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The impact of REM sleep loss on human brain connectivity
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Brain function is vulnerable to the consequences of inadequate sleep, an adverse trend that is increasingly prevalent. The REM sleep
phase has been implicated in coordinating various brain structures and is hypothesized to have potential links to brain variability.
However, traditional imaging research have encountered challenges in attributing specific brain region activity to REM sleep,
remained understudied at the whole-brain connectivity level. Through the spilt-night paradigm, distinct patterns of REM sleep
phases were observed among the full-night sleep group (n= 36), the early-night deprivation group (n= 41), and the late-night
deprivation group (n= 36). We employed connectome-based predictive modeling (CPM) to delineate the effects of REM sleep
deprivation on the functional connectivity of the brain (REM connectome) during its resting state. The REM sleep-brain connectome
was characterized by stronger connectivity within the default mode network (DMN) and between the DMN and visual networks,
while fewer predictive edges were observed. Notably, connections such as those between the cingulo-opercular network (CON) and
the auditory network, as well as between the subcortex and visual networks, also made significant contributions. These findings
elucidate the neural signatures of REM sleep loss and reveal common connectivity patterns across individuals, validated at the
group level.
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INTRODUCTION
Sleep deprivation, influenced by lifestyle factors such as shift work,
psychosocial stress, and excessive electronic media use, poses a
significant public health challenge in modern society [1]. Research
indicates that more than a third of adults fail to obtain sufficient
sleep regularly [2]. Inadequate sleep has been associated with a
range of negative outcomes, from disruptions in a wide range of
emotional processes [3], though to an increased risk of metabolic
disease and obesity [4]. Importantly, there is a close association
between sleep loss and functional impairments in our brain [5–9].
However, these studies have overlooked the relationship between
inadequate sleep and the dynamic reorganization of the brain.
Interestingly, sleep deprivation encompassing the loss of two

distinct sleep phases: rapid eye movement (REM) sleep and non-
rapid eye movement (NREM) sleep [10]. The distribution of these
sleep phases varies between early and late-night sleep. In the
early-night period, NREM sleep predominates, whereas REM sleep
takes precedence during the later stages of the night [11, 12].
During REM sleep, the brain not only maintains energy balance
but also clears metabolic byproducts and waste, crucial for
sustaining optimal brain function [13, 14]. Some research found
that REM sleep contributes significantly to emotional memory and
creative thinking, compared to NREM sleep [15, 16]. Furthermore,
the REM phase has also been linked to the coordination of various
brain structures. Firstly, REM ponto-geniculo-occipital (PGO) waves

originate from the brainstem and propagate throughout the entire
brain [17]. Secondly, inhibition of theta waves, which are
characteristic of REM sleep, can impair hippocampus-dependent
memory consolidation [18]. Additionally, REM sleep promotes
selective reinforcement or suppression of dendritic spines in the
neocortex [19]. Suggesting REM sleep plays a critical role in human
brain function, however, research on the brain mechanisms of
how REM sleep affects brain function remains limited. Therefore,
we aimed to investigate the relationship between individual
differences in REM sleep and functional connectivity of the brain’s
resting state. Moreover, given the challenges in selectively
manipulating REM sleep without disrupting sleep structure in
humans, the role of REM sleep loss on functional connectivity
remains far from clear.
Neuroimaging studies revealed disturbed functional activity and

connectivity in executive control regions, hippocampal and
amygdala circuits, default mode network (DMN), attention and
salience network of brain respectively after insufficient sleep
[20–22]. While our brain constitutes a complex structure compris-
ing numerous large-scale networks, the dynamic nature of the
intricate interconnections within the brain supports its overall
function [23]. It is necessary to identify the whole brain patterns of
generate brain-REM sleep model. Connectome-based predictive
modeling (CPM) is a computational framework to investigate and
predict individual differences in brain connectivity patterns based
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on whole-brain functional connectivity (FC) data [24]. Compared
to traditional regression model, CPM can prevent overfitting by
defining and validating in independent samples, thus leading to
more accurate effect sizes and enhancing the generalizability of
discoveries [25], it is a powerful tool for identifying REM sleep
connectome.
Two pivotal inquiries await elucidation. The initial query

revolves around delineating the specific brain networks associated
with REM sleep, integrating resting-state fMRI data across diverse
distributions of REM sleep stages. The subsequent inquiry delves
into whether the lack of REM sleep, encompassing both early- and
late-night sleep, exerts an impact on REM-brain networks
compared with a sleep rested night, particularly considering the
dominance of REM sleep during the late-night. To answer these
questions, we utilized the split-night paradigm and a between-
subject design, inducing differing levels of REM sleep loss through
two half-night sleep and one full-night sleep conditions, across
healthy adults. This segmentation enabled us to explore potential
variations in REM sleep characteristics between these two-time
frames and served as a baseline for comparing the effects of
various types of sleep loss on REM sleep. We utilized two key
metrics, duration and proportion, to quantify the total time spent
and the percentage of total sleep time occupied by REM sleep
during the sleep cycle, respectively. These metrics are commonly
utilized to assess sleep quality, variations in sleep patterns, and
pathological features of sleep disorders [26]. Subsequently, we

applied CPM to discern REM sleep-associated brain networks on a
large-scale level. Moreover, we investigated whether disparities in
the lack of REM sleep contributed to the interactions within the
CPM-derived networks among groups.

METHOD
Participants
A total of 113 right-handed healthy adults were recruited in multiple
universities in Beijing (Peking University, Tsinghua University, Beijing
University of Aeronautics and Astronautics, Beijing Forestry University,
Beijing Normal University, China Agricultural University) for our study and
randomly assigned to one of three groups (See Table 1): 1) the late-night
sleep deprivation group (Late-deprivation, sleep from 23:00 to 03:30,
n= 41); 2) the early-night sleep deprivation group (Early-deprivation, sleep
from 03:00 to 07:30, n= 36); 3) the full-night sleep group (FS, sleep from
23:00 to 8:00, n= 36). The following morning, all participants underwent
rs-fMRI scans after awakening and after overcoming 30min of sleep inertia
(from 08:00 to 10:00). If a subject’s sleep latency exceeded 30min during
the sleep monitoring period, or if there was a single awakening lasting
longer than 30min, the experiment was terminated. Similarly, if a subject
fell asleep during the sleep restriction period, the experiment was
concluded, and the subject was escorted from the laboratory by the
experimenter.
Their sleep patterns were confirmed through a seven-day sleep diary

and the use of a sleep actigraphy (Spectrum and pro, Philips Respironics,
Inc., Murrysville, PA, Oregon). All of the participants were instructed to
refrain from drug, alcohol, and caffeine consumption for 48 h before the

Table 1. Demographic Information and sleep characteristics.

Early-Deprivation Group (n= 41) Late-Deprivation Group (n= 36) Full-night Sleep Group (n= 36) P

Age (years) 23.00 ± 2.53 22.88 ± 2.44 22.78 ± 4.44 0.957

Female (n, %) 20 (48.78) 13 (36.11) 21 (58.33) 0.291

BMI 22.23 ± 2.95 21.93 ± 2.43 21.35 ± 4.45 0.552

PSQI Score 3.05 ± 1.51 3.44 ± 1.44 3.36 ± 1.57 0.484

MEQ Score 51.25 ± 5.74 51.14 ± 5.66 48.17 ± 9.97 0.130

SAS Score 29.14 ± 3.56 28.03 ± 3.89 28.97 ± 4.17 0.414

SDS Score 30.22 ± 6.11 27.89 ± 5.40 29.22 ± 6.06 0.255

Sleep Parameters in Adaption Night

TST (min) 442.66 ± 57.33 449.75 ± 38.31 443.99 ± 37.99 0.810

SL (min) 13.95 ± 12.96 9.62 ± 5.99 9.55 ± 4.93 0.070

WASO (min) 31.65 ± 32.65 31.50 ± 29.61 31.41 ± 20.43 0.991

SE (%) 0.93 ± 0.15 0.93 ± 0.06 0.92 ± 0.07 0.450

N1 (%) 7.02 ± 4.65 7.67 ± 3.83 7.36 ± 4.89 0.871

N2 (%) 49.05 ± 9.46 50.49 ± 7.69 47.89 ± 9.26 0.511

N3 (%) 21.82 ± 9.04 20.06 ± 7.72 23.69 ± 8.52 0.243

REM (%) 21.84 ± 4.72 21.81 ± 4.38 21.92 ± 9.48 0.980

Sleep Parameters in Sleep Manipulation Night

TST (min) 251.22 ± 26.00 251.86 ± 26.69 452.93 ± 37.54 < 0.001***

SL (min) 4.86 ± 3.33 9.80 ± 13.31 7.81 ± 6.58 0.046*

WASO (min) 6.45 ± 7.40 10.29 ± 17.59 23.31 ± 23.16 < 0.001***

SE (%) 0.96 ± 0.03 0.93 ± 0.08 0.92 ± 0.07 0.051

N1 (%) 4.50 ± 2.64 6.18 ± 4.48 6.05 ± 5.28 0.177

N2 (%) 45.73 ± 9.11 51.98 ± 9.10 50.82 ± 9.79 0.013*

N3 (%) 25.79 ± 6.70 27.14 ± 9.16 19.73 ± 7.11 < 0.001***

REM (%) 24.41 ± 6.56 15.18 ± 5.31 22.56 ± 6.32 < 0.001***

BMI body mass index, PSQI Pittsburgh Sleep Quality Index, MEQ Horne-Ostberg Morningness-Eveningness Questionnaire, SAS Self-Rating Anxiety Scale, SDS
Self-Rating Depression Scale, TST total sleep time, SL sleep latency, WASO wake after sleep onset, SE sleep efficiency, REM rapid eye movement, % percentage
Values are presented as mean ± SD.
*p < 0.05, ***p < 0.001.
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study. Participants reported an average sleep duration of 7-8 h per day had
no history of psychiatric or neurological illness, nor did they engage in
illegal drug use. Additionally, they were free from MRI contraindications.
Female participants reported regular menstrual cycles and were not using
oral contraceptives before or during the study. The experimental
procedures received ethical approval from the Ethics Committee at Peking
University (The Code of Ethics: IRB00001052-23141). Prior to their
involvement, all individuals provided written informed consent and were
compensated for their participation.

Polysomnographic
In the laboratory setting, Somte polysomnographic (PSG) mobile recording
system (Grael, Compumedics Inc., Charlotte, NC) were obtained for all
subjects over two consecutive nights. The first night served as an
adaptation night to mitigate first-night effects and exclude the influence of
sleep disorders, ensuring participants acclimated to the experimental
environment. The second night constituted the formal sleep experimental
night, dedicated to the comprehensive collection of sleep data. PSG
recordings of sleep encompassed the measurement of various physiolo-
gical parameters. Electroencephalography (EEG) channels were strategi-
cally placed at F3, F4, C3, C4, O1, and O2, with reference to the
contralateral mastoid, following the International 10–20 system. Bilateral
electromyography (EOG) and submental is electrocardiography (EMG) data
were concurrently recorded.
Sleep stages were manually scored in 30-second epochs using the

standard criteria for polysomnographic sleep recording, as outlined by the
American Academy of Sleep Medicine (AASM) guidelines. Two indepen-
dent sleep technicians, who were unaware of the group assignments,
performed the scoring.

Spilt-night procedure
Participants were divided into three groups, with two groups following a
spilt-night sleep paradigm that involved Late-deprivation and Early-
deprivation groups. Both groups were allocated a total sleep opportunity
of 4.5 h [12, 27]. Participants in Late-deprivation group slept from 23:00 to
03:30 and remained awake from 03:30 to 07:30. This schedule was
designed to ensure that participants experienced predominantly NREM
sleep in the first half of the night and stayed awake during the second half.
Participants in Early-deprivation group stayed awake from 23:00 to 03:00
and slept from 03:00 to 07:30. This schedule was intended to ensure that
participants experienced predominantly REM sleep during the latter half of
the night, remaining awake in the first half. While awake, participants were
allowed to engage in quiet activities such as reading printed books or
paper materials and walking indoors. They were also permitted to drink
water in moderation. These activities were chosen to maintain a low level
of physical and cognitive stimulation.

Rs-fMRI preprocess
During the scanning procedure, participants were instructed to keep
their eyes closed throughout the entire session and make every effort to
minimize head movement. Rs-fMRI data were acquired using a 3.0-T GE
Discovery MR750 system (General Electric Medical System, Milwaukee,
WI, USA). A total of 33 axial slices were collected with a slice thickness of
4.2 mm and no gap between slices. The 8-min images used an echo-
planar imaging (EPI) sequence with a repetition time (TR) of 2 s. The
dataset consisted of 240 time points with an echo time of 30 ms and a
flip angle of 90°, and an in-plane resolution of 3.5 × 3.5 mm² with a field
of view measuring 224 × 224 × 64 mm³. For structural reference, a T1-
weighted image was obtained for each participant with a voxel size of
1 × 1 × 1 mm³ and 192 slices (TR= 6.7 ms, echo time = Min Full, flip
angle = 12°, resolution matrix = 256 mm × 256 mm, thickness =
1.0 mm).
Data preprocessing was performed using Statistical Parametric Mapping

(SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and Data Pro-
cessing and Analysis for Brain Imaging (DPABI) toolboxes [28] running on
MATLAB. The first ten volumes of each run were discarded to allow for MRI
T1 equilibration. Subsequently, all functional volumes were realigned to
the mean image and co-registered to anatomical images with affine
transformations, conducted separately for each volunteer. Anatomical
scans underwent DARTEL normalization to Montreal Neurological Institute
(MNI)-space following segmentation. The same transformation was applied
to co-registered functional volumes, employing a small smoothing kernel
with a Full Width at Half Maximum of 6 × 6 × 6mm. Any images exhibiting

an average head motion displacement exceeding 3.0 mm or rotational
movement beyond 3.0° were systematically excluded from further analysis.

Construction of large-scale functional networks
The brain of each subject was partitioned into 227 cortical and subcortical
regions using the Power template [29] (Table S1). These nodes were
categorized into 10 brain networks, including the default mode network
(DMN), the visual network (VIS), the frontal-parietal network (FPN), the
dorsal attention network (DAN), the ventral attention network (VAN), the
salience network (SAN), the cingulo-opercular network (CON), the auditory
network (AUD), the sensorimotor dorsal network (SMN) and the subcortical
network (SUB) [30, 31].

Connectome-based predictive modeling (CPM)
To explore the neural network connectivity patterns related to sleep loss,
we employed Connectome-based Predictive Modeling (CPM) using
resting-state functional magnetic resonance imaging data. In the CPM
model, sleep data (the duration of REM sleep) and whole-brain
connectivity matrices were utilized as inputs to construct a model of
brain behavior. For each individual, the positive edge weights (edges with
positive connection strengths) and negative edge weights (edges with
negative connection strengths) are summed separately to obtain the total
positive and negative edge weights, then used as individual features
inputted into predictive model. Consistent with recommendations for
predictive modeling on moderate-sized neuroimaging samples [32], the
current analysis employs Leave-One-Out Cross-Validation (LOOCV).

Network connectivity
For each subject, the time series for each region of interest (ROI) was
extracted from the preprocessed data. Functional connectivity matrices
were then constructed by calculating the mean time series of all 227
regions and computing Pearson’s correlation coefficients for each pair of
regions. The resulting correlation coefficients were transformed into z‐
values using Fisher’s Z transformation.

RESULTS
Timing and sleep manipulation effects on REM sleep patterns
To investigate whether the variability of different REM sleep
phase, we conducted a segment analysis on the REM sleep
patterns within the full-night sleep group (FS). Specifically, we
segmented the full night’s sleep into two distinct periods: early-
night (23:00-03:30, early-FS) and late-night (03:30-08:00, late-FS)
(Fig. 1a). We found that during late-night sleep, both the duration
(n= 33, t= 8.26, Cohen d= 1.40, Ptwo-tailed= 1.93e-09, (Fig. 1b)
and proportion (n= 33, t= 8.76, Cohen d= 1.55, Ptwo-
tailed= 5.15e-10, Fig. 1c) of REM sleep significantly increased
compared to early-night sleep. This finding underscores the
importance of integrating sleep timing to fully elucidate its impact
on REM sleep patterns. Next, we compared the changes in REM
sleep between the early-FS group and the late- deprivation group,
as well as between the late-FS group and the early- deprivation
group respectively (Fig. 1d).
We found that compared to the late-FS group (n= 36), early-

deprivation group (n= 41) significantly decreased duration
(t=−2.02, Cohen d=−0.24, Ptwo-tailed= 0.046) and proportion
(t=−3.82, Cohen d= 0.67, Ptwo-tailed= 2.81e-04) of the REM sleep.
In contrast, compared to the early-FS group, late-deprivation
group (n= 36) only significantly decreased the duration of REM
sleep (t=−2.27, Cohen d=−0.29, Ptwo-tailed= 0.026), but not the
proportion (t=−0.99, Cohen d=−0.12, Ptwo-tailed= 0.32). These
results suggest that both early and late deprivation of sleep have a
significant impact on REM sleep. However, we have to voluntarily
sacrifice sleep to manage daily activities. Hence, it is crucial to
compare the differing effects of two types of sleep deprivation on
REM sleep to support our decisions regarding sleep management.
We found that early-deprivation group has significantly better
REM sleep pattern, compared to late-deprivation group (Duration:
n= 77, t= 6.17, Cohen d= 0.70, Ptwo-tailed= 3.19e-08; Proportion,
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n= 77, t= 6.80, Cohen d= 0.78, Ptwo-tailed= 2.20e-09), suggesting
that the early-deprivation group exhibits a more favorable REM
sleep pattern compared to the late-deprivation group.

Connectome-based prediction of the REM sleep
We used the connectome-based predictive modeling (CPM) to
generate brain-REM sleep model from whole-brain functional
connectivity data, which was termed as “REM connectomes”. To
enhance the statistic power, we combined the behavioral data of
REM sleep from three groups: late-FS group, late-deprivation
group, early-deprivation group. We retained the late-FS group for
two reasons instead of the early-FS. First, previous analyses had
demonstrated that the late-FS group exhibits a significantly longer
duration and higher proportion of REM sleep; Second, there was
no correlation between REM sleep in the late-FS and the early-FS
group (Duration: n= 33, r= 0.12, Ptwo-tailed= 0.51; Proportion:
n= 33, r= 0.004, Ptwo-tailed= 0.98). These findings suggest that
the late-FS group better reflects individual differences in REM
sleep. Besides, we found that the duration and proportion of REM
sleep has a high correlation to each other in three groups (late-
night sleep group: n= 33, r= 0.89, Ptwo-tailed= 2.58e-12; early-
deprivation group: n= 41, r= 0.95, Ptwo-tailed= 2.74e-21; late-
deprivation group: n= 36, r= 0.96, Ptwo-tailed= 2.72e-20). There-
fore, we only used the duration of REM sleep in brain-behavior
modelling analysis. Using the CPM model, we found that the
positive network significantly predicts the REM sleep (n= 110,
r= 0.20, Pone-tailed= 0.017, Fig. 2a. as the predictive effect is
unidirectional, the reported P value here is one-tailed).

Multi-level characterization of REM sleep connectome
To comprehensively understand the underlying neural mechanism
of the REM sleep connectome, we conducted a multi-level

characterization analysis, encompassing brain networks, large-
scale networks, and specific brain regions. Additionally, previous
studies employing CPM-based characterization typically relied on
edge counts in predictive models. However, since the predictive
algorithm of CPM is based on linear regression [25], we also
utilized correlation to assess the importance of predictive features.
The CPM connectome primarily resides within certain brain

networks (variance of normalized predictive edges = 0.22),
notably the default mode network (DMN-DMN) and the cingulo-
opercular network (CON-CON), as well as between the default
mode network and the visual network (DMN-VIS), and between
the subcortical network and the visual network (SUB-VIS) (Fig. 2b).
Regarding network contribution, the majority of brain networks
play significant roles in prediction, rather than just a few networks
(variance of normalized correlation = 0.13, Fig. 2c). Notably, the
DMN-DMN and DMN-VIS also showed an important contribution.
However, networks with fewer predictive edges also made
important contributions, such as CON-Auditory, SUB-VIS networks.
Details are provided in the supplementary materials Table S2a.
Next, we characterize the importance and contribution of the

ten large-scale networks in the REM sleep connectome (Table
S2b). We found that the DMN, VIS and SUB networks has the
predominant predictive edges (51%, Fig. 2d), which was consistent
with the pattern of brain networks (variance of normalized
predictive edges = 0.28). However, in terms of large-scale network
contribution, the prediction contribution was widely distributed
across the ten networks (variance of normalized correlation =
0.09, Fig. 2e). We also found that the DMN, sensory motor network
(SMN), VIS and Auditory networks have an important role in the
predictive model (Table S3).
Last, we checked the regional importance and contribution in

the REM sleep connectome. In terms of regional edges and

Fig. 1 Late-night REM sleep, but not early-night REM sleep, maintains optimal REM sleep patterns. a Experimental timeline for
manipulating REM sleep loss procedure. b Diagram for the sleep progression from awake to non-rapid eye movement (NREM), and rapid eye
movement (REM) sleep, along with the changes in electroencephalography (EEG), was tracked using Polysomnography (PSG) over a 90-minute
cycle. c Comparison of REM phase duration and percentage between early-night and late-night sleep in the Full-Sleep Group, revealing higher
values during early-night sleep. d Decreased REM phase duration and percentage in the Early-Deprivation Group compared to late-night sleep
in the Full-Sleep Group. e Increased REM phase duration and percentage in the Late-Deprivation Group compared to early-night sleep in the
Full-Sleep Group. f Significantly better REM phase duration and percentage in the Early-Deprivation Group compared to the Late-Deprivation
Group. *p < 0.05; ***p < 0.001. ns. Not Significant. Data are presented as the mean ± SEM.
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regional correlation, we found that the two measures have a high
similarity (Table S4. n= 227, r= 0.79, Ptwo-tailed= 6.17e-50), sug-
gesting that the role of brain regions at a small scale is remarkably
consistent. Specifically, we found that the thalamus and visual,
and auditory cortex had the most edges and high contribution,
such as calcarine, lingual gyrus, and superior temporal gyrus (STG)
(Fig. 2f).

Effects of sleep deprivation on REM sleep connectome
In the above analyses, we identified a whole-brain REM sleep
connectome, which was consisted of DMN, SUB and VIS networks.
Furthermore, we last investigated whether half-night sleep
deprivation affects the REM sleep connectome.
Among the 32 brain networks of REM sleep connectome, only two

brain networks showed significant group difference between late-FS
group, late-deprivation group, early-deprivation group after multiple
correction (Table S5. DMN-DMN: F(2,107)= 8.10, Ptwo-tailed= 5.29e-04;
VIS-Subcortex: F(2,107)= 6.19, Ptwo-tailed= 0.003). We further found

that the DMN-DMN connectivity of late-deprivation group was
significantly lower than late-FS group (n= 69, t= 3.55, Cohen
d= 0.43, Ptwo-tailed= 7.12e-04) and early-deprivation group (n= 77,
t= 3.18, Cohen d= 0.36, Ptwo-tailed= 0.002) (Fig. 3a). In contrast, the
Visual-Subcortex (VIS-SUB) connectivity of late-FS group was
significantly higher than early-deprivation group (n= 74, t= 2.80,
Cohen d= 0.43, Ptwo-tailed= 0.007) and late-deprivation group
(n= 69, t= 2.80, Cohen d= 0.43, Ptwo-tailed= 0.007) (Fig. 3b).
Next, we further compared the REM sleep related connection of

the DMN-DMN and VIS-SUB networks between the three groups.
For the DMN-DMN network, we found six connections showed
significant group difference (Table S6, Fig. 3c), such as connection
between medial frontal cortex (mPFC) and paracingulate
(F(2,107)= 4.01, Ptwo-tailed= 0.029) and connection between super-
ior frontal gyrus (SFG) and the posterior cingulate cortex (PCC)
((F(2,107)= 3.11, Ptwo-tailed= 0.048). Similarly, the connection of
VIS-SUB of late-deprivation group was significantly lower than
late-FS group (Table S7). For the VIS-SUB network, we found eight

Fig. 2 Schematic the analyses and results of REM sleep connectomes. a A large-scale functional connectivity matrix, consisting of 227×277
nodes for each subject, was utilized in connectome-based predictive modeling (CPM) to generate a brain-REM sleep model at the whole-brain
level. b Illustrating no correlation between REM sleep during late-night sleep and early-night sleep. c Demonstrating a high correlation
between the duration and proportion of REM sleep among groups. d Identifying the positive network that significantly predicts REM sleep in
the CPM model. e Employing a network-based analysis to detect networks with significant nominal changes in functional connectivity
matrices: somatosensory/motor network (SMN), cingulo-opercular network (CON), auditory network (AUD), default mode network (DMN),
visual network (VIS), fronto-parietal network (FPN), salience network (SAN), subcortical network (SUB), ventral attention network (VAN), and
dorsal attention network (DAN). f–i Showing a notable increase in the number (f, h), particularly in the DMN-VIS and SUB-VIS connections, and
correlations (g, i), particularly in the DMN and CON, of edges in the REM connectome. Revealing the significant roles played by the majority of
brain networks in predicting the connectomes. j Highlighting the thalamus, visual cortex, and auditory cortex as having the most edges and
making high contributions in terms of regional edges and regional correlation.
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connection with significant group difference (Table S8), especially
the connection between thalamus and lingual gyrus
(F(2,107)= 7.68, Ptwo-tailed= 6.61e-04) and the connection
between thalamus and calcarine (F(2,107)= 6.34, Ptwo-
tailed= 0.003). Similarly, the connection of VIS-SUB network of
late-FS group was significantly higher than early-deprivation
group (Table S9).

DISCUSSION
The present study delved into the effect of REM sleep loss on
resting brain functional connectivity at the multi-level. Through
the CPM analysis, we discerned the effects of REM sleep on the
functional connectivity of the brain (REM connectome) during its
resting state across various conditions of REM sleep loss. Notably,
the REM connectome predominantly manifested within the DMN
and CON network, as well as between the DMN and VIS network,
and between the SUB and VIS network. Moreover, at the network
level, the DMN, VIS, and SUB networks exhibited greater
contributions to the REM connectome, while at the regional level,
the calcarine, lingual gyrus, and superior temporal gyrus displayed
heightened involvement in the REM connectome.
Interestingly, we observed that the thalamus exhibited the highest

degree centrality and made a significant contribution to the REM
connectome. Additionally, the subcortical networks, to which the
thalamus belongs, displayed the third most prominent predictive
edges. During REM sleep, the thalamus acts as a relay station for
sensory information, transmitting signals from the environment to
the cerebral cortex. It is involved in regulating the transition between
different sleep stages, including the onset and termination of REM
sleep cycles [33]. Moreover, we also found that the insula was with
high regional degree and contribution, which was plays a crucial role
in the interaction between internal and external perception [34].
Given that cortical and thalamocortical activity is highly state
dependent [35], the subcortical network that involved in regulation
of arousal and sleep [36], it is possible that lack of REM sleep may
influence emotion expression and cognitive behavior through the
thalamus and its network [37]. Evidence from deep brain stimulation
research supported the heterogeneity REM sleep is not limited to
cortical activity, but is also manifested by anterothalamic and
thalamocortical synchronization [38]. Corroborating this possibility,
previous studies have shown that the mental processes such as
episode memory, cognition and emotion, whose pathological
changes are closely correlated with the occurrence of psychiatric
disorders such as posttraumatic stress disorder and addiction
[39–41], are more predisposed to be processed during the REM
phase [6, 42].While both types of sleep deprivation affect REM sleep,

when faced with the necessity of sleep loss, prioritizing sleep during
the latter part of the night may be a preferable choice for
maintaining optimal REM sleep patterns.
The DMN is distinguished by its elevated level of resting

metabolic activity, and its connectivity is implicated in a broad
spectrum of cognitive, emotional, and social functions [43, 44].
Notably, REM connectome differences in the DMN (within and
between the network), regardless of individual or group level,
predicted the REM-sleep loss effect. These findings are consistent
with previous research that has linked connectivity in the DMN
vulnerable to extreme alterations in lack of sleep [45]. However,
the late-night sleep deprivation results in the most pronounced
reduction in connections within the DMN. This indicates that both
late-night and early-night sleep deprivation result in insufficient
REM sleep, but late-night sleep deprivation appears to exert a
more detrimental influence compared to early-night sleep
deprivation. It is therefore noteworthy that the absence of REM
sleep, which exacerbate the incidence and pathogenesis of
psychiatric disorders [3, 46], and that the late-night may provide
a better time window to improve and treat psychiatric disorders.
One limitation of our study is that we have only investigated the

brain activity related to REM sleep without linking to the behavior
changes, such as memory and cognitive, which could be explored
in more depth in the future. Moreover, we did not input the NREM
sleep deprivation into analysis, since there are already a number of
studies have conducted on the NREM sleep, which is more
involved in semantic memory consolidation and maintaining sleep
stability [39–41].
In summary, insufficient REM sleep disrupts the dynamic

reorganization of resting-state functional brain networks, primarily
affecting the DMN Network. Additionally, the edges of the
thalamus contribute significantly to these disruptions in con-
nectivity. The present study contributes to our understanding of
the role of the REM sleep phase in maintaining or modifying brain
variability to some extent, and highlights possible neural
mechanisms supporting connectivity within large brain networks
when sleep is inadequate. Future investigations should consider
integrating real-time measures of REM sleep with fMRI to ascertain
the dynamic association between REM related connectivity with
REM sleep. And investigate into the effects of total REM sleep
deprivation might provide more valuable context for the
interpretation of brain-behavior predictive modeling.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author, Yan Sun and Jie Shi, upon reasonable request.

Fig. 3 Late-night sleep deprivation leads to greater reduction in REM sleep connectome. a Demonstrates that the DMN-DMN connectivity
in the late-deprivation group was the lowest among the groups. b Illustrates that the VIS-SUB connectivity in the late-sleep group was
significantly higher than in the early-deprivation group and late-deprivation group. c Diagrams for six connections indicating significant
group differences in the DMN-DMN network. d Displays diagrams for eight connections indicating significant group differences in the VIS-SUB
network. **p < 0.01; ***p < 0.001. ns. Not Significant. Data are presented as the mean ± SEM.

T. Di et al.

6

Translational Psychiatry          (2024) 14:270 



REFERENCES
1. Hafner M, Stepanek M, Taylor J, Troxel WM, van Stolk C. Why sleep matters-the

economic costs of insufficient sleep: a cross-country comparative analysis. Rand
Health Q. 2017;6:11.

2. Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB. Prevalence of
healthy sleep duration among adults-United States, 2014. MMWR Morb Mortal
Wkly Rep. 2016;65:137–41.

3. Ben Simon E, Vallat R, Barnes CM, Walker MP. Sleep loss and the socio-emotional
brain. Trends Cogn Sci. 2020;24:435–50.

4. Schmid SM, Hallschmid M, Schultes B. The metabolic burden of sleep loss. Lancet
Diabetes Endocrinol. 2015;3:52–62.

5. Curcio G, Ferrara M, De Gennaro L. Sleep loss, learning capacity and academic
performance. Sleep Med Rev. 2006;10:323–37.

6. Tempesta D, Socci V, De Gennaro L, Ferrara M. Sleep and emotional processing.
Sleep Med Rev. 2018;40:183–95.

7. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN,
et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18:404–18.

8. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, et al. Effect of sleep
deprivation on the human metabolome. Proc Natl Acad Sci USA. 2014;111:10761–6.

9. Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, et al. The sleep-
wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans.
Science. 2019;363:880–3.

10. Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93:681–766.
11. Diekelmann S, Wilhelm I, Wagner U, Born J. Sleep to implement an intention.

Sleep. 2013;36:149–53.
12. Menz MM, Rihm JS, Buchel C. REM sleep is causal to successful consolidation of

dangerous and safety stimuli and reduces return of fear after extinction. J Neu-
rosci. 2016;36:2148–60.

13. Potter GD, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian rhythm and
sleep disruption: causes, metabolic consequences, and countermeasures. Endocr
Rev. 2016;37:584–608.

14. Anafi RC, Kayser MS, Raizen DM. Exploring phylogeny to find the function of
sleep. Nat Rev Neurosci. 2019;20:109–16.

15. Cai DJ, Mednick SA, Harrison EM, Kanady JC, Mednick SC. REM, not incubation,
improves creativity by priming associative networks. Proc Natl Acad Sci USA.
2009;106:10130–4.

16. Carr M, Nielsen T. Morning rapid eye movement sleep naps facilitate broad
access to emotional semantic networks. Sleep. 2015;38:433–43.

17. Ramirez-Villegas JF, Besserve M, Murayama Y, Evrard HC, Oeltermann A, Logo-
thetis NK. Coupling of hippocampal theta and ripples with pontogeniculoocci-
pital waves. Nature. 2021;589:96–102.

18. Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM
sleep theta rhythm in contextual memory consolidation. Science. 2016;352:812–6.

19. Li W, Ma L, Yang G, Gan WB. REM sleep selectively prunes and maintains new
synapses in development and learning. Nat Neurosci. 2017;20:427–37.

20. Chen J, Liang J, Lin X, Zhang Y, Zhang Y, Lu L, et al. Sleep deprivation promotes
habitual control over goal-directed control: behavioral and neuroimaging evi-
dence. J Neurosci. 2017;37:11979–92.

21. Chen WH, Chen J, Lin X, Li P, Shi L, Liu JJ, et al. Dissociable effects of sleep
deprivation on functional connectivity in the dorsal and ventral default mode
networks. Sleep Med. 2018;50:137–44.

22. Hudson AN, Van Dongen HPA, Honn KA. Sleep deprivation, vigilant attention, and
brain function: a review. Neuropsychopharmacology. 2020;45:21–30.

23. Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, et al. Neural, electrophysiological
and anatomical basis of brain-network variability and its characteristic changes in
mental disorders. Brain. 2016;139:2307–21.

24. Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, et al.
Using connectome-based predictive modeling to predict individual behavior
from brain connectivity. Nat Protoc. 2017;12:506–18.

25. Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. Functional
connectome fingerprinting: identifying individuals using patterns of brain con-
nectivity. Nat Neurosci. 2015;18:1664–71.

26. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of quanti-
tative sleep parameters from childhood to old age in healthy individuals: developing
normative sleep values across the human lifespan. Sleep. 2004;27:1255–73.

27. Meyhofer S, Chamorro R, Hallschmid M, Spyra D, Klinsmann N, Schultes B, et al.
Late, but not early, night sleep loss compromises neuroendocrine appetite reg-
ulation and the desire for food. Nutrients. 2023;15:2035.

28. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis for
(Resting-State) Brain Imaging. Neuroinformatics. 2016;14:339–51.

29. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional
network organization of the human brain. Neuron. 2011;72:665–78.

30. Mohr H, Wolfensteller U, Betzel RF, Misic B, Sporns O, Richiardi J, et al. Integration
and segregation of large-scale brain networks during short-term task auto-
matization. Nat Commun. 2016;7:13217.

31. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task
connectivity reveals flexible hubs for adaptive task control. Nat Neurosci.
2013;16:1348–55.

32. Scheinost D, Noble S, Horien C, Greene AS, Lake EM, Salehi M, et al. Ten simple
rules for predictive modeling of individual differences in neuroimaging. Neuro-
image. 2019;193:35–45.

33. Aime M, Calcini N, Borsa M, Campelo T, Rusterholz T, Sattin A, et al. Paradoxical
somatodendritic decoupling supports cortical plasticity during REM sleep. Sci-
ence. 2022;376:724–30.

34. Nguyen VT, Breakspear M, Hu X, Guo CC. The integration of the internal and
external milieu in the insula during dynamic emotional experiences. Neuroimage.
2016;124:455–63.

35. McCormick DA, McGinley MJ, Salkoff DB. Brain state dependent activity in the
cortex and thalamus. Curr Opin Neurobiol. 2015;31:133–40.

36. Gent TC, Bassetti C, Adamantidis AR. Sleep-wake control and the thalamus. Curr
Opin Neurobiol. 2018;52:188–97.

37. Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, et al. The
role of the anterior nuclei of the thalamus in human memory processing. Neu-
rosci Biobehav Rev. 2021;126:146–58.

38. Simor P, Szalardy O, Gombos F, Ujma PP, Jordan Z, Halasz L, et al. REM sleep
microstates in the human anterior thalamus. J Neurosci. 2021;41:5677–86.

39. Shalev A, Liberzon I, Marmar C. Post-traumatic stress disorder. N Engl J Med.
2017;376:2459–69.

40. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of
reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

41. Deng J, Lin X, Zheng Y, Su S, Liu X, Yuan K, et al. Manipulating critical memory
periods to treat psychiatry disorders. Sci Bull (Beijing). 2023;68:2477–86.

42. MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to
memory retrieval. Sleep Med Rev. 2021;59:101453.

43. Andrews-Hanna JR, Reidler JS, Huang C, Buckner RL. Evidence for the default
network’s role in spontaneous cognition. J Neurophysiol. 2010;104:322–35.

44. Hyatt CJ, Calhoun VD, Pearlson GD, Assaf M. Specific default mode subnetworks
support mentalizing as revealed through opposing network recruitment by social
and semantic FMRI tasks. Hum Brain Mapp. 2015;36:3047–63.

45. De Havas JA, Parimal S, Soon CS, Chee MW. Sleep deprivation reduces default
mode network connectivity and anti-correlation during rest and task perfor-
mance. Neuroimage. 2012;59:1745–51.

46. Baglioni C, Nanovska S, Regen W, Spiegelhalder K, Feige B, Nissen C, et al. Sleep
and mental disorders: A meta-analysis of polysomnographic research. Psychol
Bull. 2016;142:969–90.

ACKNOWLEDGEMENTS
This work was supported in part by the STI2030-Major Projects (2021ZD0202100,
2021ZD0200801) and the National Natural Science Foundation of China (82130040,
82288101).

AUTHOR CONTRIBUTIONS
TD, YS, and JS designed the study. TD, LZ, WL, YG, and EZ performed the experiments.
TD, LZ, CX, SX, TJ, LL, YS, and JS analyzed the data and prepared the manuscript
together. All the authors have read and approved the final version of the manuscript.

COMPETING INTERESTS
The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict
of interest.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-024-02985-x.

Correspondence and requests for materials should be addressed to Yan Sun or
Jie Shi.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

T. Di et al.

7

Translational Psychiatry          (2024) 14:270 

https://doi.org/10.1038/s41398-024-02985-x
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

T. Di et al.

8

Translational Psychiatry          (2024) 14:270 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The impact of REM sleep loss on human brain connectivity
	Introduction
	Method
	Participants
	Polysomnographic
	Spilt-night procedure
	Rs-fMRI preprocess
	Construction of large-scale functional networks
	Connectome-based predictive modeling (CPM)
	Network connectivity

	Results
	Timing and sleep manipulation effects on REM sleep patterns
	Connectome-based prediction of the REM sleep
	Multi-level characterization of REM sleep connectome
	Effects of sleep deprivation on REM sleep connectome

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




