternative therapies to treat epilepsy. Schisandrin B (SchB) is a major bioactive constituent of
Schisandra chinensis (Turcz.) Baill and has multiple neuroprotective effects, sedative and hypnotic activities. In this study, we
investigated the antiseizure effect of SchB in various mouse models of seizure and explored the underlying mechanisms.
Pentylenetetrazole (PTZ), strychnine (STR), and pilocarpine-induced mouse seizure models were established. We showed that
injection of SchB (10, 30, 60 mg/kg, i.p.) dose-dependently delayed the onset of generalized tonic-clonic seizures (GTCS), reduced
the incidence of GTCS and mortality in PTZ and STR models. Meanwhile, injection of SchB (30 mg/kg, i.p.) exhibited therapeutic
potential in pilocarpine-induced status epilepticus model, which was considered as a drug-resistant model. In whole-cell recording
from CHO/HEK-239 cells stably expressing recombinant human GABAA receptors (GABAARs) and glycine receptors (GlyRs) and
cultured hippocampal neurons, co-application of SchB dose-dependently enhanced GABA or glycine-induced current with EC50
values at around 5 μM, and application of SchB (10 μM) alone did not activate the channels in the absence of GABA or
glycine. Furthermore, SchB (10 μM) eliminated both PTZ-induced inhibition on GABA-induced current (IGABA) and strychnine (STR)-
induced inhibition on glycine-induced current (Iglycine). Moreover, SchB (10 μM) efficiently rescued the impaired GABAARs associated
with genetic epilepsies. In addition, the homologous mutants in both GlyRs-α1(S267Q) and GABAARs-α1(S297Q)β2(N289S)γ2L
receptors by site-directed mutagenesis tests abolished SchB-induced potentiation of IGABA and Iglycine. In conclusion, we have
identified SchB as a natural positive allosteric modulator of GABAARs and GlyRs, supporting its potential as alternative therapies for
epilepsy.
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INTRODUCTION
Epilepsy is a prevalent and severe neurological disorder that
impacts almost 1% of the world’s population. Epilepsy is a
condition characterized by recurrent seizures that occur without
any apparent trigger. These seizures are usually caused by
abnormal activity in the neurons of central nervous system, which
is often the result of an imbalance between excitatory and
inhibitory neurotransmission [1]. Despite the numerous antiseizure
medications (ASMs) in recent decades, around 30% of patients are
still not responsive to the treatments [2]. Furthermore, the
treatment of epilepsy needs a longer-term utilization of ASMs,
which leads to various adverse effects such as allergic reactions,
hepatotoxicity, and excessive depression of the central nervous
system (CNS) [3]. These reactions impose a significant burden on
both patients and society. Therefore, it is of utmost importance to
develop alternative therapies to treat epilepsy.
GABAA receptors (GABAARs), the major inhibitory receptors in

the adult mammalian CNS, are important targets of epilepsy [4],
and also play significant roles in the development of various

neurological disorders, such as migraine, neuropathic pain, and
depression [5, 6]. The majority of GABAARs consist of two α
subunits, two β subunits, and either a γ or δ subunit. Among them,
γ-containing GABAARs mainly mediate phasic inhibitory synaptic
transmission, while δ-containing GABAARs mediate tonic extra-
synaptic inhibition [7]. Upon activation, the influx of chloride ions
into the neuron hyperpolarizes and/or stabilizes the membrane
potential and thus inhibits the neuronal excitability [8]. Glycine
receptors (GlyRs), the other major inhibitory receptors in CNS, play
important roles in maintaining the normal balance between
excitation and inhibition in the brain [9–11]. Activation of GlyRs
suppresses neuronal excitation and seizure-like events in the
entorhinal cortex and hippocampus of rats [9–11]. The antagonists
of these receptors, pentylenetetrazole (PTZ, blocking GABAARs) or
strychnine (STR, blocking GlyRs), have often been used to
generate seizure models [12], further demonstrating the crucial
role of GABAARs and GlyRs in the development and progression of
epilepsy. Mutations that cause dysfunction of GABAARs and GlyRs
also result in seizure-like symptoms [13–15].
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Schisandra chinensis fructus, the dried ripe fruit of Schisandra
chinensis (Turcz.) Baill, is a well-known traditional Chinese medicine
[16]. The extracts from Schisandra chinensis fructus have been
reported to possess a variety of pharmacological effects on CNS
disorders. These effects include neuroprotection [17], improvement
of learning and memory [17], sedative-hypnotic [18], anxiolytic [19],
and antidepressant effects [20]. Schisandrin B (SchB) (chemical
structure was shown in Fig. 1a) is the most abundant dibenzocy-
clooctadiene lignan from Schisandrae chinensis. Due to its high
availability in the brain after administration [21, 22], SchB possessed
multiple neuroprotective effects [23], sedative and hypnotic
properties [24]. However, there have been no reports for the effects
of SchB on epilepsy. Coincidently, the present study identified SchB
as a natural positive allosteric modulator of GABAARs and GlyRs,
which indicates its potential use in epilepsy. Thus, we investigated
the antiseizure effects of SchB on various mouse models of seizure
and explored the underlying mechanism.

MATERIALS AND METHODS
Materials
Schizandrin B was purchased from Mreda Technology Inc. (Beijing,
China). Pentylenetetrazole and etomidate were purchased from
Shanghai Macklin Biochemical Co., Ltd (Shanghai, China). Strych-
nine hydrochloride was purchased from Shanghai Aladdin
Biochemical Co., Ltd (Shanghai, China). Pilocarpine hydrochloride
was purchased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan). Diazepam, GABA, sodium valproate, pentobarbital,
and Poly-D-lysine were purchased from Sigma-Aldrich (Shanghai,
China). Atropine, glycine, and NMDA were purchased from
Topscience Co., Ltd. (Shanghai, China). L-Glutamate was purchased
from Abcam (Cambridge, UK).

Animals
In total, 80 male CD-1 mice (weighing 25–30 g and aged
4–5 weeks), 24 male C57BL/6 N mice (weighing 20–22 g and aged
6–8 weeks) and 6 Sprague–Dawley rat pups (postnatal day 1, P1)
were obtained from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). Animals were housed in
plastic cages and given free access to standard food and water
under laboratory conditions with a temperature range of 22–24 °C,
humidity between 50% and 60%, and a 12 h light/dark cycle.
Animal care and experimental procedures have been approved by
the Institutional Animal Care and Welfare Committee of the
Chinese Academy of Medical Sciences & Peking Union Medical
College. Animals were randomly assigned to treatment or control
groups. All the behavioral experiments were performed by
experimenters who were blinded to the groups and treatments.

Construction of mutated receptor subunits
The following point mutations were introduced into human
GABAA receptor cDNA α1 (gene accession number NM_000806.5):
α1(H129R), α1(D219N), α1(G251S), and α1(S297Q); β2 (gene
accession number NM_000813.3): β2(N289S); γ2L (gene accession
number NM_198903.2): γ2L(R177G) and γ2L(P322A), and human
glycine receptor cDNA α1 (gene accession number NM_000171.4):
α1(S267Q), α1(S296A), α1(F380A) and α1(K385A). These mutations
were generated using the Hieff MutTM Site-Directed Mutagenesis
Kit (YEASEN Biotechnology Co., Ltd., Shanghai, China). The
authenticity of the DNA sequence at the mutation sites was
confirmed by Sanger sequencing (Genewiz, Tianjin, China).

Cell cultures and transfections
Cell culture of cell lines. T-REx™-CHO cells stably expressing
human α1β2γ2L and α2β2γ2L GABAA receptors were cultured in
DMEM/F12 nutrient mixture supplemented with 10% FBS,
blasticidin (10 µg·ml−1), hygromycin (300 µg·ml−1), zeocin
(100 µg·ml−1) and puromycin (1 µg·ml−1). Flp-In™ T-REx™ 293 cells

stably expressing human α4β3δ and α6β3δ GABAA receptors were
cultured in DMEM supplemented with 10% FBS, blasticidin
10 µg·ml−1, hygromycin 100 µg·ml−1, zeocin 100 µg·ml−1 and
puromycin 0.2 µg·ml−1. Flp-In™-CHO cells stably expressing
human α1, α2, and α3 glycine receptor subtypes were cultured
in DMEM/F12 nutrient mixture supplemented with 10% FBS and
300 µg·ml−1 of hygromycin. T-REx™-CHO and Flp-In™-CHO cells
were cultured in DMEM/F12 nutrient mixture supplemented with
10% FBS. These cells were utilized to generate recombinant
mutant receptors (α1β2γ2L GABAARs and α1 GlyRs). HEK-293 cells
were cultured in DMEM supplemented with 10% FBS and were
used to express human AMPA (GluA1 and GluA2) and NMDA
receptors (NR1/NR2A and NR1/NR2B).

Transfections. All transfections were performed by using Lipo-
fectamine® LTX & Plus Reagent (Invitrogen). The enhanced green
fluorescent protein (EGFP) was co-transfected with the genes of
interest to facilitate the visualization of the transfected cells. The
cDNA combinations were prepared as follows: for AMPA receptors,
the ratio of GluA1 (or GluA2) to EGFP was 1:0.1; for NMDA
receptors, the ratio of NR1: NR2A (or NR2B): EGFP was 1:1:0.2; for
mutant α1β2γ2L GABAA receptors, the ratio of α1: β2: γ2L: EGFP
was 1:1:3:0.5; for mutant α1 glycine receptors, the ratio of α1: EGFP
was 1:0.1. Transfected cells were plated on Poly-D-Lysine-coated
glass coverslips and were used for electrophysiological recordings
24–48 h after transfection.

Primary cultures of hippocampal neurons
Hippocampal neurons were extracted from Sprague-Dawley rat
pups on postnatal day 1. Briefly, the rat pups were decapitated,
and their hippocampi were dissected out and minced into pieces
~1mm3 in size using scissors in HBSS on ice. The tissue was then
digested in HBSS containing 0.125% trypsin (Gibco, USA) at 37 °C
for 30 min. The cells were dissociated by undergoing three
successive trituration and sedimentation steps in isolation buffer
containing DNase I. The tissue debris was eliminated by filtering
the cell suspension through a sterile cell strainer. The cell
suspension was centrifuged at 1000 r/min for 5 min at room
temperature. The pellet was then resuspended in plating medium,
comprised of Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), 10% horse
serum (HS), 1% penicillin/streptomycin (100 units·ml−1 and
100 μg·ml−1, respectively), and 2mM L-glutamine (Sigma-Aldrich,
USA). For whole-cell voltage-clamp recordings, hippocampal
neurons were plated onto glass coverslips (12 mm) coated with
0.1 mg·ml−1 poly-D-lysine in 35-mm culture dishes at a density of
1 × 106 cells per dish. The cells were then incubated in a
humidified 5% CO2 incubator at 37 °C. Four hours later, the
plating media was replaced with maintenance media. The
maintenance media was composed of Neurobasal medium (Gibco,
USA) supplemented with 2% B27 (Gibco, USA) and 2mM L-
glutamine (Sigma-Aldrich, USA). The culture medium was replaced
with half of maintenance media every three days. All the
experiments were conducted between day 10 and day 14 in vitro.

Whole-cell voltage-clamp recordings
All the whole-cell patch clamp recordings were performed at a
temperature of 24 ± 2 °C using a HEKA EPC-10 amplifier (HEKA
Elektronik GmbH, Germany). The currents were filtered using a
low-pass filter with a cutoff frequency of 2 kHz. The standard
external solution contains (in mM): 140 NaCl, 3 KCl, 1.5 MgCl2, 2
CaCl2, 10 HEPES, and 10 Glucose, with a pH of 7.40 adjusted with
NaOH. For GABA or glycine-evoked currents in recombinant
GABAA and glycine receptors, the pipette solution contained (in
mM): 145 KCl, 1 MgCl2, 5 EGTA, 5 Mg-ATP, 10 HEPES, adjusted to a
pH of 7.3 with KOH. After filled with internal solution, the
resistance of pipette was 1.5–2.5 MΩ. To measure GABA- or
glycine-evoked currents in hippocampal neurons, the pipette
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solution contained the following components (in mM): 145 CsCl, 1
MgCl2, 5 EGTA, 5 Mg-ATP, and 10 HEPES, adjusted to a pH of 7.3
with CsOH, the resistances of pipette tip were 3.0–4.0 MΩ. For the
current recording of AMPA receptors, the pipette solution
contained (in mM): 140 CsF, 10 NaCl, 1 EGTA, and 10 HEPES,
adjusted to a pH of 7.4 with NaOH. For the current recording of
NMDA receptors, the Mg2+ free external solution was used (in
mM): 150 NaCl, 5 KCl, 2 CaCl2, 10 HEPES, and 10 glucose, adjusted
to a pH of 7.4 with NaOH. The pipette solution contained (in mM):
145 KCl, 1 MgCl2, 5 EGTA, 5 Mg-ATP, and 10 HEPES, adjusted to a
pH of 7.3 with KOH. To record the ligand-gated ion channels,
membrane potential was held at −60mV. GABA (or glycine)
currents were elicited by applying GABA (or glycine) for 5 s to cells.
AMPA currents were elicited by co-applying 1mM glutamate and
100 μM cyclothiazide for 5 s to cells. NMDA currents were elicited
by applying a solution containing 100 μM NMDA and 10 μM
glycine for 5 s to cells.

Pentylenetetrazole (PTZ) -induced seizures
The animal model was adapted from the method reported by
Mandhane et al. [25]. Male CD-1 mice (25–30 g; n= 8 per group)
were treated with different drugs via intraperitoneal injections
(i.p.). The animals were administered SchB (10, 30, or 60 mg·kg−1),
sodium valproate (positive control, 300mg·kg−1), or a vehicle
solution (containing 30% HP-β-CD, 5% DMSO, and 1% Tween 80),
30 min prior to the subcutaneous (s.c.) injection of PTZ
(85 mg·kg−1) dissolved in 0.9% sterile saline. After the injection
of PTZ, the mice were closely monitored for 30 min via video
recording. The latency for the onset of generalized tonic-clonic
seizures (GTCS) and the mortality rate were recorded. GTCS are
characterized by a rigid extension of all four limbs, exceeding a 90-
degree angle with the body plane, lasting for over 10 s, followed
by a loss of the righting reflex.

Strychnine (STR)-induced seizures
The animal model was adapted from the method reported by EI-
Mowafy et al. [26]. Male CD-1 mice (weighing 25–30 g; n= 8 per
group) were injected intraperitoneally with SchB (10, 30, or
60mg·kg−1, i.p.), sodium valproate (positive control, 300mg·kg−1,
i.p.) or vehicle control solution containing 30% HP-β-CD, 5%
DMSO, and 1% Tween 80, i.p.), 30 min prior to an administration of
strychnine hydrochloride (0.75 mg·kg−1, s.c.) dissolved in 0.9%
sterile saline. After the injection of STR, the mice were closely
monitored for 30 min via video recording. The latency to the onset
of GTCS and the mortality rate were recorded. GTCS are
characterized as described in the PTZ model mentioned above.

Pilocarpine-induced status epilepticus
The animal model was adapted from the method by Gozzelino
et al. [27]. Male C57BL/6 N mice (20–22 g; n= 8 per group) were
administered SchB (30 mg·kg−1, i.p.) or vehicle control solution
containing 30% HP-β-CD, 5% DMSO, and 1% Tween 80, i.p.),
30 min prior to an administration of pilocarpine hydrochloride
(360 mg·kg−1, s.c.). At the time of compound injection, the animals
were also administered 1mg·kg−1 of atropine to block the
peripheral cholinergic effects induced by pilocarpine. The animal
behavior was closely monitored for 90 min through video
recording and scored according to a modified Racine scale [28]:
stage 0, normal activity; stage 1, freezing behavior; stage 2, tail
extension, head bobbing; stage 3, continuous head bobbing and
forepaw shaking; stage 4, forelimb clonus, rearing and falling;
stage 5, repetitive stage 4 or big jumping; stage 6, death.

Data analysis and statistics
The behavioral datawere analyzed usingGraphPad Prism8.0 software
(GraphPad Software, San Diego, CA, USA). Electrophysiological data
were collected and analyzed using Patchmaster and Fitmaster
software (HEKA Electronics, Lambrecht, Germany), Igor Pro 6.0

(WaveMetrics, Portland, USA), GraphPad Prism 8.0 (GraphPad Soft-
ware, San Diego, CA, USA), and IBM SPSS Statistics Version 26 (IBM
Corp., Armonk, NY, USA). Concentration-response curves were fitted
using the logistic equation with four parameters: Y= Bottom+ (Top-
Bottom)/(1+ 10^((LogEC50 - X) * nH)), where Y represents the
normalized peak current, X represents the concentration of
compound, Bottom and Top are the minimum and maximum
response, EC50 represents the half maximal effective concentration,
and nH represents the Hill coefficient. All data are presented as
mean ± SD, unless noted otherwise. The data were analyzed using
paired or unpaired Student’s t tests, as well as one-way ANOVA
followed by Dunnett’s post-hoc test. Statistical significance was
determined at P < 0.05.

RESULTS
SchB potentiated recombinant glycine receptors
In an earlier screening for potentiators of α1 glycine receptors
based on compounds derived from Schisandra chinensis fructus,
SchB was identified as a positive allosteric modulator of α1 GlyRs.
Therefore, we further tested the effect of SchB on the three GlyRs
(α1–α3). The EC50 concentration for glycine was determined for
each subtype (Table 1). In the presence of glycine at its EC10–20
concentration, SchB-induced potentiation of glycine currents
(Iglycine) was studied (Fig. 1a). SchB at 30 μM showed a more
dramatic potentiation on α1 GlyRs with an Emax value of
5.32 ± 0.27-fold. It also displayed a 3.01 ± 0.44-fold potentiation
on α2 GlyRs and a 2.86 ± 0.55-fold potentiation on α3 GlyRs.
(Fig. 1b; Table 1). In the meanwhile, SchB enhanced the glycine
currents (Iglycine) in a concentration-dependent manner (Fig. 1c, d)
with EC50 values of 6.11 ± 0.75 μM, 5.11 ± 1.58 μM, and
4.93 ± 1.64 μM for α1, α2, and α3 GlyRs, respectively (Table 1).
However, SchB alone did not induce any activation of GlyRs, which
provides solid evidence that SchB is a positive modulator of GlyRs
(Fig. S1). Due to the almost saturated effects of SchB at 10 μM, the
concentration was used for the subsequent studies. Next, we
examined whether SchB could reverse STR-induced antagonism of
α1 GlyRs. As shown in Fig. 1e, STR (30 nM, ~IC50) significantly
inhibited Iglycine in CHO cells expressing α1 GlyRs. Such inhibition
of Iglycine was significantly eliminated by SchB (Fig. 1e). Meanwhile,
we also investigated the impact of 10 μM SchB on the activation of
glycine receptors (α1, α2, and α3 GlyRs). As shown in Fig. S2, SchB
greatly enhanced the potencies of glycine but had no effects on
the efficacies of glycine-induced activation on these receptors.

SchB potentiated recombinant synaptic and extrasynaptic GABAA

receptors
Both GlyRs and GABAARs belong to Cys-loop receptors that form
pentameric chloride channels with greater sequence homology
[29]. Therefore, we assume that SchB might be also active on
GABAA receptors. We successfully constructed stable cell lines
expressing both synaptic and extrasynaptic GABAA receptors
(Fig. S3). Diazepam (DZP) and delta selective compound 2 (DS2)
were used to verify the existence of γ2 and δ subunits,
respectively. Initially the effect of SchB on α1β2γ2 GABAARs was
tested. In the presence of GABA at its EC10–20 concentration, the
effect of SchB on GABA-elicited current (IGABA) was examined
(Fig. 2a). Interestingly, SchB at 30 μM also showed potentiation on
α1β2γ2 GABAA receptors with an Emax of 2.43 ± 0.36-fold (Fig. 2b).
Then we further evaluated its action on the other subtypes,
including α2β2γ2, α4β3δ, and α6β3δ GABAARs (Fig. 2b). These
receptors represent the major synaptic and extrasynaptic
GABAARs, respectively [7]. As shown in Fig. 2b, SchB also exhibited
potentiation effects on the tested GABAARs. SchB at 30 μM
enhanced GABA currents to 2.24 ± 0.26-fold, 3.55 ± 0.17-fold, and
2.43 ± 0.24-fold for α2β2γ2, α4β3δ, and α6β3δ GABAARs, respec-
tively (Fig. 2b; Table 2). In the meanwhile, SchB potentiated IGABA
of α1β2γ2, α2β2γ2, α4β3δ, and α6β3δ GABAARs in a
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concentration-dependent manner (Fig. 2c, d). The EC50 values
were 4.03 ± 1.16 μM, 4.84 ± 0.95 μM, 4.93 ± 0.71 μM, and
1.51 ± 0.34 μM for α1β2γ2, α2β2γ2, α4β3δ, and α6β3δ GABAARs
in the presence of EC10-20 concentrations of GABA, respectively.

Based on the EC50 values and efficacies, apparently α4β3δ and
α6β3δ GABAARs were more sensitive to SchB. However, SchB
alone could not activate the channels in the absence of GABA,
which further convinced that SchB is a positive modulator of
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GABAARs (Fig. S1). Then we also tested the effect of SchB on PTZ
(0.5 mM, ~IC50)-induced antagonism of GABA currents (Fig. 2e).
PTZ-induced inhibition of IGABA was significantly reversed by SchB
(Fig. 2e). Next, we investigated the impact of SchB (10 μM) on
GABA-induced activation of α1β2γ2L GABAARs. SchB not only
enhanced the affinity of GABA, but also increased its efficacies
(Fig. S4; Table 2).

SchB potentiated GABAA and glycine receptors in cultured
hippocampal neurons
Both GlyRs and GABAARs are highly expressed in the central
nervous system. Hippocampal neurons are responsible for seizure
generation and propagation [30]. Thus, we further examined the
effects of SchB on GABA- and glycine-induced currents in cultured
hippocampal neurons (Fig. 3a). Consistent with the data from the
recombinant cells, SchB also potentiated GABAARs and GlyRs in
hippocampal neurons in a dose-dependent manner (Fig. 3b–e).
The EC50 values were 4.47 ± 0.92 μM and 0.99 ± 0.12 μM for
GABAARs and GlyRs, respectively. The Emax values were
2.43 ± 0.24-fold and 5.06 ± 0.43-fold for GABAARs and GlyRs,
respectively. Meanwhile, SchB also potentiated the GABAARs-
mediated tonic currents in cultured hippocampal neurons (Fig. S5).
In addition, consistent with the results observed in the recombi-
nant cells, after applying PTZ and STR at relatively higher doses
(PTZ: 0.5 mM, ~IC50; STR: 30 nM, ~IC50), SchB was still capable of
eliminating the antagonists-induced suppressions (Fig. 3f, g).
These findings provide strong evidence that SchB is an efficacious
positive allosteric modulator of GABAARs and GlyRs.

SchB alleviated PTZ-, STR-, and pilocarpine-induced seizures
in mice
SchB-induced dual potentiation of both GABAARs and GlyRs
prompted us to test the effect of this natural compound on
preclinical seizure models. PTZ is a non-competitive antagonist of
GABAARs [31]. It induces acute GTCS behaviors by reducing
inhibitory synaptic transmission and enhancing neuron excitabil-
ity. And PTZ-induced seizure model is a commonly used method
for identifying potential antiseizure medications (ASMs) in
preclinical studies. Therefore, the PTZ model was applied to
assess the anticonvulsant activity of SchB. SchB was administered
intraperitoneally at doses of 10, 30, or 60 mg·kg−1, 30 min prior to
the PTZ injection. After administering PTZ (85 mg·kg−1, s.c.), the
following parameters were measured for 30 min: the latency to
the onset of GTCS, the incidence of GTCS, and mortality (Fig. 4a).
As shown in Fig. 4b, SchB at doses of 30 and 60mg·kg−1

significantly increased the latency to the onset of GTCS. However,
no significant effect was observed at the lower dose of
10mg·kg−1. Sodium valproate (VPA, 300mg·kg−1, i.p.) was used
as a positive control to verify the feasibility of the model, and
significantly increased the latency to the onset of GTCS. What’s
more, compared to the vehicle control group, SchB reduced the
incidence of GTCS (vehicle group: 100%) and mortality (vehicle
group: 50%) (Fig. 4c). After the treatment of SchB at 10, 30, and
60mg·kg−1, the incidence of GTCS was 75%, 25%, and 37.5%,
respectively, and the mortality rates were 25%, 12.5%, and 0%,
respectively. There was no occurrence of GTCS or death in the VPA
group (300 mg·kg−1, i.p.) (Fig. 4c).
Strychnine (STR), the antagonist of GlyRs, could induce acute

GTCS behaviors by reducing inhibitory synaptic transmission and
further enhancing neuronal excitability. Since SchB potentiated
glycine receptors, we wondered whether SchB was also effective
in the STR-induced seizure model. To examine the antiseizure
effects of SchB on STR model, we measured the latency to the
onset of GTCS and mortality for 30 min after administering STR
(0.75 mg·kg−1, s.c.). SchB was administered intraperitoneally at
doses of 10, 30, and 60mg·kg−1, 30 min prior to the STR injection
(Fig. 4d). As expected, SchB at doses of 30 and 60mg·kg−1

significantly increased the latency to the onset of GTCS (Fig. 4e).
However, no significant effect was observed at the lower dose of
10mg·kg−1. Compared to the vehicle control group, SchB
decreased the mortality rate (vehicle group: 100%) to 75%,
62.5%, and 50% at doses of 10, 30, and 60mg·kg−1, respectively.
The positive control, sodium valproate (VPA, 300mg·kg−1, i.p.),
significantly increased the latency to the onset of GTCS and
reduced the mortality rate to 12.5% (Fig. 4e, f).
Finally, we investigated the antiseizure effects of SchB on the

pilocarpine-induced status epilepticus (SE) model, which closely
resembles clinical temporal lobe epilepsy. This model often results
in resistance to various ASMs in patients [32]. To evaluate the
antiseizure effects of SchB on pilocarpine-induced seizures, we
measured the seizure scores within 90 min after administering
pilocarpine (360 mg·kg−1, s.c.). SchB has shown almost equal
activity at the dosage 30 and 60mg·kg−1 in PTZ and STR models.
Therefore, SchB was administered at 30 mg·kg−1 (Fig. 4g). As
shown in Fig. 4h, SchB resulted in a significant decrease in seizure
scores. The analysis of stage distribution (Fig. 4i) revealed that all
of the mice treated with the vehicle developed stage 0–4,
characterized by turning to a side position, while 87.5% of the
mice reached stages 5–6. Among the mice treated with SchB,
62.5% exhibited stage 0–4, and 37.5% progressed to stages 5–6.

Table 1. Functional parameters for the potentiation effect of SchB on the wild-type and mutant glycine receptors.

Receptor Glycine Glycine (in the presence of 10 μM
SchB)

SchB (in the presence of EC10~20 Glycine)

EC50, μM nH n EC50, μM nH n EC50, μM nH Emax, fold n

α1 102.0 ± 9.4 2.45 ± 0.76 6 41.2 ± 6.0### 1.26 ± 0.25 5 6.11 ± 0.75 2.54 ± 0.53 5.32 ± 0.27a 5

α2 229.5 ± 24.0 2.13 ± 0.41 6 133.3 ± 8.9### 2.28 ± 0.30 5 5.11 ± 1.58 1.62 ± 0.67 3.01 ± 0.44a 5

α3 246.5 ± 15.4 2.25 ± 0.28 6 117.2 ± 11.3### 2.47 ± 0.63 5 4.93 ± 1.64 1.92 ± 0.95 2.86 ± 0.55a 5

α1(S267Q) 207.3 ± 18.8*** 1.77 ± 0.24 5 N.D. N.D. N.D. N.D. 1.32 ± 0.04***,b 5

α1(S296A) 81.7 ± 12.7 2.27 ± 0.78 5 N.D. N.D. N.D. N.D. 3.44 ± 0.48b 5

α1(F380A) 75.1 ± 9.4* 2.30 ± 0.57 5 N.D. N.D. N.D. N.D. 3.32 ± 0.39b 5

α1(K385A) 70.0 ± 12.1** 2.38 ± 0.53 5 N.D. N.D. N.D. N.D. 2.79 ± 0.59b 5

The maximal efficacies (Emax, fold), EC50 concentrations (μM), and Hill coefficients (nH) for each receptor are presented as mean ± SD for the number (n) of cells
tested.
N.D., not-determined.
*P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA followed by Dunnett’s test, compared to wild type. ###P < 0.001, Student’s unpaired t-test.
aIndicates SchB at 30 μM.
bIndicates SchB at 10 μM.

Schisandrin B alleviates seizures via GABAARs and GlyRs
J Wu et al.

469

Acta Pharmacologica Sinica (2024) 45:465 – 479



GABA (1 μM)
SchB (μM) 0.1 0.3 1 3 10 30

5 s50
0 

pA

α1β2γ2

α4β3δ

α2β2γ2

α6β3δ

GABA (6 μM)
SchB (μM) 0.1 0.3 1 3 10 30

5 s

50
0 

pA

5 s50
0 

pA

GABA (1 μM)
SchB (μM) 0.1 0.3 1 3 10 30

5 s

50
0 

pA

GABA (0.3 μM)
SchB (μM) 0.1 0.3 1 3 10 30

c

d e

α1β
2γ

2

α2β
2γ

2
α4β

3δ
α6β

3δ
0

1

2

3

4

0.1 1 10 100

1

2

3

4

SchB (μM)

α1β2γ2
α2β2γ2
α4β3δ
α6β3δ

Po
te

nt
ia

tio
n 

of
 I G

A
B

A
 (f

ol
d)

Po
te

nt
ia

tio
n 

of
 I G

A
B

A
 (f

ol
d)

a

α γ/δ
α
β

β α
γ/δ

α
β

β

αγ/δ

α
ββ

α
γ/δ α

β

β

Cl-

Schisandrin B 

GABA 

GABAARs-CHO/HEK-293 CellsGABAA receptor

b

Con
tro
l

PTZ

Sch
B+PTZ

0.0

0.5

1.0

1.5

N
or

m
a l

iz
ed

c u
r r

en
t ***

***
ns

SchB 10 μM
PTZ 0.5 mM
GABA 1 μM

5 s

20
0 

pA

α1β2γ2 GABAARs

Fig. 2 SchB induced potentiation of GABA-elicited currents (IGABA) in recombinant GABAA receptors (α1β2γ2L, α2β2γ2L, α4β3δ, and
α6β3δ). a Schematic diagram for patch-clamp recordings in GABAAR-CHO/HEK-293 cells. b Bar graphs depicting the potentiating effect of
SchB on IGABA. c Representative current traces for SchB-induced potentiation of GABA receptors. d Concentration-response curves illustrating
the enhancement of IGABA by SchB on α1β2γ2L, α2β2γ2L, α4β3δ, and α6β3δ GABAARs. e SchB (10 μM) eliminated the pentylenetetrazole (PTZ)-
induced inhibition of IGABA in recombinant α1β2γ2L GABAARs. ***P < 0.001, ns not significant (P > 0.05), Student’s paired t-test. All data are
expressed as the mean ± SD, n= 5–6.

Schisandrin B alleviates seizures via GABAARs and GlyRs
J Wu et al.

470

Acta Pharmacologica Sinica (2024) 45:465 – 479



Overall, these results indicated that SchB could alleviate acute
tonic-clonic seizures and status epilepticus.

SchB efficiently rescued the impaired GABAA receptors associated
with genetic epilepsies
GABAARs are the primary inhibitory neurotransmitter-gated ion
channels in the mammalian central nervous system. They play a
crucial role in providing inhibitory tone to balance the tendency of
hyperexcitability in excitatory neural circuits [33]. Several point
mutations of GABAARs have been reported to be linked to various
genetic epilepsies [13]. We selected four representative mutations
of GABAARs, associated with severe genetic epilepsies, to
investigate the modulation of SchB on these mutant GABAARs
and explore its potential therapeutic value. These four mutations
are α1(D219N, c.655G>A), α1(G251S, c.751G>A), γ2L(R177G,
c.529C>G), and γ2L(P322A, c.964C>G) (Fig. 5a), closely associated
with idiopathic generalized epilepsy [34], Dravet syndrome [35],
febrile seizures [36], and early infantile epileptic encephalopathy,
as well as the development of pharmacoresistance [37], respec-
tively. Firstly, we evaluated the electrophysiological characteristics
of these mutations. Notably, these mutations significantly
decrease the sensitivity to GABA, suggesting a loss-of-function
(LOF) effect for these mutations. The EC50 values of GABA for
α1(D219N), α1(G251S), γ2L(R177G), and γ2L(P322A) were
8.74 ± 1.63 μM, 20.80 ± 3.36 μM, 9.04 ± 1.13 μM, and
6.60 ± 0.63 μM, respectively. The current densities of these
mutations [α1(D219N), γ2L(R177G), and γ2L(P322A)] were sig-
nificantly suppressed by ~60%–70% compared to the wild type of
α1β2γ2L (144.2 ± 44.7 pA·pF−1), with values of 56.7 ± 22.8 pA·pF−1,
51.3 ± 28.1 pA·pF−1, and 33.8 ± 16.5 pA·pF−1, respectively. Addi-
tionally, the current density of α1(G251S) (10.9 ± 5.9 pA·pF−1) was
suppressed by ~90% (Fig. 5b, d; Table 2). Despite the decreased
expression level, SchB (10 μM) still showed greater potentiation of
GABA-induced current in all the mutant receptors. The efficacies
reached 2.31 ± 0.41-fold, 2.98 ± 0.84-fold and 3.48 ± 0.89-fold, and
2.62 ± 0.57-fold at 10 μM for α1(D219N), α1(G251S), γ2L(R177G),
and γ2L(P322A), respectively (Fig. 5e, f; Table 2).
Collectively, our findings suggest that SchB shows great

potential for treating severe genetic epilepsies caused by LOF
effects of GABAARs.

Identification of amino acid residues critical for the actions of SchB
in glycine receptors
A number of drugs have been reported as positive modulators of
GlyRs, such as volatile anesthetics enflurane [38, 39], CBD/Δ9-THC
[40], propofol [41], and endocannabinoids [42], respectively. Possible
binding sites for these compounds to the GlyRs have been
demonstrated. Therefore, to clarify the possible interaction sites of
SchB in glycine receptors, we successfully constructed these
reported mutations in mature GlyR α1, including α1S267Q (pre-
mature: S295Q, c.883A>C_884G>A_885C>G), α1S296A (premature:
S324Q, c.970T>G), α1F380A (premature: F408A, c.1222 T > G_1223T >
C), and α1K385A (premature: K413A, c.1237A>G_1238A>C) (diagram
shown in Fig. 6a). These mutants were expressed in CHO cells and all
showed similar functional activation to glycine except α1S267Q with
a weaker potency (Fig. 6b; Table 1).
As shown in Fig. 6c, d, SchB-induced potentiation (10 μM) was

unaffected by the mutations S296A, F380A, and K385A. However, the
mutation S267Q located in transmembrane domain 2 (TM2) almost
completely abolished SchB-mediated potentiation (Fig. 6c, d). These
results suggest that Ser267 in TM2 of GlyR α1 is critical for the actions
of SchB.

SchB potentiated GABA-elicited currents not through diazepam-
or etomidate-binding sites
To gain a deeper understanding of the molecular mechanisms
underlying the modulation of GABAARs by SchB, we conducted a
series of experiments to differentiate the action site of SchB from
those of DZP and etomidate (ETO). DZP and ETO are classified as
classical benzenediazenes (BDZs) and general anesthetics, respec-
tively, and both act as positive modulators of GABAARs. To
investigate whether SchB binds to the DZP-binding site, we firstly
examined whether the activity of SchB could be eliminated by
flumazenil, an antagonist that binds to the high-affinity site of
BDZs [43]. In the presence of flumazenil (10 μM), SchB still kept its
potentiation effect on α1β2γ2L (Fig. 7a). It was known that a
histidine at position 129 (human) or 101 (murine) in α1 subunit is
essential for the binding of classical BDZs [44]. To confirm the
observation from the flumazenil test, we introduced the H129R
(c.386A>G) mutation to the α1 subunit. As anticipated, it did not
exhibit any response to 1 μM DZP (Fig. 7b). By contrast, SchB

Table 2. Functional parameters for the potentiation effect of SchB on the wild-type and mutant GABAA receptors.

Receptor GABA GABA (in the presence of 10 μM SchB) SchB (in the presence of EC10~20 GABA)

EC50, μM nH n EC50, μM nH n EC50, μM nH Emax, fold n

α1β2γ2L 3.52 ± 0.49 1.41 ± 0.27 6 2.00 ± 0.36### 1.26 ± 0.25 5 4.03 ± 1.16 3.95 ± 1.89 2.43 ± 0.36a 6

α2β2γ2L 22.84 ± 1.90 1.56 ± 0.16 5 15.02 ± 1.42### 1.39 ± 0.18 5 4.84 ± 0.95 2.63 ± 0.96 2.24 ± 0.26a 5

α4β3δ 3.33 ± 0.51 1.00 ± 0.14 5 N.D. N.D. 4.93 ± 0.71 2.23 ± 0.47 3.55 ± 0.17a 5

α6β3δ 1.70 ± 0.51 0.82 ± 0.18 5 N.D. N.D. 1.51 ± 0.34 1.23 ± 0.31 2.43 ± 0.24a 5

α1(H129R)β2γ2L 7.22 ± 1.10* 1.06 ± 0.15 5 N.D. N.D. N.D. N.D. 1.81 ± 0.14b 5

α1(D219N)β2γ2L 8.74 ± 1.63** 1.06 ± 0.13 5 N.D. N.D. N.D. N.D. 2.31 ± 0.41b 5

α1(G251S)β2γ2L 20.80 ± 3.36*** 1.30 ± 0.24 6 N.D. N.D. N.D. N.D. 2.98 ± 0.84b 5

α1(S297Q)β2γ2L 3.55 ± 0.40 1.15 ± 0.15 5 N.D. N.D. N.D. N.D. 1.45 ± 0.06**,b 5

α1β2(N289S)γ2L 8.74 ± 1.03*** 1.40 ± 0.22 6 N.D. N.D. N.D. N.D. 2.17 ± 0.34b 5

α1(S297Q)β2(N289S)γ2L 2.55 ± 0.40 1.28 ± 0.24 5 N.D. N.D. N.D. N.D. 1.07 ± 0.10***,b 5

α1β2γ2L(R177G) 9.04 ± 1.13*** 1.22 ± 0.18 6 N.D. N.D. N.D. N.D. 3.48 ± 0.39**,b 5

α1β2γ2L(P322A) 6.60 ± 0.63*** 1.37 ± 0.16 7 N.D. N.D. N.D. N.D. 2.62 ± 0.57b 6

The maximal efficacies (Emax, fold), EC50 concentrations (μM), and Hill coefficients (nH) for each receptor are presented as mean ± SD for the number (n) of cells
tested.
N.D. not-determined.
*P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA followed by Dunnett’s test, compared to wild type. ###P < 0.001, Student’s unpaired t-test.
aIndicates SchB at 30 μM.
bIndicates SchB at 10 μM.
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(10 μM) still potentiated GABA-elicted currents in this mutant
(Fig. 7b; Table 2). These results indicated that the pontentiation
mechanism of SchB on α1β2γ2L is different from that of BDZs.
To investigate whether SchB binds to the ETO-binding site, we

conducted the following experiments. Firstly, we did a co-
application test to see whether SchB and ETO show any
competitive effects on GABA-elicited currents. As shown in Fig. 7c,
d, the co-stimulation by both SchB (10 μM) and ETO (10 μM)
resulted in a supra-additive effect, rather than competitive effects,
suggesting that the action site for SchB in GABAARs is different
from that of ETO. To confirm this, we constructed the mutation
β2N289S (c.866A>G), which is known to be able to abolish the
potentiation of ETO [45]. The mutant channel α1β2(N289S)γ2L was

functionally expressed in CHO cells (Table 2). As expected, the
potentiation induced by SchB (10 μM) was not affected, but ETO
(10 μM)-induced potentiation was significantly reduced (Fig. 7d).
Taken together, these results demonstrate that SchB might

potentiate GABAARs through a site distinct from the classical DZP-
and ETO-binding sites.

The residues α1S297 and β2N289 located in the β+/α- subunit
interfaces of TM2 in GABAA (α1β2γ2L), homologous to Ser267 in
GlyR α1, are crucial for SchB-induced potentiation of GABA-elicited
currents
GABAARs and GlyRs belong to Cys-loop receptors that form
pentameric chloride channels with greater sequence homology [29].
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Now that the mutation S267Q in GlyRs significantly reduced the
activity of SchB, we would expect that the mutations from the
homologous site in GABAARs might exhibit a similar effect as GlyRs.
Thus, we generated mutants in the homologous positions in the
GABAAR α1 and β2 subunits. By aligning the amino acid sequences
between GlyR α1, GABAAR α1, and β2 subunits, Ser297 in GABAAR α1
and Asn289 in GABAAR β2 subunits were identified as the
homologous sites as Ser267 in GlyR α1 (Fig. 8a). Previous studies
have found that the residues α1S297 and β2N289, located in the
β+/α- subunit interfaces, are critical for the potentiation of GABA-
elicited currents by pentobarbital, ethanol, and volatile anesthetic
enflurane in recombinant α1β2γ2L receptors [38, 46]. Before making
these mutations, we did the co-application test to see whether SchB
and pentobarbital show any competitive or additive effects on
GABAA1 receptors. As shown in Fig. 8b, c, the co-application of SchB
(10 μM) and PB (100 μM) did not produce any additive effects on
α1β2γ2L GABAARs instead of keeping the potentiating effect at the
similar level as pentobarbital. These data mostly indicated a
competitive effect, which suggested that the two compounds may

share same or similar sites in GABAARs. We then constructed
mutations α1S297Q (c.889A>C_890G>A_891C>G) and β2N289S
(c.866A>G). These mutant GABAARs, including α1(S297Q)β2γ2L,
α1β2(N289S)γ2L, and α1(S297Q)β2(N289S)γ2L, were functionally
expressed in CHO cells (Table 2). As shown in Fig. 8b, c, the
mutation S297Q in the α1 subunit significantly decreased SchB-
and PB-induced potentiation in α1(S297Q)β2γ2L GABAARs.
However, SchB- and PB-induced potentiation remained unaf-
fected in mutant α1β2(N289S)γ2L GABAARs. By contrast, when
using the combined mutant channels (α1(S297Q)β2(N289S)γ2L
GABAARs), SchB- and PB-induced potentiation was almost
completely lost. Overall, similar to PB, the results indicated that
the residues α1S297 and β2N289, located in the interfaces of
the β+/α- subunits, are also crucial for SchB to potentiate the
activity of GABAA receptors in recombinant α1β2γ2L GABAARs.
The conservation of the sequence between GlyRs (Ser267) and
GABAARs (Ser297) is very critical for the action of SchB (Fig. 8d).
This finding provides a solid explanation for the reason that
SchB affects both GABAARs and GlyRs.
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DISCUSSION
Both GlyRs and GABAARs are the major inhibitory receptors in the
central nervous system and play important roles in maintaining
the excitatory-inhibitory balance. Clinical and genetic evidences
have demonstrated their advantages and potentials as targets for
epilepsy treatment. Currently in drug discovery field, the strategy
“one gene, one disease” for drug development has become
increasingly inefficient. The situation also occurs in the field of
epilepsy. A drug by acting on multiple targets within the disease
network would be more preferable.
In this study, we found that SchB, a major bioactive component

of Schisandra chinensis (Turcz.) Baill, significantly potentiated
GABA- and glycine-induced currents in a dose-dependent manner
in both neuronal and recombinant receptors. Importantly, SchB
showed anti-seizure effects in various experimental seizure
models. The primary mechanism of action for SchB in seizures
appears to be related to its potentiating effect on GABAA and
glycine receptors.
SchB exerted significant potentiating effects on recombinant

(α1–α3) and neuronal GlyRs. Additionally, SchB effectively
eliminated STR-mediated inhibition of GlyRs. These findings
suggest that SchB-induced enhancement of GlyRs may contribute
to its anti-seizure effect in STR-induced seizures. Compared to the
potentiating effects on recombinant homologous α1-α3 GlyRs,
SchB was found to be more effective on neuronal GlyRs. It is very

possible that the compositions of native GlyRs receptors,
especially the presence of some other auxiliary subunits, such as
β-subunit, may enhance the activity of SchB.
GABAARs play significant roles in the development of epilepsy.

Recent studies have found that the surface expression of the
GABAARs β2/3 and γ2 subunits was frequently reduced during
status epilepticus (SE) and temporal lobe epilepsy. However, the
surface expression of the δ subunit remained unchanged [47, 48].
BZDs only affect the activity of γ-containing GABAARs, but have no
effect on δ-containing GABAARs [49]. This may partially explain the
pharmacoresistance to BZDs during prolonged SE [50]. Therefore,
δ-containing GABAARs become attractive targets for anti-seizure
therapies. Encouragingly, SchB significantly potentiated both γ-
and δ-containing GABAARs, with higher activity on the latter. SchB
could also decrease the severity of seizures in pilocarpine-induced
SE. Thus, these results indicate that compounds like SchB might
have significant advantages in the treatment of epilepsy,
especially a potential as an adjunctive agent with DZP for the
treatment of the later stages of SE. Mutations in genes encoding
subunits of GABAARs (GABRA1, GABRB2/B3, GABRG2, and GABRD)
have been linked to several types of genetic epilepsy [13]. Our
results demonstrated that SchB effectively restored the function of
those mutated GABAARs. This suggests that SchB has a therapeutic
potential for severe genetic epilepsies caused by the loss-of-
function mutations of GABAARs. However, in vivo experiments are
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necessary to validate this effect in the future. Previous studies
showed that α1-containing GABAARs are associated with sedation
[51]. α2-containing GABAARs have been linked to anxiolysis [52].
Antidepressant effects of neuroactive steroids are mainly depen-
dent on δ-containing GABAARs in the postpartum period [53],
such as the recent approved drugs, brexanolone injection
(ZULRESSO™), a mixture of allopregnanolone, an endogenous
inhibitory pregnane neurosteroid, and sulfobutylether-beta-
cyclodextrin [54]. In the present study, we found SchB significantly
potentiated both α1β2γ2L, α2β2γ2L, α4β3δ, and α6β3δ GABAARs,
which may account for those reported effects, such as sedative-
hypnotic [18], anxiolytic [19], and antidepressant effects [20].
Finally, we thoroughly investigated the potentiation mechan-

ism of SchB on GABAARs and GlyRs. The data suggest that SchB
potentiated glycine-elicited currents through the sites different
from the classical positive allosteric modulators such as CBD/Δ9-
THC-, propofol-, and endocannabinoid-binding sites. Never-
theless, the mutation S267Q in TM2 of GlyR α1 almost

completely eliminated SchB-mediated potentiation. Coinciden-
tally, the mutation has also been found to eliminate ethanol- (or
anesthetics such as enflurane)-induced function enhancement of
GlyRs [38].
Meanwhile, the subunit dependence of SchB in GABAARs is

distinct from that of DZP, indicating that SchB might function at a
different site from DZP. We showed that the potentiation effect of
SchB on αβ2γ2L is not interfered by flumazenil or mutant
α1(H129R)β2γ2L GABAARs. Furthermore, the co-stimulation of
SchB and ETO resulted in a synergistic effect. The mutation
β2(N289S), which eliminated ETO-induced potentiation, did not
affect SchB-induced potentiation. These results suggest that the
action site of SchB is independent of those of DZP and ETO. Based
on the fact that GABAARs and GlyRs belong to Cys-loop receptors
that form pentameric ion channels [29], we investigated whether
the residues in GABAARs homologous to Ser267 (premature:
Ser295) in GlyR α1 subunit were crucial for the effect of SchB on
GABAARs. Notably, SchB-induced potentiation was significantly
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reduced on α1(S297Q)β2γ2L, but not changed on α1β2(N289S)
γ2L. Furthermore, the combined mutant constructs of α1(S297Q)
β2(N289S)γ2L almost abolished SchB-induced potentiation. Coin-
cidently, the sites happened to be able to diminish pentobarbital
(PB)-induced potentiation of α1β2γ2L GABAARs [46]. The ability of
PB to directly activate GABAA receptor may contribute to its
anesthetic and sedative actions at higher doses [55, 56]. However,
unlike barbiturates, SchB did not directly activate GABAARs.
Barbiturates and SchB also differ in their activity on other targets.
For example, barbiturates have been shown to block AMPA
receptors [57], whereas our findings indicated that SchB did not
show any effects on either AMPA or NMDA receptors (Fig. S6).
These effects distinguished SchB from classical positive allosteric
modulators of GABAARs and GlyRs, thereby demonstrating the
unique pharmacological profile of SchB.
In conclusion, our results demonstrated, for the first time, that

SchB is a dual positive allosteric modulator of GABAARs and GlyRs,
alleviates the seizures in multiple mouse models. However, it
cannot be excluded that other mechanisms might be involved,
and additional studies will be necessary to be explored for the
actions of SchB in CNS. Meanwhile, for the goal of creating
innovative candidates with enhanced bioavailability and perme-
ability through the blood–brain barrier, this study may provide a
valuable scaffold for further structural design.
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