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Attention-deficit/hyperactivity disorder (ADHD) is characterized by difficulty in acting in a goal-directed manner. While most
environments require a sequence of actions for goal attainment, ADHD was never studied in the context of value-based sequence
learning. Here, we made use of current advancements in hierarchical reinforcement-learning algorithms to track the internal value
and choice policy of individuals with ADHD performing a three-stage sequence learning task. Specifically, 54 participants (28 ADHD,
26 controls) completed a value-based reinforcement-learning task that allowed us to estimate internal action values for each trial
and stage using computational modeling. We found attenuated sensitivity to action values in ADHD compared to controls, both in
choice and reaction-time variability estimates. Remarkably, this was found only for first-stage actions (i.e., initiatory actions), while
for actions performed just before outcome delivery the two groups were strikingly indistinguishable. These results suggest a
difficulty in following value estimation for initiatory actions in ADHD.
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INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelop-
mental disorder that is characterized by inattention, impulsivity,
and hyperactivity [1, 2]. Approximately 10% of school-aged
children are affected by ADHD [3], with the majority experiencing
significant symptoms throughout adolescence and into adulthood
[4]. Individuals with ADHD frequently struggle with the comple-
tion of tasks that require the execution of multiple actions (e.g.,
doing homework) [5–7]. Despite the known difficulties experi-
enced by those with ADHD in completing multi-action tasks in
natural environments, there has been no prior investigation of
ADHD in the context of value-based sequence learning. In this
study, we employed reinforcement learning modeling to examine
the extent to which ADHD is associated with reduced value-based
learning for initial actions (i.e., actions at the start of the sequence)
using a multi-stage reinforcement learning task.
Reinforcement learning studies have demonstrated that human

individuals estimate the value of potential actions based on their
outcome history [8–10]. This estimation process enables indivi-
duals to act persistently, even when the overall goal or outcome is
distant [11, 12]. Specifically, reinforcement learning algorithms
suggest that when making a sequence of actions that lead to a
certain outcome, the value of the observed outcome is mentally
“backpropagated” to preceding actions [13]. For example, when
making a cup of coffee, multiple actions must be completed
before achieving the end goal (i.e., consumption of the beverage).
These actions should be associated with the value of the reached
outcome, thereby increasing the likelihood of repeating/avoiding
the sequence based on the value of the outcome. The

backpropagation of values to actions is considered a “glue” that
binds the actions into a sequence [14]. However, during the
backpropagation process, value is also discounted across the
sequence, meaning that initiatory actions (i.e., actions performed
at the start of a sequence) receive smaller value updates than
terminal actions (i.e., actions performed immediately before
outcome delivery) [10, 15]. The challenge is that without making
correct value-based choices early in the sequence, the end goal
cannot be reached, resulting in less consistent and more arbitrary
value-based choices overall. Nevertheless, since initiatory actions
are distant in time from the outcome, they are also assigned
smaller value updates [10]. Many studies have already suggested
that the processes described by reinforcement learning equations
do indeed predict human behavior [15–17] and can explain neural
activity [9, 18–22]. However, no study that we know of to date has
used this approach to investigate whether the value-based
process can explain the difficulty of participants with ADHD to
engage and maintain a multi-stage task in order to reach a
desired goal.
Here, we hypothesize that difficulties acting according to

obtained rewards in ADHD will be more pronounced in initiatory
actions (i.e., actions that are performed at the start of a
sequence) compared with terminal actions (i.e., actions that are
performed at the end of an sequence). Specifically, we suggest
that the process of updating the value of initiatory actions is less
efficient in ADHD, leading to noisier choices at the start of a
sequence. Difficulty holding and following distinct action values
at the beginning of a sequence can lead to less consistent
choices and difficulty achieving the desired goal, which is highly
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relevant to ADHD symptomatology. For example, if the initiatory
action of a sequence for making a beverage is not clearly
defined, other competing actions that are closer to the outcome
and assigned with similar values might take precedence.
Alternatively, if the value of the initiatory action is internally
well defined, it will lead more frequently to the selection of the
best action, generating a more consistent and uninterrupted
sequence of actions.
Although no studies have examined action–outcome associa-

tions in ADHD for initiatory actions, several findings in the
literature support this hypothesis. First, ADHD individuals exhibit
marked differences in reward-related neural processing [23–30].
Second, ADHD individuals are known to show steeper temporal
discounting of future values [31–33]. Furthermore, ADHD shows
inconsistent behavior when performing sustained attention/
executive function tasks without immediate reward or feedback
[34–40]. Finally, when sustained attention/executive function tasks
are performed under conditions of immediate reward (where
every action can be considered a terminal action, immediately
leading to reward), ADHD shows marked improvements [41].
Therefore, there is reason to believe that individuals with ADHD
have a reduced ability to assign and follow internal action values,
mostly for actions that are at the beginning of a sequence and
distance in time from outcome delivery. However, no empirical
investigation has directly addressed this question.
The current study, therefore, examined to what extent

individuals diagnosed with ADHD were able to update and
act upon action–outcome associations across different stages
of a sequential decision-making task. Specifically, we hypothe-
sized that the value-based behavior of ADHD participants
would be more inconsistent (noisier choices and higher RT
variability) compared with their healthy control (HC) peers,
mostly for initiatory but not terminal actions. We further
hypothesize that the reason for such group differences will be
due to reduced action value updating for outcome-distant
stages in ADHD. To examine this question empirically, ADHD/
HC participants performed a sequential reinforcement learning
task. In each trial, they were asked to make three choices to
gain rewards. We then used computational modeling to assess
the internal value each individual might be assigning for each
action in each stage. We replicated previous findings showing
that for all participants and across both groups, choice

accuracy, and RT variability estimates improved when the
latent action values were more differentiated (larger internal
value difference between the two available actions). We then
examined the ability of ADHD individuals to act according to
the reward history across stages of the task.

METHODS
Participants
Fifty-four undergraduate Tel-Aviv University students completed the
study in return for course credits or monetary compensation. (For
demographics including gender, age, and IQ, see Table 1; all
participants were white caucasian; 53 came from the Jewish sector
and 1 from the Arab–Christian sector). All participants reported normal
or corrected vision and signed informed consent before participating
in the study. Participants using ADHD medications were asked to
abstain for at least 24 hours before the lab session. The study was
approved by the Tel-Aviv University IRB ethics committee. Exclusion
criteria included any neurological or psychiatric history past or current,
history of significant head injury, and current drug or alcohol abuse.
Specifically, nine participants were excluded from the study due to a
concurrent diagnosis of additional disorders, including anxiety,
depression, and OCD, while an additional five participants were
excluded because they reported ongoing psychiatric treatment and
two additional participants were excluded due to drug abuse.

ADHD diagnosis
To ensure ADHD diagnosis (present for the ADHD group, absent for the
control group), we performed the following steps: (1) we made sure that all
ADHD participants received an ADHD diagnosis in the community by a
licensed mental health professional (approved by the Israeli Government
Health Department in making ADHD diagnosis). (2) We made sure that no
participants in the control group received an ADHD diagnosis in the
community. (3) We questioned the participants in both groups to ensure
they were not diagnosed in the community with any additional mental
health disorder (current or past). (4) All participants completed a well-
validated ADHD assessment in our lab that included a semi-structured
interview using the Diagnostic Interview for ADHD in adults (DIVA [42]) to
reconfirm the presence/absence of an ADHD diagnosis for the clinical/
control group. DIVA assessments were conducted by well-trained
psychology students under the direct supervision of a licensed clinical
psychologist expert in ADHD. (5) All participants completed self-report
questionnaires for ADHD symptoms in adulthood (ASRS [43]) and
childhood (WURS [44]) to provide an estimate for the difference of ADHD
symptoms between the groups in our cohort (see Table 1 and Fig. S1). (6)

Table 1. Characteristics of ADHD and Healthy control groups.

Healthy control ADHD p-Value

N 26 (female: 20) 28 (female: 15)

Age 19–34 (SD= 4.30) 20–32 (SD= 2.68) 0.38

ASRS score 38.2 (SD= 10.5) 61.7 (SD= 6.6) <0.001

WURS score 20.0 (SD= 18.5) 44.4 (SD= 13.1) <0.001

OCI score 40.6 (SD= 28.1) 32.3 (SD= 23.6) 0.25

STAI score 41.6 (SD= 9.6) 45.4 (SD= 9.9) 0.16

BDI score 9.1 (SD= 9.7) 11.3 (SD= 7.2) 0.35

AQ score 15.9 (SD= 5.6) 16.9 (SD= 5.8) 0.44

Raven score 12.2 (SD= 3.4) 12.5 (SD= 3.7) 0.76

AUDIT 2.5 (SD= 2.95) 2.88 (SD= 1.36) 0.62

CUDIT 4.61 (SD= 6.07) 3.23 (SD= 3.32) 0.41

Stimulants Medication – 10—Methylphenidate based
10—Amphetamine based

Note. ASRS adult ADHD self-report scale, WURS Wender Utah rating scale for attention deficit hyperactivity, OCI obsessive-compulsive inventory, STAI state-trait
anxiety inventory, BDI Beck depression inventory, AQ autism spectrum quotient, Raven Raven progressive matrices, AUDIT alcohol use disorders identification
test, CUDIT Cannabis use disorders identification test. Note that CUDIT and AUDIT scores were obtained after the study’s completion (as a response to a
reviewer’s comment) and thus included 18/17 participants from the HC/ADHD group, respectively. All other measurements were completed by all participants
included in study.
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To further describe our cohort and examine group differences in other
relevant estimates, participants completed an IQ test (Ravens [45]), self-
report estimates for symptoms of depression (beck depression inventory;
BDI [46]), anxiety (state trait anxiety inventory; STAI [47]),
obsessive–compulsive (obsessive–compulsive inventory; OCI [48]), autism
(autism spectrum quotient; AQ [49]), alcohol use disorder (Alcohol Use
Disorders Identification Test, AUDIT [50]) and cannabis use disorder
(Cannabis Use Disorders Identification Test, CUDIT [51]). Overall, we found
no statistically significant group difference in these scores, while we did
find a substantial group difference in ADHD self-report estimates (ASRS
and WURS), as should be expected.

Reinforcement learning task
Participants performed a multiple-stage reinforcement learning task (Fig. 1)
that included three sequential stages. The participants were told that their
task was to find a puppy that was hiding behind different chests and that
they needed to make three choices each trial to try and locate the puppy.
They were told that the task included two houses, each house containing
two rooms and each room containing two chests. Accordingly, at the first
stage of each trial, participants chose one of two “houses” (denoted by
cartoon houses stimuli, see Fig. 1B), each leading them deterministically to
a second-stage state where a pair of “doors” (cartoon stimuli, see Fig. 1B)
was offered. Choosing one of the doors led participants deterministically to
a third-stage state where a pair of “chests” (cartoon stimuli; see Fig. 1B) was
offered. After making all three choices, the participants were presented
with the outcome, which was a cartoon image of a happy puppy or an

empty pet pillow with no puppy (see Fig. 1A). Specifically, each chest
delivered a reward (finding the puppy) on a drifting probability (see
Fig. 1C), and participants were asked to learn which house, door and chest
are most likely to lead to reward throughout the task. (For more
information, see SI).

Choice accuracy and difficulty
For the purposes of analysis, we wanted to code choice accuracy and
choice difficulty for each trial and stage. In each stage, participants were
asked to make a choice between two actions. A choice was coded as
“correct” if the participant selected the action that took part in the
sequence with the highest true expected value at a certain stage. Choice
difficulty was defined in a similar way, according to the true expected
values of the sequence associated with each offered option. (For more
information, see SI).

Using ex-Gaussian distribution to estimate RT variability
An ex-Gaussian distribution is a non-theoretical statistical model that
was extensively used in cognitive [52] and ADHD research [53–55] to
describe the distribution of reaction times. It combines two different
distributions: the Gaussian (normal) distribution, which represents the
more frequent and typically quicker reaction time, and an exponential
distribution, which represents the tail of slower reaction times.
Specifically, τ is the parameter that describes the exponential
portion of the distribution. By using the ex-Gaussian distribution,

Fig. 1 Trial sequences for the multiple-stage task. Participants were told that a puppy was hiding behind a chest and that their task was to
locate the puppy. A Each trial individuals made choices across three stages (houses, doors, and chests) to try and locate the puppy. B State-
action transition structure shows a deterministic transition from stage one (houses), stage two (doors), and stage three (chests). C We used a
typical reinforcement learning design where the true expected value (probability of finding the puppy for each chest) for each chest drifted
slowly across the block, thus requiring participants to keep learning across the task, similar to conventional reinforcement-learning paradigms
[10, 94–97].
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researchers can more accurately model the full range of reaction times,
including the long tail of slower responses. (For more information,
see SI).

Data treatment
The first trial in each block, trials with implausibly quick reaction times
(<200ms) or exceptionally slow reaction times (>4000ms) were omitted
(5.15% of all trials). Participants with more than 25% excluded trials (one
participant, HC group) or higher than 5% no response rate (none), were
further excluded from the analysis. Due to technical issues, we found after
data collection that some participants did not receive choice feedback on a
minority of trials. Those trials were omitted (69 trials overall), and
participants with more than 5% of omitted trials were excluded (4
participants, 3 participants from the HC group, and 1 participant from the
ADHD group).

Computational modeling
To estimate the internal values participants might assign to each
available action, we fitted a well-established hierarchical reinforcement
learning model to participants’ choice behavior [16, 56, 57]. First,
we defined a prediction error (PE) for each state and action according
to its expected value and the observed rewards as follows (see
Eqs. 1–3):

PE1 ¼ Vchoice2 � Vchoice1 (1)

PE2 ¼ Vchoice3 � Vchoice2 (2)

PE3 ¼ R� Vchoice3 (3)

Where Vchoice1, Vchoice2, and Vchoice3 are the latent state-action values for
the chosen actions in each state (in the reinforcement learning literature,
also known as Q values). R refers to the outcome observed following the
terminal state so that R∈ {0,1}. We followed the convention in model-free
reinforcement learning modeling [10], where each PE is backpropagated
and assigned to all past actions under a discounting factor (i.e., free
parameter). Therefore, the first action is updated using PE1, PE2, and PE3.
The second action is updated using PE2 and PE3. The third action is
updated using PE3. Thus, the value of every action was updated as follows
(see Eqs. 4–6):

Vchoice1 ¼ Vchoice1 þ α1 Vchoice2 � Vchoice1½ � þ α1λ Vchoice3 � Vchoice2½ �
þ α1λ

2½R� Vchoice3�
(4)

Vchoice2 ¼ Vchoice2 þ α2 Vchoice3 � Vchoice2½ � þ α2λ½R� Vchoice3� (5)

Vchoice3 ¼ Vchoice3 þ α3½R� Vchoice3� (6)

Where α1, α2, and α3 are the learning rates for Stages 1, 2, and 3,
respectively λ is an eligibility trace factor referring to the extent of
prediction error backpropagation. Specifically, for λ of 1, the agent will
learn and update whole sequences, while for λ= 0 the agent will learn
individual state action values for each stage. Finally, choices were
predicted using a softmax decision policy (see Eqs. 7–9):

p choice1ð Þ ¼ exp β1Vchoice1ð Þ
Σ exp β1V1ð Þ (7)

p choice2ð Þ ¼ exp β2Vchoice2ð Þ
Σ expðβ2V2Þ (8)

p choice3ð Þ ¼ exp β3Vchoice3ð Þ
Σ expðβ3V3Þ (9)

where β1, β2, and β3 are the decision temperature for Stages 1, 2, and 3,
respectively. Moreover, to ensure that the model can be used adequately
to estimate latent parameters, we performed a parameter recovery
analysis, which indicated excellent parameter recovery with no indication
of bias (see Fig. S3; for more information, see SI).

RESULTS
Theory-independent analysis
Accuracy rates—group difference analysis. To examine the
difference in performance between ADHD and HC participants
on accuracy rates, we performed a hierarchical Bayesian
regression analysis (for more details, see SI) where we
predicted choice accuracy (0/1 for choosing the offer with
the lower/higher true expected value, respectively), using
choice difficulty (absolute difference between the true
expected values of the two offers, see Methods), stage (1, 2,
or 3) and group (HC vs. ADHD). When examining the
interaction between group and choice difficulty, we found
that the effect of choice difficulty on accuracy rates was smaller
for ADHD compared to HC only for first-stage choices.
Specifically, a change of 0.5 in the difference between the
expected value of the two offered actions in the first stage was
associated with an increase of 22.6% in accuracy rates for the
HC group and only 1.8% for the ADHD group [posterior median
of the groupXchoice-difficulty effect in the first stage=−2.00
CI89% between −3.35 and −0.71, CI95% between −3.58 and
−0.48, probability of direction (pd)= 99.30; see full posterior in
Fig. S5A]. Strikingly, group differences vanished completely
and even changed direction when examining second and
third-stage choices. Specifically, we found a tendency toward a
group × choice difficulty interaction in the opposite direction
to that of the first stage when examining the second stage
[groupXchoice-difficulty effect posterior median= 1.45 CI89%
between −0.38 and 3.22, CI95% between −0.80 and 3.69,
pd= 89.45%; See full posterior in Fig. S5B] and the third stage
[groupXchoice-difficulty median = 1.67, CI89% between −0.19
to 3.58, CI95% between −0.65 and 4.00, pd= 92.15%; see full
posterior in Fig. S5C]. Therefore, we conclude that ADHD
participants were not as sensitive to differences in choice
difficulty as the HC group when making first-stage choices.
However, in the second and third choices, we found no
evidence for group differences in accuracy rates (see Fig. 2A).
(For additional analysis regarding accuracy rates across groups
and the effect of IQ on accuracy rates, see SI).

Reaction-time variability—group difference analysis. We next
examined the effect of choice difficulty (absolute difference
between the true expected values of the two offers, see
Methods), group (HC vs. ADHD), and stage (1, 2, or 3) on RT
variability using a hierarchical Bayesian regression analysis (for
more details see SI). We found that the effect of choice
difficulty on RT variability was smaller for HC compared to
ADHD in first-stage choices (see Fig. 2B). Specifically, a change
of 0.5 in the difference between the expected value of the two
offered actions was associated with an increase of 8 ms in the
tail of the RT distribution for the HC group. However, the ADHD
showed 136 ms change for the same amount of difference
[posterior median for group × choice-difficulty effect on τ
estimates on the first stage=+0.60 CI89% between 0.03 to
1.16, CI95% between −0.08 and 1.28, pd= 95.25%; see full
posterior in Fig. S6A]. Strikingly, for the second and third
stages, this effect reversed with a slightly larger effect of choice
difficulty on RT variability estimates for ADHD compared to HC.
Specifically, the group effect on τ estimates was negative for
both the second stage [posterior median=−0.37 CI89%
between −1.05 and 0.29, CI95% between −1.19 and 0.43,
pd= 80.00%; see full posterior in Fig. S6B] and third stage
[posterior median=−0.60 CI89% between −1.28 and 0.05,
CI95% between −1.41 and 0.24, pd= 92.35%; see full posterior
in Fig. S6C; for coefficients report see Table S2]. (For additional
analysis regarding reaction time variability rates across groups,
see SI).
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Computational reinforcement learning modeling
The previous analysis showed that ADHD individuals were less
sensitive to the difference in the true expected values of the different
choices in the first stage using both choice-accuracy and RT variability
estimates. However, true expected values are quantified according to
the pre-defined experimental design. Since the current task is a
reinforcement learning task, the reward history is not only a function
of the experimental design but also a function of the participant’s
choices. To track and gain a better estimate of the individual internal
action value for each trial and stage (also referred to as Q-values in
reinforcement learning), we used a well-established hierarchical
reinforcement learning modeling (for details, see SI). We fitted the
model to each group separately using hierarchical Bayesian
parameter estimation (for details, see SI). We further performed a
nested model comparison and found that a saturated seven-
parameter model had the best fit to the empirical data (for details,
see SI).

Accuracy rates estimated using internal action values. We used the
expected value of the Q-value posterior distribution obtained for
each action in our model Bayesian sampling as an estimate for the
internal action values for each action (see “Methods”). To estimate
choice accuracy, we first defined an accurate choice as one that
reflects a selection in the higher internal value action in each stage
(defined as 1 if the action with the higher internal value was taken
and 0 otherwise). We repeated the same regression analyses
reported in the previous section, with absolute differences in
internal value (i.e., |ΔQ|, this notion is used due to the common
notion of “Q-values” for internal values in the reinforcement
learning literature) group (ADHD vs. HC), stage (1, 2, and 3) and
their interactions as predictors for choice accuracy.
First, we found that higher Q-value differences were coupled with

higher choice accuracy across stages and groups [posterior median=
5.39 CI89% between 4.19 and 6.50, CI95% between 3.90 and 6.75, pd
~100%; see full posterior in Fig. S7A]. Specifically, a change of 0.5 in
the difference between the two offered action values was associated

with an increase of 51% in accuracy rates. This finding shows that the
model was able to capture some estimates for values that indeed
predict participants’ behavior well. Second, we further found a
substantial group × |ΔQ| interaction for Stage 1, so that ADHD
exhibited lower sensitivity to Q-values difference in terms of choice
accuracy compared with HC [posterior median of group × |ΔQ| effect
in the first stage=−2.19 CI89% between −3.75 and −0.63, CI95%
between −4.06 and −0.25, pd= 98.65%; see full posterior in Fig. S7B;
see Fig. 3A]. Strikingly, similarly to former results, group differences
vanished completely and even changed direction when examining
second and third stage choice. Specifically, we found a tendency
toward a group × |ΔQ| interaction in the opposite direction to that of
the first stage when examining the second stage [posterior median =
3.11 CI89% between 1.21 to 5.13, CI95% between 0.67 and 5.54,
pd= 99.30%; see full posterior in Fig. S7C] and the third stage
[posterior median= 2.40 CI89% between 0.40 and 4.34, CI95% between
−0.12 and 4.82, pd= 97%; see full posterior in Fig. S7D]. Overall, these
findings resonated with the finding that ADHD had lower decision
noise parameters at Stage 1 compared to their peers.

Reaction-time variability as a function of internal action values. We
sampled a hierarchical Bayesian regression where the absolute
difference in Q-values (i.e., |ΔQ|) RT variability group (ADHD vs. HC),
stage (1, 2, or 3), and their paired interaction as predictors for the τ
parameter in an ex-Gaussian distribution fitted to trial-by-trial
reaction-time estimates (see “Methods”). First, we found that
higher Q-value differences were coupled with lower τ values across
all stages [posterior median=−0.54 CI89% between −0.67 and
−0.41, CI95% between −0.70 and −0.38, pd ~100%; see full
posterior in Fig. S8A]. This finding supports the validity of our |ΔQ|
since longer RT tails are expected for decisions with similar values
[58–60]. Furthermore, our model estimates of internal action values
were based only on choices, without introducing RTs to the model
during parameter estimation. Thus, finding this expected associa-
tion |ΔQ| serves as an important sanity check for our modeling
approach.

Fig. 2 Effect of choice difficulty on accuracy rates and reaction-time variability. A The influence of choice difficulty, group (HC vs. ADHD), and
stage (1, 2, or 3) on participants’ accuracy rates. First, results demonstrate that across stages and groups, accuracy rates improve as a function of
choice difficulty. Importantly, ADHD individuals showed an attenuated sensitivity to choice difficulty changes only in the first stage but not in the
second and third stages. B The influence of choice difficulty, group, and stage on participants’ RT variability. Results demonstrate that across stages
and groups, RT variability improved when choices were easier. Importantly, ADHD individuals showed an attenuated sensitivity to choice difficulty
changes only in the first stage (y-axis represents log(τ) estimates for an ex-gaussian distribution fitted to empirical data).
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Second, we found a substantial Group × |ΔQ| interaction for
Stage 1, so that ADHD exhibited lower sensitivity to Q-values
difference in terms of τ estimates [posterior median= 0.23 CI89%
between 0.07 and 0.38, CI95% between 0.03 and 0.41, pd= 99%;
see full posterior in Fig. S8B; see Fig. 3B]. However, for the second
stage, this effect reversed with a significant effect of Q-value
difference on RT variability estimates for ADHD compared to HC
[posterior median=−0.41 CI89% between −0.63 and −0.18, CI95%
between −0.68 and −0.14, pd= 99.9%; See full posterior in Fig.
S8C]. For the third stage, this effect remained negative with a
slightly smaller effect of Q-value difference on RT variability
estimates for ADHD compared to HC [posterior median=−0.20
CI89% between −0.42 and 0.03, CI95% between −0.46 and 0.08,
pd= 91.2%; see full posterior in Fig. S8D; for coefficients report see
Table S4].

DISCUSSION
The current study examined the ability of ADHD individuals to
assign and act upon internal action values across stages of a
sequential decision-making task. Participants with/without ADHD
made decisions across a three-step deterministic tree task. First,
we used reinforcement learning modeling to gain estimates of the
latent and internal action values for each individual, trial, and step.
We replicated previous findings showing that across both groups,
estimates of choice accuracy and RT variability improved when the
two available actions were well differentiated in terms of their
latent values [61, 62]. Second, we found that ADHD individuals
were less sensitive to initiatory action value differences across
both choice accuracy and RT variability estimates compared with
their HC. Specifically, a larger difference between the values of the
two available first-stage actions had smaller benefits on ADHD
choices and RTs compared to HC. Remarkably, these group
differences diminished and disappeared when making terminal
third-stage actions to a point where the two groups were
remarkably indistinguishable. Our results, therefore, suggested a

striking attenuated sensitivity to value actions in ADHD, only in
initiatory but not terminal task action.
The current finding extends previous literature in several ways. First,

previous studies have already demonstrated that individuals with
ADHD are uniquely characterized by inconsistent decision-making, as
apparent in both choice and reaction time estimates [61, 62]. These
studies further suggested that these behavioral inconsistencies in
ADHD tend to wash out under conditions of immediate reward. For
example, ADHD has been found to exhibit marked behavioral
inconsistency in reaction times (i.e., increased RT variability) when
performing sustained attention/executive function tasks (for review,
see [59, 62, 63]). In a meta-analysis report, RT variability was further
found to show the highest effect size for group differences. Thus, the
mechanisms that contribute to this ADHD phenotype can be of much
importance to how we understand ADHD. The sustained attention/
executive functions tasks that reported increased RT variability in
ADHD were mostly performed in the absence of any immediate
reward or feedback. Remarkably, when immediate feedback or
reward was delivered, ADHD demonstrated a significant improve-
ment in RT variability estimates. Improved RT variability with the
delivery of immediate reward was found in a variety of paradigms,
including go/no-go [63], choice reaction time task [64, 65], simple
reaction time [66], and time discrimination task [67, 68]. However,
these studies are characterized almost exclusively by choice-feedback
coupling, such that the outcome is given after a single choice and
uses between-block manipulations (blocks with/without feedback).
Here, we show both increased RT variability in ADHD compared to HC
and the absence of group difference in RT variability estimates within
a single trial. This is important since it refutes claims that a general
motivation induced across a block is the sole reason for improved
performance in ADHD under conditions of immediate reward/
feedback. Instead, our findings point toward a more refined value-
action mechanism that leads to increased inconsistency in ADHD.
Second, we find that only for first-stage choices ADHD show

attenuated sensitivity to action values in terms of RT variability.
Therefore, one explanation for both increased inconsistency in RTs

Fig. 3 Effect of latent internal values difference for each action on accuracy rates and reaction-time variability. A Choice accuracy
estimates as a function of group, stage, and absolute difference between the internal values estimated using a reinforcement learning model
(i.e., |ΔQ|). B RT variability as a function of group, stage and absolute difference between internal action values (i.e., |ΔQ|). (y-axis represents
log(τ) estimates for an ex-gaussian distribution fitted to empirical data).
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in ADHD [59, 62, 63] and previous findings regarding the
improvement in this estimate under immediate reward
[63–66, 68] might be an attenuated ability to assign and follow
internal action values. Specifically, when performing a task in the
absence of immediate reward/feedback, the individual is required
to hold in mind the overall value of task completion. This might
lead to noisier action values in ADHD compared with HC, which in
turn is reflected in noisier reaction times. Therefore, individuals
need to hold an overall value of task completion to keep interest
and guide the selection of accurate actions. Since individuals with
ADHD have known deficits in reward neural processing and tend
to discount future outcomes [68], they may encounter particular
difficulty in assigning value to current actions based on a distant
goal. Indeed, reinforcement learning studies have confirmed both
in simulations and empirical studies that a reduced ability to
assign value to actions leads to prolonged and more inconsistent
RTs, a finding that we also replicated in the current study across
groups. Therefore, we speculate that the process of internally
assigning value to actions can be a major contributing mechanism
to increased RT variability in ADHD.
Why do ADHD individuals exhibit noisier choices during first-

stage choices? The current study cannot offer a clear explanation,
yet we will discuss a few explanations. First, it might be that ADHD
individuals are more explorative in their behavior
[6, 25, 61, 69, 70]. Specifically, a few reinforcement learning
studies suggested that less value-directed behavior in ADHD
might be the result of the directed decision to explore rather than
a reduced ability to follow action values. For example, Dubois et al.
[69] examined explore/exploit decision-making among children in
early and late adolescence. They found that participants with high
scores in self-report symptoms of ADHD made more exploratory
decisions. Next, Dubois & Hauser [71] further linked exploration
and the impulsivity component within ADHD in an explore/exploit
decision-making task. Addicott et al. [72] also examined explore/
exploit decision-making using the 6-armed bandit task where, on
each trial, six bandit options were depicted on a computer screen,
and participants selected one and received a reward in various
probabilities. They compared ADHD and HC groups of adults on
explore/exploit decisions that were modeled using reinforcement
learning algorithms. They found that ADHD participants made
more exploratory decisions (i.e., chose options without the highest
expected reward value) and earned fewer points than HC in all
three study days. Frank et al. [25] examined go/no-go decision-
making between ADHD and HC groups of young adults. They
additionally used computational models in order to predict
participants’ behavior. They found that ADHD participants were
more likely to display inconsistent choices from trial to trial and
that increased inconsistent behavior was correlated with increased
variability in reaction times.
Another explanation of the reduced tendency to act according

to value actions in first stage choice in ADHD might be the
temporal distance from the outcome. That is, in the current task,
we cannot rule out the fact that it is not the actual sequence or
the fact that first-stage choices were initiatory actions in a
sequence of three decisions. Rather, it might be that the temporal
delay per se is the reason for the reduced ability to follow action
values. We note that a previous study suggested that, counter-
intuitively, ADHD individuals improve their ability to learn from
feedback when the action outcome epoch is prolonged [73].
However, dedicated studies should carefully disentangle temporal
delay from task stages to account for this explanation.
Moreover, it is interesting to speculate the role of another

cognitive process that was identified as associated with ADHD and
the current finding. For example, the ability to assign and follow
action values for initiatory actions might require executive
functions such as working memory updating and sustained
attention. Working memory plays a fundamental role in cognition,
allowing one to hold information “in mind” and is considered a

well-known attentional control system [40]. Since sequential
learning consists of multiple stages that need to be learned,
working memory capacity might be an important trait that affects
this ability. Previous studies have highlighted individual differ-
ences in working memory capacity, demonstrating that lower
capacity is associated with higher attentional deficits
[36, 40, 74–78]. Furthermore, our findings may be explained by
considering sustained attention, which pertains to an individual’s
capacity to sustain focus on a task or stimulus over an extended
period. Given the relatively prolonged duration of the multiple-
stage task (approximately 50 min) and the demanding nature of
the cognitive processes required to navigate its stages and
outcomes, sustained attention emerges as a potentially influential
factor affecting task performance. Difficulties in sustained atten-
tion are one of the core deficits in ADHD [79] and are reflected by
increased omission errors [80, 81], lack of inhibitory control by an
increased number of commission errors [80, 81], and unstable
cognitive processing by increased reaction time variability [82] as
shown using a continuous performance task (CPT). Hence, future
studies can examine with a larger sample size the ability of
working memory and/or sustain attention to moderate the group
differences.
In terms of generalizing our results to the overall ADHD

population, we note that our study was performed using young
adults with/without ADHD. The sample was a clinical sample that
included participants who sought treatment in the community,
and as such, can be seen as part of the much-needed growing
literature regarding ADHD in this age group [83]. However, it
would be important to examine whether the observed attenuated
sensitivity to initiatory action–value is also reflected in young
children. Specifically, we speculate that since executive functions
are only developing during early ages [84], and since these
executive functions might take a role in action–value assignment,
we should expect similar and even larger effects in children with
ADHD compared to what was observed in young adults. There-
fore, there is a need for further studies in different age groups that
would also control for the moderation effect of different executive
functions (i.e., working memory/response inhibition). Furthermore,
our sample included only college students and, therefore, might
show higher general cognitive abilities than the overall young
adult population of the same age. Therefore, this might somewhat
limit our ability to generalize our findings to the overall young
adult population. However, IQ testing suggested that general
cognitive abilities for both ADHD and HC groups are within the
expected age norms and widely spread across the IQ range (see
SI). Furthermore, we found no differences in IQ between the
ADHD and HC groups. Therefore, we argue that despite being a
college population, the current sample is not dramatically
different from the overall young adult population.
Another point that should be considered in future studies is

that deficits in value-based actions are not exclusive to ADHD
and were also observed in certain impulsive disorders, including
substance use disorders (SUD) and alcohol use disorders (AUD).
Given the well-documented comorbidities between ADHD and
SUD/AUD, perhaps attributable to their shared core symptoms
of impulsivity [85, 86], we should consider the potential
influence of these impulsive disorders on action–value proces-
sing effects [87, 88]. E.g., Sebold et al. [89] demonstrated that
AUD is associated with alterations in value-based decision-
making. Furthermore, in the context of SUD, Groman et al. [90]
conducted a review and showed evidence suggesting that value
updating following positive outcomes, but not negative out-
comes, predicts escalation in SUD. However, given none of the
participants were diagnosed with impulse disorders, and the
self-report questionnaires assessing AUD and SUD yielded
similar results between the groups, we can conclude that our
results are not mainly driven by increased addiction/impulsive
disorders in the experimental group.
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Finally, a few limitations should be mentioned. First, a major
limitation of this study pertains to the limited sample size.
Specifically, the sample for this study comprised 54 participants,
with 26 HC and 28 ADHD participants. Due to the possible inflated
influence of small sample sizes on effect sizes that tend to
characterize ADHD research [91], future studies with larger
numbers of patients are required to confirm our results and
conclusions. Notwithstanding, we employed Bayesian statistical
methodologies in our analysis, a choice informed by the
recognition that Bayesian approaches often exhibit reduced
susceptibility to sample size constraints compared to classical
frequentist statistical methods (For a review, see [92]) and allow to
more delicately describe the uncertainty in the estimates. Second,
our design does not allow us to differentiate whether ADHD
individuals adopted different speed-accuracy response criteria in
first-stage choices. In future work, integration of evidence
accumulation model (e.g., DDM) parameters may also provide
more clarity, as these models can provide estimates of choice
sensitivity that are informed by both RT and accuracy [60, 93].
Third, our study cannot disentangle whether temporal distance
from the outcome, unique properties of first-stage actions, or both
are behind the effect, which should be examined using dedicated
experimental manipulation in future research.
In conclusion, individuals with ADHD exhibit reduced choice

accuracy and higher RT variability compared to HC individuals for
first-stage, initiatory action but not for the third-stage, terminal
action. Our computational modeling uncovered that individuals
with and without ADHD assign and act upon internal action values
in sequential decision-making tasks, and as shown here, there are
differences between the groups in the ability to do so. This
highlights the need to address and deeper understand the
internal action values as an important mechanism in ADHD.
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