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This study explores the impact of repetitive transcranial magnetic stimulation (rTMS) on decision-making capabilities in individuals
with methamphetamine use disorder (MUD), alongside potential underlying psychological mechanisms. Employing the Iowa
Gambling Task (IGT) and computational modeling techniques, we assessed the decision-making processes of 50 male MUD
participants (24 underwent rTMS treatment, 26 received no treatment) and 39 healthy controls (HC). We compared pre- and post-
rTMS treatment alterations in the left dorsolateral prefrontal cortex (dlPFC). Results revealed inferior performance in the IGT among
the MUD group, characterized by aberrant model parameters in the Value-Plus-Perseverance (VPP) model, including heightened
learning rate, outcome sensitivity, and reinforcement learning weight, alongside diminished response consistency and loss
aversion. RTMS treatment demonstrated efficacy in reducing craving scores, enhancing decision-making abilities, and partially
restoring normalcy to certain model parameters in the MUD cohort. Nonetheless, no linear relationship between changes in model
parameters and craving was observed. These findings lend support to the somatic marker hypothesis, implicating the dlPFC in the
decision-making deficits observed in MUD, with rTMS potentially ameliorating these deficits by modulating the function of these
brain regions. This study not only offers novel insights and methodologies for MUD rehabilitation but also underscores the
necessity for further research to corroborate and refine these findings. Trial Registration www.chictr.org.cn Identifier: No.
ChiCTR17013610.
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INTRODUCTION
Individual with methamphetamine use disorder (MUD) commonly
exhibit prominent and enduring deficits in executive function,
episodic memory and information processing [1]. These cognitive
functions heavily rely on intact cortical functioning, yet patients
with MUD often exhibit deficiencies across various domains
including working memory, memory recall, psychomotor
skills, response inhibition, task-switching abilities, and risk assess-
ment [2]. These deficiencies may have contributed at least in part
to continued drug use and potentially unhealthy decisions.
UNODC’s 2020 World Drug Report had shown that an unprece-
dented amount of amphetamine was confiscated worldwide,
dominated by methamphetamine, which represented a 16%
increase from the previous year, and the geographical scale
of methamphetamine manufacture and use also continues to
spread [3]. Two studies posit irrational decision-making as both an
outcome and a crucial risk factor for persistent methamphetamine
dependence [4, 5]. The decision to opt for the short-term
dopamine surge offered by methamphetamine [6], while dis-
regarding its long-term negative implications [7], exemplifies such

irrationality. Traditional theories propose that the frontal lobes
primarily govern decision-making [8]. In patients with MUD, this
symptom is believed to stem from irregularities in striatal
dopamine pathways [9]. Current evidence indicates that repetitive
transcranial magnetic stimulation (rTMS) of the dorsolateral
prefrontal cortex (dlPFC) may affect processes linked to substance
use disorders [10, 11].
Repetitive transcranial magnetic stimulation (rTMS), a transcranial

magnetic stimulation (TMS) mode, continually stimulates the cerebral
cortex through numerous repeated magnetic stimulation pulses,
thereby regulating the excitability of cerebral cortex neural tissues,
emerges as a ground-breaking tool for modulating prefrontal neural
activity and intervening in patients with MUD, particularly in
addressing cravings. Craving, a common symptom occurrence in
individuals with substance use disorders, significantly heightens
relapse risk [12]. Studies have demonstrated rTMS’s positive impact on
cravings and relapse prevention [13]. However, previous evidences
inadequately explore the psychological mechanisms through which
rTMS operates. Individual decision-making behavior holds promise as
a potential therapeutic indicator for substance use disorders and may
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also influence cravings. Recent neuroscientific studies have revealed
rTMS’s capacity to modulate human behavior and cognition,
effectively intervening in individual decision-making processes
[14, 15]. When individuals make behavioral choices and decisions,
they involve value assessment and self-control, in which the DLPFC is
closely associated [16]. While the connectivity between the dlPFC and
subcortical brain regions is believed to be linked to cravings, current
evidence predominantly supports network formation in cortical brain
regions targeted by dlPFC interventions [17], highlighting the
significance of dlPFC localization. Future studies should focus on
influencing subcortical brain nuclei through dlPFC stimulation. In
conclusion, we posit that applying rTMS intervention to the dlPFC in
our study may influence individuals’ decision-making processes. The
dlPFC plays an integral role in the executive system and cognitive
control of behaviors, including decision-making in substance-
dependent individuals. This cognitive control impacts individuals’
spontaneous and cue-induced cravings [14, 18].
High-frequency rTMS in the dlPFC can enhance neuronal

excitability in this region, therefore enhancing executive control to
reduce drug cravings. Drug users exhibit significantly lower dlPFC
activation than healthy individuals [19]. For example, greater
activation in the OFC in cocaine abusers compared to a control
group may reflect differences in the anticipation of reward while less
activation in the DLPFC and MPFC may reflect differences in
planning and working memory [20]. High-frequency rTMS in the left
dlPFC can enhance neuronal excitability in this region [15], thereby
bolstering decision-making abilities and performance on decision-
making tasks. Existing research suggests that high-frequency rTMS
(HF-rTMS) over the left dlPFC may decrease cravings and impulsivity
in patients with MUD, aiding them in avoiding risky decisions
[21, 22] and improving decision-making function [22]. Studies of
resting-state functional connectivity and electroencephalogram
reveal that rTMS onset of action may be through the cortex
affecting deep nuclei [23, 24]. TMS interventions can stimulate
cortical-striatal-thalamic-cortical circuits between the dlPFC region
and the dorsal striatum, thalamus, and default mode networks,
thereby influencing participants’ value judgments and decision-
making abilities [25]. Nevertheless, little research investigates how
patients’ decision-making processes undergo change.
Users of several central nervous system stimulants, including

stimulants such as amphetamines, methcathinone, and ecstasy, are
recognized for poor decision-making [26, 27] and associated altered
patterns of prefrontal area activation [28]. The Iowa Gambling Task
(IGT), a classical decision-making task used in over 400 studies to gauge
frontal lobe damage (especially in the ventromedial prefrontal cortex
(vmPFC)) across numerous clinical populations [29], is noteworthy. In
the IGT, healthy participants adeptly identify and adhere to the
advantageous deck after multiple selections, whereas patient’s
dependent on substances consistently opt for choices offering
immediate gains, despite the likelihood of greater future losses [30].
In contrast to the classic delay discounting task and balloon simulation
task, the IGT task involves uncertainty, a balance of reward and
punishment, and is thought to be directly related to prefrontal damage.
The SomaticMarker Hypothesis (SMH) suggests that decision-making is
a synergy of emotional and cognitive processing [31]. Moreover, the
IGT’s solitaire-like task model enhances ecological validity and
encourages task engagement, yet traditional analytical methods
merely capture overall decision outcomes, lacking specificity in
elucidating the underlying decision-making processes. To refine this
understanding, computational modeling methods have been intro-
duced. Several models, including the prospective value-learning model
with the Delta rule (PVL-Delta) and the value-plus-perseverance (VPP)
model, have been proposed to address the IGT’s specificity short-
comings [32–34]. This modeling approach has been applied to several
clinical populations [35]. Specifically, the prospective value-learning
model with the Delta rule (PVL-Delta) has demonstrated superior long-
term prediction accuracy and parameter recovery [36, 37], while the
value-plus-perseverance (VPP) model has shown excellent short-term

forecasting accuracy [34, 36]. Prior studies have compared the
application of these two models in assessing decision-making in
patients with amphetamine use disorder [38]. Our study focuses on
analyzing the decision-making process in patients with methamphe-
tamine addiction. Further, brain imaging results reveal that several
prefrontal lobe regions, including the dlPFC, medial orbitofrontal cortex
(mOFC), and vmPFC, along with subcortical brain areas, including the
amygdala and hippocampus, are crucial for computational processing
in the IGT [39]. This region-specific aberration in risk decision-making
implies that the prefrontal lobe might serve as the epicenter of the
disease in MUD patients.
Consequently, this study aims to ascertain whether rTMS over the

left dlPFC can reduce craving, enhance the decision-making abilities of
patients with MUD, and employ model parameters to precisely
measure the decision-making process. In addition, we hypothesized
that: (1) real rTMS intervention will reduce cravings in MUD patients; (2)
after rTMS intervention, the VPP parameters of MUD patients tended to
healthy people, and the decision-making ability of patients is improved.
(3) via computational model analysis of the decision-making process,
rTMS intervention effects on cravings are achieved by reinstating
impaired executive control in patients with MUD.

METHODS
Participants
Our study took place from September to December 2020 in Zhejiang
Province, China. With classical behavioral studies of IGT differences
between addicted and healthy controls, we first need to make sure there
is enough power to detect differences between the two groups [40]. Our
previous studies of craving interventions have found that 10 people in the
experimental group and 10 in the control group are effective [41]. We
recruited 60 participants with MUD and 44 matched healthy controls (HC)
group. Each participant completed all scales and the first IGT within one
week. After quality control (see Section “Quality control” for details), these
participants were excluded from our final dataset (10 in the MUD group
and 5 in the HC group), with 50 in the MUD group and 39 in the HC group.
In the MUD group, the remaining 50 patients of MUD were randomly
allocated to either treatment group (MUD-t) 10 Hz rTMS (20 treatments,
one per day, with five treatments followed by two days of rest, n= 24) or a
blank group (MUD-n) who did not receive any rTMS (n= 26) using a
computer generated number. Post-treatment, the IGT was immediately
administered (only the treated MUD group (n= 24) received a second IGT).
Informed consent was obtained from all participants. This study complied
with the final version of the Declaration of Helsinki. Nanjing Normal
University’s Ethics Committee approved the study protocol.
MUD group participants, (1) aged between 18 to 65 years; (2) met at least

two Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-
5) criteria for MUD in the preceding 12 months. Both the MUD group and
controls were excluded (1) if they had a history of other mental health
diagnoses; (2) scored higher than 3 on the Fagerström Tolerance Questionnaire
(FTQ); or (3) scored higher than 8 on the Alcohol Use Disorders Identification
Test (AUDIT); (4) Other exclusion criteria included investigator discretion based
on unsuitability for participation in the study for other reasons.

rTMS treatment procedure and craving measure
Figure 1 outlines the rTMS treatment procedure. Based on DSM-5 criteria,
stimulant use disorder (MUD) diagnoses were established after consent
was obtained. The IGT was then performed on a provided computer in a
quiet room before and after 20-day rTMS treatment. The craving scale was
then completed by the participants. Before and after rTMS treatment,
craving for MUD was measured on a craving scale ranging from 1 to 100
[21]. MUD was treated with HF-rTMS. During the 20-day rTMS treatment
protocol, the left dlPFC was stimulated once a day, five days a week, two
days apart, with a frequency of 10 Hz, a pulse intensity of 100% of resting
motor threshold, and a duration of 5 s, interval of 10 s, 40 repetitions, and
2000 pulses. The stimulation intensity was adjusted according to
participant tolerance. The resting motor threshold (RMT) was individually
determined based on a 50% probability (5 out of 10 trials) of contraction in
the index finger muscle (FDI). Consistent with our previous research, the
left DLPFC was located using a positioning cap, with a circular coil
from CCY-IA TMS device (Wuhan Yiruide Biotechnology Co., Ltd. Wuhan,
China) [42].
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Iowa gambling task
The original IGT version [43] presents deck A and B as “bad” decks owing to
their negative long-term expected value, while deck C and D are “good”
decks with a positive long-term expected value. We maintained a
predetermined card order within each deck, ensuring a uniform sequence
of outcomes for each participant (Fig. 1). The task was conducted in a
soundproof room, keeping constant light and a comfortable temperature.
The distance between the computer screen and the participant’s eyes was
set at 70 cm. We used E-Prime 2.0 software (Psychology Software Tools) to
program the experiment. The computer screen’s refresh rate was 60 Hz,
with a resolution of 1024 × 768 pixels and a viewing distance of 60 cm.
During the entire experiment, participants were instructed to gaze at the
screen’s center and keep their bodies relaxed.
Specifically, each participant was required to complete 100 (divided into

five blocks) selections, and for each selection, the participant had to
choose one card out of four stacks (A–D). The goal is to win as much
money as possible and lose as little money as possible. The players had
2,000 RMB of game principals. The player will choose any of the stacks and
simply flip the cards, knowing with each flip whether they are winning a
certain amount or losing a certain amount, and seeing how much of their
current principal they have. Practically, each stack of cards represents the
following:

Card A: Win 100 RMB and may lose a certain amount (150, 200, 250, 300,
350, 10% probability)

Card B: Win 100 RMB and 10% probability of losing 1250 RMB
Card C: Win 50 RMB and may lose (25 12.5%, 50 25%, 75 12.5%)
Card D: Win 50 RMB and 10% probability of losing 250 RMB

However, the probability law corresponding to A/B/C/D is not known to
the player in advance and can only be perceived by trying.

Quality control
Our data underwent filtering based on two primary criteria. Firstly, we
verified participants’ understanding of the task and their motivation to
garner more rewards, each participant completed an exercise designed
to familiarize them with the selection process. No exclusions occurred at
this step. Four MUD patients were excluded from data analysis because
they were arrested after post-testing due to involvement in other
criminal offenses, and they left the rehabilitation center. Secondly, the
task demanded exploratory learning across all options; thus, subjects
who selected an option less than 5% of the time (five times or less) were
considered to lack sufficient data for our study (6 in MUD and 5 in HC
group) [44]. Consequently, these participants were excluded from our
final dataset (10 participants from the MUD group and five from the HC
group). After this quality control process, we had 50 male participants
(average age M= 36.20, SD= 9.96) in the MUD group and 39 male
participants (average age M= 35.34, SD= 6.81) in the HC group, with t
(87)= 0.472, p= 0.783, d= 0.101. Table 1 provides further details on the
subgroups.

rTMS

10 Hz, 20 times

Cue-induced
Craving

0 100

MUD  group

DSM-5

MUD
Cohort

Baseline

IGT

A B C D

Post

Matched

IGT

A B C D

HC group

4 weeks

Cue-induced
Craving

0 100

MA

Blank

Fig. 1 Flowchart of this study. A total of 60 patients with methamphetamine use disorder (MUD) and 44 healthy controls were recruited, as
originally planned, of which 30 received the 10-HZ rTMS intervention (MUD-t) and the other 30 served as blank controls (MUD-n). However,
because of quality control, 4 of them left the facility without completing the intervention due to criminal offenses, and another 6 MUD
patients and 5 HC failed the quality control of the IGT task not to be included in the data analysis (more details show in the Methods section),
and finally a total of 24 completed the intervention and 26 served as blank controls.

Table 1. The demographic variables in this study.

HC
M (SD)

MUD-t
M (SD)

MUD-n
M (SD)

F/t p Effect size

Gender (Female/Male) 0/39 0/24 0/26 / / /

Age 36.2 (9.96) 34 (7.62) 36.5 (5.85) 0.673 0.513 0.015

Addiction year / 8.75 (3.42) 9.54 (3.19) 0.844 0.403 0.2389

Usage (dosage*time−1) / 0.94 (0.50) 0.91 (0.38) −0.273 0.786 −0.0774

Usage (dosage*month−1) / 15.83 (13.54) 16.19 (8.88) 0.112 0.912 0.0316

Craving / 64.58 (17.69) 67.31 (17.79) 0.542 0.59 0.1536

MUD-t methamphetamine use disorder with rTMS treatment, MUD-n methamphetamine use disorder with non-rTMS treatment, effect size η2p or cohen’s d.
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IGT model framework
Drawing from past literature, we integrated four models: Outcome-
Representation Learning Model (ORL), Prospect Valence Learning (PVL)
decay-RI, Prospect Valence Learning (PVL) Delta, and Value-Plus-
Perseverance (VPP) [38]. The VPP model emerged as the winner, prompting
us to focus on its formulas and parameters. This model consists of eight free
parameters (A, α, cons, λ, εp, εn, K, ω), grouped into three parts: utility functions
(α, λ), value update rules (A, ω), and action selection rules (cons, εp, εn, K).
The EV utility function assumes differential weighting of gains and

losses. The parameter w (0 ≤w ≤ 1) represents the extent to which
participants weigh gains against losses. A value over 0.50 indicates a gain
weight higher than the loss weight. The parameter t denotes the current
trial.

u tð Þ ¼ w � win tð Þ � 1� wð Þ � loss tð Þ (1)

The prospect valence utility function posits that each outcome’s
evaluation follows a utility function derived from the prospect theory
[32], generally less sensitive to amplitude increases and more sensitive to
losses. Here, α is the shape parameter (0 < α < 2), and λ is a loss aversion
parameter (0 < λ < 5) denoting sensitivity to gain and loss. A λ value over 1
signifies greater sensitivity to loss than gain.

u tð Þ ¼ x tð Þα; if xðtÞ � 0

�λ x tð Þj jα; if x tð Þ< 0

�
(2)

The Value-updating rule serves to update the expected values or expectancies
Ei(t) for the chosen option i in trial t. Based on the delta rule, the expected value is
the newly weighted average of rewards received for each option. Here, φ
(0≤φ≤ 1) illustrates the recent results’ weighting when updating expectations.
Higher φ values suggest a stronger weighting of recent outcomes.

Ei tð Þ ¼ Ei t � 1ð Þ þ φ � u tð Þ � Ei t � 1ð Þ½ � (3)

The Decay rule assumes that all decks decay or discount over time and
then adds the selected decks’ expected values to the current outcome
utility. The parameter A (0 ≤ A ≤ 1) decides the discount for past expected
values, and δi tð Þ is a dummy variable, set to 1 if deck j is selected and 0 if
otherwise.

Ei tð Þ ¼ A � Ei t � 1ð Þ þ δi tð Þ � u tð Þ (4)

The action selection rule utilizes a softmax rule [45], determining the
predicted probability of selecting deck j in trial t, Pr[Gj(t)].

Pr Gj tð Þ
� � ¼ eθ tð Þ � Ej tð ÞP4

j¼je θ tð Þ � Ej tð Þ
�� �� (5)

The parameter cons (0 ≤ c ≤ 5) signifies response consistency or
exploitation parameters [46]. A higher cons value shows a stronger
preference for choosing an option with a higher expected value, while a
lower value indicates a higher propensity for exploring options with a
lower expected value.

θðtÞ ¼ 3cons � 1 (6)

The VPP model introduces three additional free parameters (K, εp, εn) in
the Action-selection rule. K (0 < K < 1) is a decay parameter, similar to A in
the PVL-DecayRI model, deciding the decay rate of the persistence
strength of all decks (including unselected decks) on each trial t. εp and εn
represent the effects of gains and losses on adherence behavior,
respectively. Positive values suggest feedback strengthens the tendency
to stick with the same deck in the subsequent trial, whereas negative
values denote feedback bolstering the inclination to switch from the
selected deck. The VPP model assumes that participants track deck
expectations Ej(t) and perseverance intensity Pj(t). Expectations were
calculated using the learning rule of the PVL-Delta model (Eq. 4). For the
perseverance advantage of the unselected set on the current trial
t, Pj(t)= k * Pj(t− 1).

PjðtÞ ¼
k � Pjðt � 1Þ þ εp; if xðtÞ � 0

k � Pjðt � 1Þ þ εn; if x tð Þ< 0

�
(7)

The parameter ω is added to the Value-update rule. The total value of Vj
(t) is the weighted sum of Ej (t) and Pj (t), with ω denoting the weight of the

RL (0 < ω < 1). Lower ω values indicate that participants depend less on RL
and more on the perseverance heuristic, and vice versa. High values of ω
indicate that subjects rely more on RL and less on the perseverance
heuristic. In the VPP model, the selection probabilities are once again used
with the softmax rule but using Vj (t).

VjðtÞ ¼ ω � EjðtÞ þ ð1� ωÞ � PjðtÞ (8)

Statistical analysis
For model fit assessment, we employed the hierarchical Bayesian
modelling package (hBayesDM version 1.1.1) [47] in R Core (4.1.3). We
initially fitted the ORL, PVL Decay-RI, and PVL Delta models to the data,
selecting the best model using the Leave-One-Out Information Criterion
(LOOIC) or the widely applicable information criterion (WAIC) for
comparison [48]. Additional tests (e.g., posterior prediction plots) and
visualizations (e.g., Markov Monte Carlo chain [MCMC] plots) will validate
our confidence in the model results. We will express concerns if the
MCMCs do not converge, as discernible from trace plots for all parameters
of each model. We provide further details on these processes in the Table
S1.
For parameters and clinical factors, we employed several statistical

analysis approaches based on the NHST. We will interpret p-values below
the set alpha level of <0.05 as indicative of statistical significance.
Independent t-tests and chi-square tests were employed for comparisons
between the addiction and HC groups. In the present study, covariates that
needed to be included were no longer considered as there were no
statistical differences between the healthy and patient groups. In the
treatment ANOVA statistics, only indicators related to addiction could be
used as covariates, but they were not included in the analysis because they
did not show a statistical difference between the groups (as shown in
Table 1), as well as there was no need for a post-hoc side. Paired t-tests and
repeated-measures ANOVA were used to evaluate the rTMS effects.
Pearson’s correlation coefficient was utilized to examine the correlation
between parameters and clinical factors. We also provided Cohen’s d and
partial η2 for statistical effect. All analyses were executed using the R-based
statistical software Jamovi (version 2.2.5). Additionally, we used dabestr
(version 0.3.0) in R (version 4.1.3) to present the effect sizes of the
independent sample t-test and paired t-test [49].

RESULTS
Cravings in methamphetamine addiction reduced by rTMS
treatment
To assess the immediate effects of rTMS treatment, we
implemented a mixed ANOVA for cue-induced craving. The mixed
ANOVA, with Time (pre-, post-) as within-subjects’ factor and
Group (MUD-t, MUD-n) as between-subjects’ factor, revealed
significant main effects of Time (F (1, 54)= 45.31, p < 0.001,
ηp

2= 0.46) and Group (F (1, 54)= 6.2, p= 0.016, ηp
2= 0.10), and a

significant interaction between Time and Group (F (1, 54)= 21.04,
p < 0.001, ηp

2= 0.28). The simple effect demonstrated a significant
decrease in the craving score post-intervention (M= 34.6, SD=
13.8) compared with pre-intervention (M= 66.0, SD= 17.6, t
(24)= 8.31, p < 0.001, d= 1.70). The MUD-n showed no significant
differences (Fig. 2a and Tables S2 and S3).
To assess the altered of IGT performance of rTMS treatment, we

implemented a repeated-measures ANOVA for the advantageous
choice rate in the IGT for the MUD-t group. The 2 × 2 repeated-
measures ANOVA, with Time (pre-, post-) and Block (1–5) as
within-subjects’ factors, revealed a main effect of Time (F
(1, 23)= 6.22, p= 0.020, ηp

2= 0.213) and Block (F (4, 92)= 4.12,
p= 0.004, ηp

2= 0.152). There was no interaction between Time
and Block (F (4, 92)= 1.31, p= 0.271, ηp

2= 0.054; Fig. 2b). These
results suggest that rTMS might alter the judgement of
advantageous choices.

Abnormal VPP parameters in methamphetamine addiction
To assess the different between the MUD group and HC group,
independent samples t-tests were applied to test the IGT model
parameters for decision irregularities in the MUD group (Fig. 3 and
Figs. S1, 2, 4, 5, 8, and 9). The test revealed several parameters
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Fig. 2 Treatment effects in the MUD group. The paired sample t-test and repeated-variance test showed improvement in the MUD group.
a A line graph shows a significant reduction in craving in the MUD treatment (MUD-t) group (n= 24), but no such change in the MUD blank
(MUD-n) group (n= 26). Each line represents a subject’s pre- and post-treatment measurements. Post data for four MUD patients were missing
from the data analysis due to arrests prior to post-testing and some patients have the same pre- and post-thirst scores, so the lines will
overlap. b Line and scatter plots illustrate a more advantageous selection in Iowa Gambling Task for the MUD-t group after rTMS treatment.
Dark red lines represent pre-rTMS patients, while dark blue indicates post-rTMS patients. The proportion of beneficial deck selection increases
as the experimental blocking progresses (***p < 0.001, **p < 0.01, *p < 0.05, ## means that the main effect of block is significant, specifically
p < 0.01).
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Fig. 3 Abnormal VPP parameters in the MUD group. Gardner–Altman plots were used to show the difference between two groups (MUD
(n= 50) vs. HC (n= 39)). Red solid dots represent the parameters for each individual in the MUD group (jitter), while black solid dots represent
the parameter scores for the healthy control group. The funnel-shaped gray range on the right indicates the difference between the two
groups, with the large black dot showing the mean of the difference, and the short black vertical line representing the 95% confidence
interval of the difference. A confidence interval that does not cross zero signifies a statistically significant difference between the two groups.
This suggests that the MUD group had significantly higher values for parameters A and alpha, and significantly lower values for parameters
cons, lambda, and ω.
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significantly different between the MUD and HC groups.
Compared with the HC group (M= 0.04, SD= 0.01), the MUD
group had a significantly higher learning rate (A) (M= 0.17,
SD= 0.07) (t (87)=−13.04, p < 0.001, d=−2.786, Figure S7), and
the outcome sensitivity (alpha) in the MUD group (M= 1.1,
SD= 0.07) was also significantly higher than that in the HC group
(M= 0.95, SD= 0.05) (t (87)=−11.17, p < 0.001, d=−2.385).
Conversely, the MUD group demonstrated significantly lower
response consistency (cons) (M= 1.01, SD= 0.2) than the HC
group (M= 1.62, SD= 0.1) (t (87)= 17.86, p < 0.001, d= 3.815),
and loss aversion (lambda) (M= 0.1, SD= 0.18) was significantly
lower than that in the HC group (M= 0.26, SD= 0.16) (t
(87)= 4.19, p < 0.001, d= 0.896). The MUD group’s reinforcement
learning weight (w) (M= 0.64, SD= 0.12) was also significantly
lower than the HC group’s (M= 0.74, SD= 0.03) (t (87)= 4.74,
p < 0.001, d= 1.013; see Table 2 for details). No between-group
differences were found in the pre-tests between the treated and
untreated groups in the MUD group (ps > 0.05, See Tables S2, S3).
These results highlight an impaired IGT performance in the MUD
group compared with healthy controls.

Improvement in abnormal VPP parameters in the MUD group
via rTMS treatment
A paired-sample t-test for the IGT model parameters was employed
to determine the direct effect of rTMS treatment (Figs. 4, S3, 6, and
10) for MUD-t group (n= 24). In general, MUD group treated with
rTMS showed decreased learning rates (t (23)= 9.33, p < 0.001,
d= 1.904), outcome sensitivity (t (23)= 16.59, p < 0.001, d= 3.386),
and reinforcement learning weight (t (23)= 4.83, p < 0.001,
d= 0.985), while experiencing significant increases in response
consistency (t (23)=−2.93, p= 0.008, d=−0.598), loss aversion (t
(23)=−8.1, p < 0.001, d=−1.653), loss impact (t (23)=−2.57,

p= 0.017, d=−0.525), and decay rate (t (23)=−3.23, p= 0.004,
d=−0.659) (see Table 2 for details).

Correlation of abnormal parameters and clinical indicators in
the MUD group
To explore the relationship between abnormal decision-making
and the clinical symptoms of addiction, we conducted a Pearson
correlation analysis. Within the MUD group (n= 50), the weight of
reinforcement showed a positive correlation with learning with
the dose per use (g) (r (48)= 0.325, p= 0.021), but not addiction
year (r (48)=−0.112, p= 0.439), dose per month (g) (r
(48)= 0.167, p= 0.246), craving (r (48)=−0.093, p= 0.523). The
delta craving [pre–post] in MUD-t group (n= 24) was positive
correlation with weight of reinforcement (r (22)= 0.115,
p= 0.592), years of addiction (r (22)= 0.452, p= 0.026), pre-test
craving (r (22)= 0.695, p < 0.001) but not dose per time (g) (r
(22)= 0.257, p= 0.226) and dose per month (g) (r (22)= 0.361,
p= 0.083). This implies a potential non-linear relationship
between changes in decision-making abilities and changes in
addictive craving.

DISCUSSION
This study employed a computational modeling approach to
elucidate the decision-making psychological mechanisms under-
lying rTMS intervention on patients with MUD. Consistent with prior
research [50–53], rTMS treatment targeting the left dlPFC resulted in
decreased self-reported craving among MUD patients. A recent
study demonstrated that changes in EEG microstates in patients
with MUDwere linked to a reduction in craving levels after receiving
rTMS [54]. Moreover, model parameters revealed abnormalities in
the decision-making processes of MUD group compared to HC
group, which rTMS treatment mitigated, thereby improving

Table 2. The parameters for VPP model between MUD group and HC group.

HC
M (SD)
n= 39

Meth
M (SD)
n= 50

t df p Choen’s d

A 0.04 (0.01) 0.17 (0.07) −13.04a 87 <0.001 −2.786

alpha 0.95 (0.05) 1.1 (0.07) −11.17 87 <0.001 −2.385

cons 1.62 (0.1) 1.01 (0.2) 17.86a 87 <0.001 3.815

lambda 0.26 (0.16) 0.1 (0.18) 4.19 87 <0.001 0.896

epP 0.25 (1.18) 0.86 (1.81) −1.83a 87 0.071 −0.391

epN −0.5 (1.23) −0.21 (1.31) −1.06 87 0.292 −0.226

K 0.4 (0.17) 0.36 (0.17) 1.29 87 0.201 0.275

ω 0.74 (0.03) 0.64 (0.12) 4.74a 87 <0.001 1.013

Pre
M (SD)
n= 24

Post
M (SD)
n= 24

A 0.19 (0.08) 0.05 (0.002) 9.33 23 <0.001 1.904

alpha 1.09 (0.09) 0.71 (0.05) 16.59 23 <0.001 3.386

cons 1.01 (0.18) 1.14 (0.09) −2.93 23 0.008 −0.598

lambda 0.13 (0.25) 0.51 (0.15) −8.1 23 <0.001 −1.653

epP 0.62 (1.89) 1.03 (0.76) −1.17 23 0.254 −0.239

epN −0.28 (1.23) 0.21 (1.05) −2.57 23 0.017 −0.525

K 0.34 (0.16) 0.47 (0.15) −3.23 23 0.004 −0.659

ω 0.65 (0.11) 0.54 (0.01) 4.83 23 <0.001 0.985

HC health control group, MUD methamphetamine use disorder group, Pre methamphetamine use disorder group before the rTMS treatment, Post
methamphetamine use disorder group after the rTMS treatment, A learning rate, alpha outcome sensitivity, cons response consistency, lambda loss aversion,
epP gain impact, epN loss impact, K decay rate, ω reinforcement learning weight.
aLevene’s test is significant (p < 0.05); suggesting a violation of the assumption of equal variances.
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decision-making capabilities. Specifically, sensitivity to outcomes
and reinforcement learning rates were altered in MUD-t group post-
treatment. While these findings were aligned with our expectations,
contrary to our hypothesis, no significant correlation between
changes in decision-making parameters and cravings was observed.
This suggests potential independence between craving reduction
and decision-making improvement post-rTMS intervention, war-
ranting innovative ideas for future intervention programs.
Notably, some model parameters in the MUD group deviated

from HC group, with certain parameters reverting to healthy
levels following rTMS intervention. Within the utility function, α
shapes the function, while a larger λ indicates stronger loss
aversion. MUD patients exhibited reduced loss aversion, which
rTMS intervention increased, aligning it more closely with
healthy individuals. Regarding value update, A reflects the
influence of prior round’s expected value on the current round.
Unlike HC group, MUD group demonstrated a strong eligibility
trace effect pre-intervention, which normalized post-treatment.
In action selection, lower cons values indicate greater exploration
tendency. The MUD group’s cons value increased after treat-
ment, indicating a stronger tendency towards rational decision-
making based on existing information. No significant difference
between the HC and MUD groups was found for εp and εn,
thereby confirming the model’s reliability as these parameters
did not change significantly post-intervention. Although the
most appropriate model for the present study differed from that

obtained by previous researchers in the amphetamine study, the
results regarding reward/outcome sensitivity were consistent,
both in that centrally excitatory substance use disorder showed
higher reward sensitivity (alpha) relative to HC group [36]. In
particular, we found that this elevated outcome sensitivity for
MUD group was reversed after the rTMS intervention, and that
alpha may be a potential computational indicator regarding
addiction recovery.
However, some parameters exhibited different alterations

compared to HC group post-rTMS intervention. In the value-
update section, lower ω reflects greater reliance on previous
response tendencies when choosing. MUD group’s ω was lower
but increased post-treatment, suggesting enhanced dependency
on previous selection tendencies. We attribute this to changes in K
(choice decay), as evidenced by increased K post-intervention,
influencing final value updates.
This study discovered that the MUD group’s VPP parameters

were abnormal, signifying compromised decision-making capabil-
ities, a conclusion congruent with earlier studies [55–57]. The SMH
proposes that daily decision-making reflects the balancing of
options [31]. These options, associated with positive or negative
somatic states, act as expected emotional signals, predicting the
rewards or punishments of a choice. Individuals with vmPFC brain
injuries may fail to make decisions as they are unable to utilize
emotional signals generated by their bodies to evaluate the
outcomes of options.
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Fig. 4 rTMS treatment improves abnormal VPP parameters in the MUD group. Pre- and post-intervention difference in the MUD treatment
(MUD-t) group (n= 24) were showing by Gardner–Altman plots. Black solid lines represent the parameters for pre- and post-rTMS
measurements in the MUD-t group. The funnel-shaped gray range on the right signifies the difference between the two time points, with the
large black dot indicating the mean of the difference, and a short black vertical line representing the 95% confidence interval of the
difference. A confidence interval that does not cross zero indicates a statistically significant difference between the two groups. This suggests
that rTMS significantly decreased parameters A, alpha, and ω, and significantly increased parameters cons, lambda, and K.

Q. Liu et al.

7

Translational Psychiatry          (2024) 14:280 



The study’s results demonstrated that abnormal VPP para-
meters in the MUD group improved after rTMS treatment,
enhancing patient performance in the decision-making process.
Earlier research confirmed that rTMS to the left dlPFC improves
decision-making abilities in patients [58], a finding corroborated
by our current study. Furthermore, reinforcement learning abilities
improved post-treatment, indicating improved information extrac-
tion from past experiences and superior decision-making. This
supports the role of vmPFC function in decision-making among
MUD group, as suggested by the SMH, where normal decision-
making relies on both emotional and cognitive facets. Treatment
targeting the dlPFC not only enhances decision-making abilities
but also improves vmPFC function, indicating potential mutual
influence between these brain regions.
Despite these insights, we found no evidence of a linear

relationship between model parameter changes and alterations in
addiction symptoms like craving. This could be due to experi-
mental inaccuracies in model measurements, such as insufficiently
objective craving measurements. Furthermore, parameter changes
and addiction symptom shifts might not be linear, with a possible
lag effect [59] suggesting that craving changes in patients do not
occur simultaneously with model parameter changes.
The study has some limitations. The self-report method used to

gauge cravings is subject to subjective effects, necessitating further
improvement of validation. In actual measurements, most patients
will tend to choose whole number craving scores, e.g., multiples of
10 such as 50, 60, etc. This may reduce the accuracy of the
measurements, and it is possible that in future studies the labeling
of the VAS will only be provided with a start of 0 and an end of 100.
The IGT used to measure patient decision-making simulates and
predicts real-world decision-making behavior, with its inherent risks
and ambiguities, and a blend of gains and losses. IGT tasks were also
not post-tested in the MUD-n group. The study also lacked an
extended follow-up (e.g., 1-month, 3-month, 6-month) for the MUD
group. Future research should assess the long-term effects of rTMS
treatment on reinforcement learning and decision-making abilities
to effectively gauge clinical outcomes. The therapeutic impact of
rTMS in genesis patients lacks neuroimaging evidence, requiring
further validation via functional magnetic resonance imaging. In
addition, subsequent research endeavors ought to contemplate
integrating fMRI to enhance the precision of rTMS interventions. The
small sample size of this study, due to the pandemic, should be
expanded in future studies to enhance the study’s significance. A
single site study is indeed unrepresentative.
In conclusion, patients with MUD exhibit deficiencies in

decision-making abilities. rTMS treatment targeting the dlPFC
reduced craving, alleviated addiction symptoms, and improved
decision-making abilities, particularly reinforcement-learning cap-
abilities. However, the linear relationship between decision-
making changes and cravings warrants further exploration. Future
research should focus on increasing participant numbers, refining
decision-making task models, and investigating the impact of
decision-making impairments on rehabilitation.
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