Acta Pharmacologica Sinica

ARTICLE

www.nature.com/aps

q

Check for
updates

Huperzine A ameliorates obesity-related cognitive
performance impairments involving neuronal insulin signaling

pathway in mice

Hong-ying Wang'%3?, Min Wu'?, Jun-ling Diao'?, Ji-bin Li*, Yu-xiang Sun’ and Xiao-giu Xiao'*?

Type 2 diabetes (T2D) and Alzheimer’s disease (AD) share several common pathophysiological features. Huperzine A (Hup A),

a Lycopodium alkaloid extracted from the Chinese herb moss Huperzia serrata, is a specific and reversible inhibitor of
acetylcholinesterase, which is clinically used for the treatment of AD. In this study, we investigated whether Hup A improved the
metabolic and cognitive functions in the high fat-induced (HFD) obese mice and genetic ob/ob mice. HFD and ob/ob mice were
treated with Hup A (0.1,0.3 mg-kg™" -d ™', ig) for 3 months. Body weight was monitored and glucose tolerance tests were performed.
Novel object recognition test and Morris water maze assay were conducted to evaluate the cognitive functions. We found that the
Hup A treatment had no significant effect on peripheral metabolism of obese mice, whereas Hup A (0.1, mg-kg~"-d~") improved
both the abilities of object recognition and spatial memory in HFD-fed mice, but not in ob/ob mice. Furthermore, Hup A treatment
significantly upregulated the insulin and phosphorylated Akt levels in the cortex of HFD-fed mice, but not ob/ob mice. In addition,
Hup A (0.3, mg-kg~'-d™") significantly decreased cortical B-secretase (BACE1) expression. In conclusion, these results demonstrate
that treatment with Hup A (0.1, mg-kg ™" - d™") can effectively improve the cognitive functions, at least in diet-induced obese mice.
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INTRODUCTION

The incidence of dementia and type 2 diabetes (T2D) in the
world is increasing at an alarming rate and has become a major
public health concern [1-3]. Alzheimer’s disease (AD) is the most
common form of dementia, accounting for 50%-60% of all cases
[4, 5]. The proteolytic cleavage of amyloid precursor protein (APP)
by beta-site APP-cleaving enzyme 1 (B-secretase, BACE1) and y-
secretase complex is one of the key features of AD pathology
development, increasing the levels of ABs and leading to their
aggregation and formation of extracellular amyloid plaques [6-8].
Moreover, mice deficient in BACE1 exhibit a normal phenotype
but abolished amyloid generation and enhanced insulin sensitivity
and obesity resistance [9, 10]. Mounting evidence has demon-
strated that AD patients are prone to T2D; however, diabetic
patients also have a higher risk of developing AD than patients
without diabetes [11-13]. Being obese in midlife is also a risk
factor for AD later in life [14, 15]. Interestingly, T2D and AD share
many common age-related pathophysiological features. Patients
with T2D exhibit lower cognitive scores [16], and db/db mice,
an animal model of T2D, exhibit spatial learning deficiencies [17].
In turn, AD brains show insulin resistance, impaired glucose
metabolism and hyperinsulinemia [18, 19]. Furthermore, the

insulin concentration of AD patients is decreased in the
cerebrospinal fluid but increased in the plasma [20, 21]. However,
the mechanism that links T2D and AD is still unclear.

Huperzine A (Hup A), a novel Lycopodium alkaloid originally
extracted from the Chinese herb moss Huperzia serrata, is a
potent, specific, selective and reversible inhibitor of acetylcholi-
nesterase (AChE) [22, 23]. Previous studies have reported that Hup
A improves cognitive dysfunction, attenuates behavioral distur-
bance, and slows the progression of AD in a broad range of animal
models as well as in AD patients [24-28]. Hup A protects neurons
from harm in AD by not only reducing the loss of acetylcholine
[24] but also preventing Ap-induced apoptosis [29, 30]. In
addition, Hup A mitigates brain injury and cognitive deficits after
repetitive traumatic damage and attenuates oxidative injury by
various modes of action [28, 31].

Hup A may possibly improve neuronal insulin signaling and
cognitive decline related to diabetes. Studies have reported that
Hup A increases phospho-Akt levels in murine hippocampal HT22
cells after glutamate toxicity [32]. Moreover, in streptozotocin
(STZ)-induced diabetic rats, Hup A not only reduces body weight
and oxidative stress but also improves blood glucose levels
and cognitive deficits [33]. However, whether Hup A attenuates
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obesity-related cognitive declines remains unclear. Here, we
aimed to explore the role of Hup A in the regulation of peripheral
metabolism and cognitive dysfunctions in diet-induced obese
mice and genetically obese ob/ob mice.

MATERIALS AND METHODS

Reagents

Huperzine A (white powder, purity >99%, provided by Professor
Hai-yan Zhang) was dissolved in distilled water that contained
40% volume of 0.1 M hydrochloric acid at 5mg/mL as a stock
solution and was then diluted to the proper concentration
with distilled water for administration [34]. The antibodies applied
in this study targeted the following proteins: Akt (CST, 4691),
phospho-Akt (Ser473) (CST, 4060), BACE1 (CST, 5606), and B-actin
(CST, 4970).

Animals and diets

Male C57 BL/6 mice aged 8 weeks were purchased from Beijing
Vital River Laboratory Animal Technology Co. Ltd. housed in
wood chip-bedded plastic cages at constant room temperature
(23 +£2°C) under a 12-h light/dark cycle (lights on 07:00-19:00),
and fed with water and food available ad libitum. After 2 weeks
of acclimatization to living conditions, mice were divided into
two groups, fed a high-fat diet (HFD, 60% energy from fat,
20% from protein and 20% from carbohydrates, D12492, Research
Diets, Inc.) or low-fat diet (LFD, 10% energy from fat, 20%
from protein and 70% carbohydrates, D12450B, Research Diets,
Inc.). Heterozygotic male and female ob*/~ mice were obtained
by crossing homozygotic leptin gene knockout (ob/ob) mice
and WT mice. HFD-induced obese mice and ob/ob mice were
randomly divided into three groups and intragastrically adminis-
tered 0.1 mg or 0.3mg Hup A per kilogram of body weight
per day or vehicle for three mouths. Simultaneously, LFD mice
were treated with the vehicle of Hup A. This study was approved
by the Animal Care and Research Committee of Chongging
Medical University, China.

Glucose tolerance test (GTT)

Mice were fasted for 16 h, and fasted blood glucose was measured
by a glucometer (ACCU-CHEK Performa, Roche) through tail
bleeding. Subsequently, mice were intraperitoneally injected with
glucose (2 g/kg body weight), and blood glucose was measured at
15, 30, 60, 120 min after glucose injection.

Novel object recognition test

The recognition ability of mice was assessed using the new
object recognition test (Fig. 2a) as described [35, 36]. Mice were
trained in the task for three days. On the first day, mice were
submitted to a 5-min acclimatization session in the apparatus (an
open field: long x width x height: 40 cm X 40 cm X 50 cm, made up
of transparent plastic sheets) without objects. Then, 24 h later, mice
were allowed to explore two identical objects (A1 and A2) for 5 min.
The objects were fixed in two adjacent corners (~9 cm from the
wall). Two hours later, mice underwent a short-term memory
test, during which they were allowed to explore the apparatus for
5min in the presence of two objects (the familiar object A1 and
the new object B). On the third day, to examine long-term
memory, the same groups of mice were allowed to explore two
objects for 5 min (the familiar object A1 and the new object B).
Object exploration was tracked by the Any-maze tracking system
(Stoelting, USA), which can record the time spent on the objects
during the experimental sessions. Exploration was defined as
sniffing or touching the object with the nose. A “recognition
index” was calculated for each animal as expressed by the ratio:
TB/(TA+TB) (TA=time spent exploring the familiar object;
TB = time spent exploring the novel object).

SPRINGERNATURE

Morris water maze

Spatial learning and memory were assessed using the Morris
water maze task as previously described [37, 38]. The water maze
consisted of a circular stainless-steel pool 150 cm in diameter filled
with water (25+1°C) made opaque with nontoxic white dye.
The pool was surrounded by light blue curtains with three distal
visual cues fixed to the curtains and was artificially divided into
four quadrants: NE, NW, SW, and SE. A CCD camera was suspended
above the center of pool to record the swimming paths of the
mice, and the video output was digitized with the Any-maze
tracking system (Stoelting, USA). This test included spatial training
and probe testing. Twenty-four hours before spatial training, mice
were allowed to adapt to the pool for 120 s with free swimming.
Then, mice were trained in the spatial learning session for six trials
per day for 5 consecutive days. In each trial, mice were placed in
the water at one of four positions (NE, NW, SW, and SE) facing the
pool wall. Then, the mice were required to swim to find a hidden
platform (13cm in diameter, located in the SW quadrant)
submerged 1cm below the water. During each trial, mice were
allowed to swim until they found the hidden platform and stayed
on the platform for 20 s before being returned to a holding cage.
Mice that failed to find the hidden platform in the 120s were
guided to the platform and allowed to remain there for 20s.
Twenty-four hours after the last trial, the probe test was
performed. Mice were returned to the pool without the platform
at a new point for 120 s, and their swimming paths were recorded.

Enzyme-linked immunosorbent assay (ELISA) analysis

Insulin levels in the cortex were measured with the ELISA kit
for insulin (CEA448Mu, Cloud- Clone Corp.). AP4, levels in the
cortex were measured with the ELISA kit (Invitrogen Corporation,
KMB3441).

Western blotting

Frozen mouse tissue was lysed in lysis buffer (10 mL lysis buffer;
cOmplete Lysis-M, REF 04719956001, Roche) containing one tablet
of protein inhibitor (cOmplete” ULTRA Tablets, Mini, EDTA-free,
EASYpack Protease Inhibitor Cocktail, Roche) and one tablet of
phosphatase inhibitor (PhosSTOP™, PHOSS-RO, Roche) to obtain
total protein supernatant. The concentration of total protein was
determined using a BCA protein assay kit (Lot # NH17739, Thermo,
Pierce). Aliquots of 60 pug protein were loaded onto 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, transferred
to polyvinylidene difluoride membranes (Roche), and subse-
quently blocked with 5% bovine serum albumin (BSA)-tris-
buffered saline, 0.1% Tween 20 solution (BSA powder, GENVIEW,
CAS: 9048-46-8) for 1.5 h. The membranes were incubated with
primary antibody overnight, and the goat-anti-rabbit/ mouse
secondary antibody for 1 h. Protein bands were visualized with
ECL (advansta, K-12045-D10) using a chemiluminescence appara-
tus (GeneGnome®). The protein expression levels were quantified
with ImageJ software.

Statistical analysis

All data are presented as the mean * standard error of mean and
were analyzed by Students’ t test, one-way analysis of variance
(ANOVA) with Tukey's post hoc test or two-way ANOVA with
Bonferroni’s post hoc test. Statistical significance was considered
at P<0.05.

RESULTS

Huperzine A did not alter the metabolic characteristics of HFD-fed
mice or those of ob/ob mice

To generate diet-induced obesity, mice were fed a HFD, and body
weight changes were measured weekly. As expected, compared
with LFD-fed mice, mice fed a HFD for 18 weeks showed
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Fig. 1

Peripheral metabolic profiles. a, b Body weight of C56 BL/6 mice before Hup A delivery (LFD and HFD; n=11 and 12, respectively).

¢, d Glucose tolerance test of 7-month-old mice (LFD and HFD; n =5 and 4, respectively). e, g Body weight during Hup A delivery (LFD-Veh,
n=11; HFD-Veh, n=7; HFD-0.1, n=9; HFD-0.3, n=7; ob/ob-Veh, n =6; ob/ob-0.1, n=7 and ob/ob-0.3, n=7). f Glucose tolerance test of
9-month-old mice after two months of Hup A delivery. h Nonfasting blood glucose test during Hup A delivery (n =4 in each group). Data
are presented as the mean + SEM. Data are compared using Student’s t test b, d and two-way ANOVA with Bonferroni post hoc test a, ¢, e-g.
*P < 0.05; **P < 0.01; ***P < 0.001. There was no significant difference among the Hup A groups

significant body weight gain (increased by 25% vs. LFD, Fig. 1a, b)
and impaired glucose tolerance indicated by high glucose levels
at 30 min and 60 min after glucose loading and a high area
under the curve (Fig. 1¢, d).

During Hup A treatment, we continued to monitor the body
weight of mice in each group. However, Hup A was unable to
decrease weight (Fig. 1e, g) or improve glucose intolerance
(Fig. 1f) in HFD-fed or ob/ob mice. Hup A treatment was also
incapable of reducing hyperglycemia in ob/ob mice (Fig. 1h).
These results suggested that Hup A might not improve peripheral
glucose metabolism in obese mice.

Hup A enhanced the recognition memory of HFD-fed mice

but not ob/ob mice

To investigate whether Hup A reduces cognitive impairment,
mice were submitted to the novel object recognition test for an
assessment of their short- and long-term memory. In this test, the
interaction time used for the recognition index was defined
specifically by “sniffing or touching the object with the nose”.
Although there was no significant difference in terms of the time
spent on the old and novel objects (Fig. 2d), HFD-fed mice treated
with 0.1 mg/kg every day Hup A showed a higher recognition
index in the short-term memory test than HFD-fed mice treated
with vehicle (Fig. 2b), indicating that short-term memory was
enhanced. Although there was no statistically significant differ-
ence in the long-term memory test, there were increased trends in
both the recognition index and time spent on the old and novel
objects in HFD-fed mice treated with 0.1 mg/kg every day Hup A
(Fig. 2¢, e). Most of the ob/ob mice did not exhibit a tendency to
explore objects during training; there, we could not obtain
relevant data. During the acclimatization period, the movement
distance of all the mice was measured in the probe test. According
to the results, the obese mice were less active than LFD-fed mice
or WT mice, but Hup A increased the activity level of ob/ob mice
(Fig. 2f).

Acta Pharmacologica Sinica (2020) 41:145-153

Hup A enhanced the spatial memory of HFD-fed mice but not
ob/ob mice

The Morris water maze was used to confirm whether Hup A
improves the spatial learning and memory of obese mice. As
shown in Fig. 3a, on the first training day, mice that were treated
with Hup A and mice fed a LFD spent less time searching for the
hidden platform than the vehicle control mice fed a HFD.
However, there was no significant difference on the other training
days. There was no difference in escape latency among the ob/ob
mice during the training days (Fig. 3b). As expected, in the probe
test, mice fed a HFD spent less time in the platform-located
quadrant than mice fed a LFD (Fig. 3e). After the HFD-fed mice
were treated with 0.1 mg/kg every day Hup A for 3 months, the
time spent in the platform-located quadrant was significantly
increased to a level almost the same as that of LFD mice (Fig. 3e).
Hup A-treated ob/ob mice showed a trend toward an improve-
ment in spatial memory (Fig. 3e). There was no significant
difference in the number of hidden platform location crossings
between groups (Fig. 3f). Furthermore, ob/ob mice treated with
0.3 mg/kg Hup A showed faster swimming speed on the first 2
training days, and ob/ob mice treated with 0.1 mg/kg Hup A
showed faster swimming speed on the fourth training day than
those treated with vehicle, whereas the HFD mice treated with
either 0.1 mg/kg or 0.3 mg/kg Hup A did not show significant
changes (Fig. 3¢, d). However, there was no significant difference
in swimming speed between the HFD-fed groups or ob/ob groups
during the probe test (Fig. 3g).

Hup A enhanced spatial memory involved improvement

of cerebral insulin signaling

Insulin signaling has been reported to play an important role in
cognitive function [39, 40]. To further investigate the changes in
insulin signaling after Hup A treatment, we tested the phosphor-
ylation level of Akt at serine 473 (p-Akt), which is a necessary
residue for Akt activity [41]. Compared with obese mice treated
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with vehicle, obese mice treated with Hup A exhibited remarkably
greater Akt-serine 473 phosphorylation in the hippocampus
(Fig. 4a, c). Moreover, in the cortex, HFD-fed mice treated with
Hup A also showed significantly greater Akt-serine 473 phosphor-
ylation than vehicle-treated HFD-fed mice, whereas Hup A had no
significant effect on Akt-serine 473 phosphorylation in ob/ob
mice (Fig. 4b, c).

Because the insulin concentration in the brain decreases with
aging [20] and the high density of insulin in the brain enhances
spatial learning and memory [42], the insulin level in the cortex
was tested. The HFD-fed and ob/ob mice treated with Hup A
showed notably higher insulin concentrations in the cortex
than those mice treated with vehicle (Fig. 4d). Therefore, Hup A
may improve spatial memory in obese mice by enhancing insulin
signaling and increasing cortical insulin levels.

High-dose Hup A inhibited cerebral BACE1 expression and
reduced AR levels

Studies have shown that BACE1 has a pivotal role in dementia
[43, 44] and correlates with metabolic disorders caused by obesity
or T2D [6, 9, 45]. Moreover, Hup A prevents increases in the
membrane distribution of BACE1 in the cortex [34]. The ob/ob
mice treated with 0.3 mg/kg every day Hup A showed significantly
lower hippocampal BACE1 expression than vehicle-treated ob/ob
mice, whereas HFD mice did not exhibit a significant difference
with Hup A treatment (Fig. 5a, ¢). Obese mice treated with a high
dose of Hup A showed remarkably lower cortical BACE1
expression than those treated with vehicle (Fig. 5b, ¢). HFD mice
treated with the low dose of Hup A showed a trend toward a
decrease in cortical BACE1 expression compared with vehicle-
treated HFD mice (Fig. 5b, c).

SPRINGERNATURE

To investigate whether decreased BACE1 expression affects
the AB4, concentration, we examined the concentration of A4,
in the cortex. Here, ob/ob mice administered 0.3 mg/kg every
day Hup A had a lower concentration of AB,, than vehicle-treated
ob/ob mice (Fig. 5d). These results suggested that decreased
expression of BACET may contribute to the protection of Hup A
against cognitive dysfunctions caused by obesity.

DISCUSSION

A substantial number of studies have shown the classic effects of
Hup A in inhibiting acetylcholinesterase, increasing acetylcholine,
and activating cholinergic receptors, eventually improving the
cognitive decline for AD patients and animals [46-48]. In this
study, we observed increased cortical insulin levels in the brains of
obese (HFD or ob/ob) mice after Hup A treatment. Cortical insulin
levels in the vehicle HFD and ob/ob group were higher than those
in the vehicle LFD and WT group, which together with the GTT
results indicated that the obese mice exhibited insulin resistance.
Hup A further increased the insulin concentration accordingly to
meet the needs of the brain for neuroprotection and to help to
maintain higher cognitive processes, including learning, memory,
executive function, and attention [21, 49]. Brain insulin levels have
been reported to be slightly higher in ob/ob mice at 8-10 weeks of
age than in their lean littermates [50]. Similarly, our data showed
that brain cortical insulin levels were higher in HFD-fed and ob/ob
mice at 44-45 weeks of age than in their respective controls.
Treatment with Hup A further elevates insulin levels in the brain
in obese mice, but how higher insulin levels are beneficial to the
memory deficits in these animals is still unclear. Excessive insulin
likely facilitates the insulin signaling pathway despite insulin

Acta Pharmacologica Sinica (2020) 41:145- 153
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resistance, allowing insulin to be effective in controlling glucose
homeostasis under conditions of hyperinsulinemia. In addition,
intranasally administered insulin has been reported to penetrate
directly from the nose to the brain to improve the functions
of the central nervous system [51, 52], and more specifically,
intracerebroventricular (ICV) STZ-induced memory impairments
in rats were prevented by treatment with intranasal insulin
[52, 53]. Previous studies have reported that impairments in
insulin or insulin-like growth factor signaling are observed in the
brains of AD patients, and these abnormalities are involved
in the decreased levels of phospho-Akt, the insulin receptor
substrate (IRS), and the IRS-associated phosphatidylinositol 3-
kinase and the increased levels of glycogen synthase kinase-3f3
activity and APP [54]. Insulin is well known to promote neurite
outgrowth, modulate activity-dependent synaptic plasticity via
PI3K-AKT signaling, and have a key role in the development
and maintenance of excitatory synapses [54]. Although epidemio-
logic studies have indicated that long-term hyperinsulinemia
is a risk factor for dementia, insulin administered to the AD
brain maintains glucose homeostasis and improves memory

Acta Pharmacologica Sinica (2020) 41:145-153

function [55, 56]. In addition, HFD has been shown to impair
brain insulin signaling and synaptic plasticity [57, 58]. In our study,
HFD or ob/ob mice treated with Hup A for 3 months exhibited an
increase in the insulin concentration in the cortex, resulting in
improved cognitive function.

In our current study, obese mice exhibited lower levels of
phospho-Akt in the brain than WT mice, which suggests
impaired neuronal insulin signaling. After Hup A treatment,
the expression of p-Akt was fully restored. Hup A has also
been shown to ameliorate oxidative glutamate toxicity in
immortalized hippocampal HT22 cells, and this protection might
be involved in regulating the BDNF/TrkB-dependent PI3K/Akt/
mTOR signaling pathway [32]. Therefore, we speculated that the
improvement in HFD-induced obesity-related cognitive dysfunc-
tion by a low dose of Hup A (0.1 mg/kg) is attributable to the
increased insulin concentration and expression of p-Akt in
the brain.

In addition, a previous study demonstrated that Hup A
could reduce body weight and improve blood glucose levels
in STZ-induced diabetic rats [33]. However, our study did not
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Fig. 4 The effects of Hup A on the brain insulin signaling pathway. a Western blot of Akt and phosphorylated Akt (p-Akt) protein levels in
the hippocampus of HFD and ob/ob mice. b Western blot of Akt and phosphorylated Akt (p-Akt) protein levels in the cortex of HFD and ob/ob
mice. ¢ Quantification of the ratio of p-Akt/Akt protein expression according to A and B (n=5 in each group). d The insulin levels in the
cortex by ELISA (n =4 in each group). Data are presented as the mean + SEM. Data are compared using one-way ANOVA with Tukey’s post
hoc test. *P < 0.05; **P <0.01; ***P < 0.001
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Fig. 5 The effects of Hup A on BACE1 and A, levels in the hippocampus or cortex a Western blot of BACE1 protein expression
in the hippocampus of HFD and ob/ob mice. b Western blot of BACE1 protein expression in the cortex of HFD and ob/ob mice.
¢ Quantification of BACE1/p-actin protein expression according to A and B (n =5 in each group). d The level of AB,, in the cortex by ELISA

(n =4 in each group). Data are presented as the mean + SEM. Data are compared using one-way ANOVA with Tukey’s post hoc test. *P < 0.05;
**P <0.01
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show similar results in HFD-fed or ob/ob mice. Neither body
weight nor glucose homeostasis was changed by Hup A
treatment. This discrepancy may result from the difference
between the animal species and diabetic models. Mao et al.
[33] used Wistar rats treated with STZ, which are generally
recognized as a model of type 1 diabetes. In contrast, the HFD
and ob/ob mice used in our study, which showed obvious
obesity and insulin resistance, are accepted as models of T2D.
HFD-fed rodents gradually develop significant weight gain,
obesity and insulin resistance. These features are more relevant
to human T2D. However, ob/ob mice are severely obese owing
to a genetic leptin deficiency, which is an important anorexigenic
hormone that controls food intake. The metabolic and behavioral
differences in these two models strongly influence the degree
of obesity.

We also demonstrated for the first time that Hup A decreased
BACE1 expression in the hippocampus and cortex of ob/ob mice
and in the cortex of HFD-fed mice. BACE1, a proamyloidogenic
enzyme, is known to cleave APP, which has a critical role in
the generation of the amyloid-f peptides implicated in the
pathogenesis of AD. There is a positive correlation between BACE1
levels and plaque numbers in AD brains [59, 60]. Although highly
expressed in the brain, BACE1 is also expressed in nonneuronal
tissues, including the pancreas, skeletal muscle, and liver. BACE1
activity in these tissues may be increased under stress conditions
[61, 62]. Deletion or reduction of BACE1 decreases mouse body
weight and enhances insulin sensitivity when fed a regular
chow diet but also partially prevents HFD-induced obesity. These
actions may be involved in the increase in the uncoupling of
proteins in skeletal muscle and brown fat tissues. Therefore,
decreased BACE1 activity and its level may ameliorate metabolic
abnormalities caused by HFD [9]. Moreover, a recent study
showed that neuronal BACE1-overexpressing mice exhibit sys-
temic diabetes. Essentially, BACE1 knock-in causes systemic
glucose intolerance, fatty liver and impaired hepatic glycogen
storage in mice. These phenomena are also associated with
hypothalamic pathology, such as a dysregulated melanocortin
system and advanced endoplasmic reticulum stress [6]. Studies
have shown that the expression of both hippocampal and
cortical BACE1 increases considerably in obese and diabetic
mice, and inhibiting BACE1 may serve as a new strategy to
intervene in T2D and AD [63-65]. Consequently, neuronal BACE1
is a key factor for metabolic homeostasis, thus affording a
potential mechanism for metabolic disturbance in the AD
brain. Apart from its reversible, potent, and selective inhibitory
effect on AChE, Hup A treatment regulates APP processing by
activating ADAM 10 and modulating extracellular signal-regulated
kinase 1/2 pathways and protein kinase C, resulting in elevated
sAPPa expression and decreased AR production in HEK293swe
cells [34, 66].

We used two doses of Hup A, 0.1 and 0.3 mg/kg every day,
according to previous reports [22, 28, 33, 66, 67]. Obviously, low-
dose Hup A is most commonly used and shows the best effect,
which is reflected in the enhanced short-term memory and spatial
learning and memory and corresponds to the increase in insulin
in the cortex and phospho-Akt expression in the hippocampus
and cortex. Although low-dose Hup A did not affect the levels
of BACE1 and APy, studies have indicated that AB itself is not
the primary neurotoxin causing AD but is the initiator of the
pathologic changes in the brain that finally cause neurodegenera-
tion years later [68]. In any case, cognitive performance can
be improved independent of AB [69, 70]. We also gave mice
0.3 mg/kg Hup A to determine whether the higher dose would
have stronger effects than 0.1 mg/kg in our mouse models.
Nevertheless, 0.3 mg/kg Hup A did not further improve cognitive
function.

In summary, our results have demonstrated for the first time
that Hup A protects against the obesity-associated cognitive
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impairment in HFD-fed mice but not in ob/ob mice. Although Hup
A had no effect on body weight change and peripheral glucose
metabolism regulation, it significantly enhanced the activity of
the neuronal insulin signaling pathway, thereby contributing to
its improvement in cognitive dysfunctions associated with T2DM.
The novel findings in this study provide important information for
a potential new application of Hup A in addition to its classical
treatment of AD.
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