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Functional EEG connectivity in infants
associates with later restricted and
repetitive behaviours in autism; a
replication study
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Mark H. Johnson 1,6 and The BASIS team

Abstract
We conducted a replication study of our prior report that increased alpha EEG connectivity at 14-months associates
with later autism spectrum disorder (ASD) diagnosis, and dimensional variation in restricted interests/repetitive
behaviours. 143 infants at high and low familial risk for ASD watched dynamic videos of spinning toys and women
singing nursery rhymes while high-density EEG was recorded. Alpha functional connectivity (7–8 Hz) was calculated
using the debiased weighted phase lag index. The final sample with clean data included low-risk infants (N= 20), and
high-risk infants who at 36 months showed either typical development (N= 47), atypical development (N= 21), or
met criteria for ASD (N= 13). While we did not replicate the finding that global EEG connectivity associated with ASD
diagnosis, we did replicate the association between higher functional connectivity at 14 months and greater severity
of restricted and repetitive behaviours at 36 months in infants who met criteria for ASD. We further showed that this
association is strongest for the circumscribed interests subdomain. We propose that structural and/or functional
abnormalities in frontal-striatal circuits underlie the observed association. This is the first replicated infant neural
predictor of dimensional variation in later ASD symptoms.

Introduction
Autism Spectrum Disorder (ASD) is characterized by

difficulties in social communication, atypicalities in sen-
sory perception, and restricted and repetitive behaviours1.
In many cases, the diagnosis can reliably be made by
toddlerhood2. Early diagnosis and treatment might influ-
ence developmental trajectories and could significantly
impact later quality of life3,4. To this end, it is crucial to
identify early infant biomarkers that can predict diagnosis
of autism and/or dimensional variation in relevant traits

in later development. Moreover, research on early bio-
markers can reveal underlying mechanisms and putative
causal pathways to later ASD symptoms5. Biomarkers are
objective measures that indicate typical biological pro-
cesses. These markers are used for diagnosis, outcome
predictions, or prediction and effect of treatment. High
accuracy, reliability, and validity of these biomarkers are
essential for their use in the clinical field6,7. Furthermore,
uncertainty about psychology and neuroimaging findings
is emerging as reproducibility of results in neuroscience is
currently only moderate, particularly in studies were
sample sizes are small8. To this end, replication of
potential biomarkers in independent cohorts is crucial.
Several electroencephalographic (EEG) measures have
been suggested as potential diagnostic biomarkers, such
as event-related potentials, spectral power, and functional
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connectivity9. However, these findings remain to be
replicated in separate cohorts.
Functional EEG connectivity has been suggested as a

fruitful source of potential biomarkers10. Functional
connectivity indicates how different brain regions syn-
chronize or communicate11. It has been suggested that
ASD is characterized by atypical brain connectivity from
an early age12. Preliminary evidence from a prospective
study of infants with older siblings with ASD indicates
that atypicalities in brain functional connectivity may
predict later symptom emergence10, consistent with a
putative role in causal pathways and raising the potential
for predictive biomarkers.
Infants with an older sibling with ASD (‘high-risk

infants’) have an approximately 20% chance of receiving
an ASD diagnosis in prospective studies2,13, making pro-
spective longitudinal studies of ASD emergence feasible.
Using this design, we (Orekhova and colleagues) pre-
viously analysed EEG data collected from 14-month-old
infants with and without older siblings with ASD (infants
with a high risk (HR) and with low risk (LR), respec-
tively10). Infants watched dynamic videos of spinning toys,
a hand spinning toys, and women singing nursery rhymes,
while high-density EEG was recorded14. Functional con-
nectivity was calculated using the debiased weighted
phase lag index15, as phase lagged connectivity would
minimise the effect of volume conduction on the con-
nectivity estimates compared to other metrics16.
Results showed that the infants later diagnosed with

ASD at 3 years (relative to those who were not) displayed
higher global EEG connectivity (also called whole brain
connectivity) in the alpha frequency band (7–8 Hz) at
14 months of age. The elevated connections were parti-
cularly strong for frontal and central regions (also see Fig.
2b in ref. 10). The choice of the narrow alpha frequency
band was dictated by presence of the peaks in the power
and connectivity spectra suggesting functional sig-
nificance of this frequency band, as well as its good signal-
to-noise ratio. Additionally, compared to the beta and
gamma bands this EEG band is less prone to con-
tamination from myogenic activity17,18, which causes
problems in young children and infants in particular.
We also previously examined associations between

functional connectivity and dimensional measures of
ASD-related traits. The etiological paths that contribute
to ASD diagnosis are likely to also contribute to varia-
tion in ASD-related traits5. Given substantial hetero-
geneity in symptom profiles within groups of children
with ASD, it may be more appropriate to identify bio-
markers of particular dimensional traits that may relate
to different underlying brain systems and indicate dif-
ferent profiles of subsequent clinical need. In our pre-
vious study10, the group of high-risk infants showed
trend-level correlations between higher average global

connectivity and more later restricted and repetitive
behaviours (RRBs), and more severe social and the
communication symptoms measured by the Autism
Diagnostic Interview–Revised at age 3 years (ADI-R)19).
There were no associations with symptoms measured on
the Autism Diagnostic Observational Schedule–Generic
(ADOS-G)20. Second, connections that showed higher
connectivity in the HR-ASD group (HR infants with
later diagnosis of ASD) compared to both the LR and
HR-no ASD group (HR infants without later diagnosis
of ASD) were selected and used to further investigate
associations with dimensional measures of ASD traits.
These connections were mostly located between frontal
and central regions. We reported that increased con-
nectivity in these selected fronto-central connections
was significantly related to higher severity of restricted
and repetitive behaviours measured by the ADI-R, but
not with social communication difficulties or ADOS
scores.
We speculate that associations between fronto-central

connectivity and restricted and repetitive behaviours
might relate to atypicalities in frontal and striatal struc-
tures21,22. Further, the association with RRBs could be
related to the fact that we measured functional con-
nectivity under conditions of sustained attention. One
potential cognitive component of restricted and repetitive
behaviours is the over-focused attention typically
observed in young individuals with ASD23. Alpha oscil-
lations (our frequency band of interest) are closely related
to attention processes. For example, performance on
visuospatial attention tasks is associated with suppression
of alpha band amplitudes, and increase in the alpha band
phase synchronization24,25, while increases in alpha
amplitude during task performance may reflect active
suppression of interference26,27. In our previous study
functional connectivity in infants during sustained atten-
tion peaked in the alpha band, suggesting its functional
relevance in attention processes within this experimental
paradigm16. Thus, early elevated alpha connectivity could
reflect an over-focused attentional style that is predictive
of later RRBs. However, before we focus closely on
mechanism we need to determine whether these findings
are robust and replicable.
Our previous findings are difficult to compare to the

broader literature because of differences in the meth-
odologies used to compute connectivity and the target
frequency bands across studies. For example, Domínguez
and colleagues report increased functional EEG con-
nectivity (measured with the imaginary part of coher-
ency) in toddlers with ASD compared to those with
typical development (TD) across alpha, theta, and delta
bands28. However, Boersma and colleagues report no
differences between 2 to 5-year-old toddlers with ASD
and typical development in EEG connectivity (phase-lag
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index) over broadband (.1–30 Hz) or theta-alpha band29.
Other studies have reported no intra-hemispheric func-
tional EEG connectivity (linear coherence) differences
between low-risk and high-risk infants in the gamma
band30, and no connectivity (phase coherence) differ-
ences in 6-month-old infants31. Indeed, some studies
report findings of decreased intra-hemispheric con-
nectivity (linear coherence) in the gamma band in 12-
month-old high-risk infants with a later diagnosis of ASD
(relative to other high-risk or low-risk infants), and
decreased connectivity (phase lag index) in toddlers with
ASD (versus TD) for the beta band29,30. The lack of
consistency across findings of functional connectivity
may depend on age, task and length of the EEG record-
ings, frequency band of interest, the selected index of
functional connectivity, and small sample sizes, among
others12,32. Moreover, the heterogeneity in ASD and the
possibility of subtypes of ASD might underlie the
inconsistent findings. Focussing on replicating particular
analytic approaches across studies, and looking at both
categorical and dimensional levels of ASD, will be critical
steps forward for this field.
In the present study, we attempted to replicate the

observation of alpha hyper-connectivity in 14-month-old
infants with later ASD, and the relation between alpha
hyper-connectivity and emergent restricted and repetitive
behaviours10. We choose to replicate this study in parti-
cular because of both the categorical and dimensional
approaches taken that allows for investigation of the
heterogeneity of ASD. Further, the measure of con-
nectivity chosen is likely more robust to common issues
like volume conduction, unequal trial numbers, and
electrode bridging15. We studied a new cohort of 143
infants, but focussed on the same age group, paradigm,
and functional connectivity measure as Orekhova and
colleagues10. The only addition to the design was the split
of the HR-no ASD group into a group with HR infants
who were typically developing (HR-TD) and those who
were not typically developing but did not meet the ASD
criteria (HR-Atyp). We did this to investigate whether
there were any differences between the HR infants who
develop ASD compared to those who develop atypically
but who do not have ASD (including both those with sub-
threshold symptoms consistent with the broader autism
phenotype (BAP) and those with language and/or devel-
opmental delay) and HR infants who are typically devel-
oping, as well as low risk controls33–36. Based on the
findings in our previous study, we predicted that func-
tional EEG connectivity in the alpha range would be
increased particularly in the frontal and central areas for
HR-ASD infants compared to the other groups. Further,
we predicted that overconnectivity in the connections that
distinguished HR-ASD from LR and HR-no ASD groups
in our previous study10 would selectively associate with

later severity of restricted and repetitive behaviours
measured with the ADI-R.
In a second step, we combined the two cohorts in order

to ask new questions about the potential nature of the
observed associations between functional connectivity
and RRBs. Previous studies provide evidence
for three subtypes of RRBs: Repetitive Motor Behaviours,
Insistence on Sameness, and Circumscribed Interests37,38.
These are likely caused by different underlying mechan-
isms39. We tested whether associations between func-
tional connectivity and RRBs were specific for either or
several of these subtypes in order to provide more insight
into potential mechanisms.

Methods
Participants
143 infants participated in the current study, from

which 101 infants provided sufficient EEG data for further
analyses. Infants were excluded due to: missing outcome
data at the visit at 3 years of age (N= 3), no data recorded
(N= 8: no visit N= 1, equipment failure N= 2,
and 5 infants were indisposed), or artefacts in the EEG
data (N= 31). Infants were between 13 and 18 months
old. The study protocol was approved by the London
Central NREC (code 06/MRE02/73; 08/H0718/76). All
experiments and assessments were performed in accor-
dance with relevant guidelines and regulations. Informed
consent was obtained from the parent/ caregivers before
the start of the study.
Descriptions for the previous cohort can be found in

our previous report10 (also see S1.1).

Materials and procedure
The current study focused on EEG collected at 13 to

18 months (mean 14 months), and data from a clinical
assessment at 36 months of age.

EEG stimuli
Infants were presented with the 3 different dynamic

videos used in the original study10,14. These videos depict
spinning toys (duration: 44 s), a hand spinning the toys
around (duration: 41 s), and women singing nursery
rhymes (duration: 32 s) (see Fig. 1). Infants sat on their
parent’s lap in an electrically shielded room while looking
at a computer screen. Infant EEG was recorded while the
3 videos were presented in a random order. These 3
videos were subsequently repeated 2 times, resulting in 3
presentations for each condition, and 9 presentations in
total. The infants’ behaviour during this EEG session was
recorded with a video camera.

Mullen scales for early learning (MSEL)
During the visit at 14 months of age, the Mullen Scales

for Early Learning (MSEL40) was administered. The MSEL
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is a semi-structured behavioural assessment that investi-
gates the infants’ abilities in fine motor skills, visual
reception, receptive language, expressive language, and
gross motor skills. The scores on these domains were
combined and recalculated per the measure norms into
composite standard scores that give a measure of the
infants’ developmental level. The MSEL was also admi-
nistered at the 36-month-old visit.

Clinical assessment
All HR toddlers received a clinical assessment at the 36-

month-old visit performed by experienced clinicians.
Outcome diagnosis was by clinical judgment based on the
Autism Diagnostic Observation Schedule–2 (ADOS20),
the Autism Diagnostic Interview–Revised (ADI-R19,41),
the Vineland Adaptive Behavior Scale-II (VABS42), the
Social Communication Questionnaire (SCQ43), and the

Fig. 1 Overview of the methods used. Methods are the same as in the previous study. EEG was recorded while 14-month-old infants watched
dynamic videos. At 36 months, a clinical assessment and measurements of dimensional ASD traits were performed. Developmental abilities were
assessed at both visits. EEG data were cleaned, preprocessed, and cut into 1-s epochs. After Fast Fourier Transformations, the debiased Weighted
Phase Lag Index (dbWPLI) was calculated. Connectivity matrices contain connectivity values for each possible connection pair. These were averaged
across the frequencies for the 7–8 Hz band. We used the connectivity matrices of each infant to assess network differences between groups with the
Network Based Statistics program. Global dbWPLI was calculated by averaging values below the diagonal of the connectivity matrices. These values
were used to assess differences on group level. Finally, average connectivity in selected connections only (here displayed in yellow) was used to
investigate the correlations between functional connectivity and dimensional traits. MSEL Mullen Scales for Early Learning, ADI-R Autism Diagnostic
Interview–Revised, ADOS-2 Autism Diagnostic Observational Schedule–2, NBS Network Based Statistics, dbWPLI debiased Weighted Phase Lag Index
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scores on the Mullen Scales for Early Learning (also see
S1.1.1 and S1.1.2).

Autism diagnostic observation schedule–2 (ADOS-2)
Toddlers were assessed with the Autism Diagnostic

Observation Schedule–2 (ADOS20) by an experienced
researcher. The ADOS-2 is a standardized observational
assessment that evaluates the current level of ASD
symptoms in the individual under investigation. The
toddlers’ responses and behaviour during this session are
rated on 2 scales: (1) Social Affect, and (2) Restricted and
Repetitive Behaviour. These scales were used as measures
of dimensional traits of ASD and included in analyses for
associations between functional connectivity and dimen-
sional ASD traits.

Autism diagnostic interview–revised (ADI-R)
The Autism Diagnostic Interview–Revised (ADI-R19,41)

was conducted as an interview with the parents or care-
givers of the toddler. The semi-structured interview
includes 93 items that investigate ASD symptoms across
several domains. Scores are given for the severity of cur-
rent symptoms happening over the last 3 months (current
scores) and severity of symptoms happening over the
entire course of the toddler’s life (ever scores). These
scores are used to calculate algorithm for ‘the Commu-
nication Algorithm Total’, ‘the Social Algorithm Total’,
and ‘Behaviours/Repetitive Interests Algorithm Total’.
The scores were used as measures of dimensional traits
for analyses of associations between functional con-
nectivity and dimensional traits. Scores for subtypes of
restricted and repetitive behaviours were computed by
summing up raw ever scores for specific items on the
ADI-R (see S1.1.4).

EEG recording and preprocessing
EEG recording and preprocessing steps were same as

reported in ref. 10 (also see S1.2 for a more detailed
description). Infants’ EEG was recorded with a 128 channel
EGI electrode system and Netstation EGI software at a
sampling rate of 500Hz (Electro Geodesics, Inc., Eugene,
USA). Data were preprocessed using FieldTrip44 and
MATLAB_R2015a (MathWorks, Natick, USA).
Video recordings from the EEG session were coded for
attention and interference (e.g. parent or experimenter is
talking, parent or experimenter is pointing to the screen,
parent is stroking the infant) by RH and a research volun-
teer. Inter-rater reliability was high for looking (Spearman’s
rho= .90) and moderate for interference (Spearman’s rho
= .73) for the double-coded videos of 12 infants that were
randomly chosen from the complete sample.
EEG segments were excluded from further analyses

when the infant was not paying attention, interference
occurred, or when the segment contained artefacts. After

manual and automatic artefact rejection, the remaining
data segments were cut into 1-s epochs with 50% overlap.
Infants with more than 120 epochs across all three con-
ditions were included in further analyses. Fast Fourier
Transform (FFT) was performed after a Hanning window
was applied to each of the clean epochs. The Fourier
transformed data were used for functional connectivity
analyses and spectral power analyses.
Functional connectivity was measured with the debiased

weighted phase lag index (dbWPLI) that was calculated
for each possible pair of connections from the FFT
values15,16. Values close to 0 reflect low connectivity
whereas values closer to 1 reflect high connectivity. The
functional connectivity matrices were averaged across
frequencies for 7–8 Hz. Global dbWPLI values were cal-
culated by averaging dbWPLI values for all possible pairs
of connections. We also calculated functional connectivity
in the selected connections by averaging dbWPLI values
for those connections that separated HR-ASD infants
from the control comparison groups in the previous study
only (see Fig. 1).

Statistical analyses
Measures of behaviour and functional connectivity for

different groups were tested for normality and homo-
geneity of variance with a Shapiro-Wilk test and a
Levene’s test, respectively. If the assumptions for nor-
mality and homogeneity were both met, parametric
independent samples t-tests for means or Pearson’s cor-
relations were applied. In the other cases, a non-
parametric Mann–Whitney U-test or Spearman’s corre-
lation was applied for comparisons between the HR-ASD
and other groups. These tests were performed with the
Statistical Package for Social Sciences (IBM SPSS Statis-
tics, version 22). This procedure of analyses was also
applied in the previous study10 (also see S1.2.5).
Functional connectivity analyses consisted of 3 parts:

First, testing for group differences in networks: Net-
work Based Statistics (NBS45) was applied to the con-
nectivity matrices to test for significant network
differences between the HR-ASD and comparison
groups. The Mann–Whitney U-test NBS version is a
non-parametric permutation-testing program that cir-
cumvents the multiple comparisons problem.
Mann–Whitney U-tests were one-tailed, alpha sig-
nificance level was 0.05, Z-score threshold was set to
1.96, and the number of permutations was 5000. Sta-
tistical values and p-values are only reported in the
output if p-values are below the alpha significance level,
otherwise the NBS program output contains no results.
Second, testing for group differences in global func-
tional connectivity: normality and homogeneity of glo-
bal functional connectivity data were tested with a
Shapiro-Wilk test and a Levene’s test, respectively. If
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the assumptions were met, a parametric independent
samples t-test was used, whereas a non-parametric
Mann–Whitney U-test was used in other cases (two-
sided tests). Third, testing for group differences in
global functional connectivity while correcting for
confounding factors: in the event of significant differ-
ences between groups for age, gender, behaviour during
the EEG recording, and spectral power, additional
analyses were used to account for these factors or
covariates with an Analysis of Variance (ANOVA) or
General Linear Model (GLM), respectively. Only the
first and second parts of the analyses are reported here.
The third part is reported in the S2.
Finally, correlations between functional connectivity

and dimensional ASD traits were assessed using Spear-
man’s rank correlations46. Correlations for both global
functional connectivity across all channels and functional
connectivity in the set of selected connections from the
previous study with dimensional traits were calculated.
Dimensional traits were measures with 4 scales: (a) the
ADI-R Social and Communication Algorithm Total 36 m,
(b) the ADI-R Behaviour/ Repetitive Interests Algorithm
Total 36 m of the ADI-R (ADI-R RRB), (c) the ADOS-2
Social Affect Total 36 m, and (d) the ADOS-2 Restricted
and Repetitive Behaviors Total 36 m (ADOS RRB). We
did not correct for multiple comparisons for the analyses
where we had a priori hypotheses (overall HR group, and
HR-ASD group), but did use a correction for those where
we did not have a specific a prior hypothesis (HR-TD and
HR-Atyp groups). In the latter case, we used the False
Discovery Rate method (FDR47) to correct for multiple
comparisons within each group. Furthermore, explana-
tory analyses were performed after combining data from
the previous and current cohort with subtypes of
restricted and repetitive behaviours measured by the ADI-
R: (1) Repetitive Motor Behaviours, (2) Insistence on
Sameness, and (3) Circumscribed Interests. To increase
statistical power, we collapsed data from the current and
our previous study for these exploratory analyses only.
We also corrected for multiple comparisons here using
the FDR method.

Data and code availability
The datasets analysed during the current study and

Matlab codes used to analyse the data are available from
the corresponding author upon reasonable request.

Results
Demographics
The methods and analyses performed in the current

study were identical to the ones used by Orekhova and
colleagues, where measures were compared between the
HR-ASD and other groups (also see Fig. 1, and S1). The

final sample consisted of 20 LR infants (11 males), 47 HR-
TD infants (22 males), 21 HR-Atyp infants (14 males), and
13 HR-ASD infants (11 males; see Table 1). Groups were
matched in age but as expected the distribution of gender
in the HR-ASD group (more males than females) was
different from the distribution in the LR and HR-TD
group, but similar to the HR-Atyp group. Although age
was not related to functional connectivity in the complete
sample, the correlations between age and functional
connectivity were significant (p’s ≤ 0.023) in the HR-TD
and HR-Atyp group (see S 2.3). As expected, composite
standard scores for the Mullen Scales for Early Learning
(MSEL40) at 14 and 36 months were higher for the LR and
HR-TD group than the HR-ASD group, whereas the HR-
Atyp and HR-ASD group showed no significant
difference.

Functional EEG connectivity and categorical outcome
Based on previous findings, we expected to find higher

connectivity in the HR-ASD group relative to the LR, HR-
TD, and HR-Atyp groups. Functional connectivity across
frequencies, and topoplots and individual functional
connectivity values for the alpha frequencies are depicted
in Fig. 2. Following Orekhova and colleagues10, we com-
pared the networks between the HR-ASD and comparison
groups using the Network Based Statistics (NBS) method
with the non-parametric Mann–Whitney U-test45. The
NBS method identifies any networks that yield significant
differences between groups or conditions. No significant
increases in the networks in the alpha range were found
for HR-ASD versus LR infants, HR-ASD versus HR-TD
infants, HR-ASD versus HR-Atyp infants, or HR-ASD
versus HR-no ASD infants (HR-TD and HR-Atyp infants
combined into one group).
Second, we computed global functional connectivity

values as the mean connectivity value across all possible
electrode pairs. A Mann–Whitney U-test was used to test
whether there were any differences between the HR-ASD
group and the comparison groups, since the assumptions
for normality (p’s ≤ 0.001) and homogeneity of variance
(p= 0.007) were not met. The comparisons between the
HR-ASD groups and the comparison groups yielded no
significant differences between the groups: LR versus HR-
ASD: U= 104, z=−0.958, exact 2-tailed p= 0.353, r=
−0.17; HR-TD versus HR-ASD: U= 275, z=−0.547,
asymptotic 2-tailed p= 0.584, r=−0.07; HR-Atyp versus
HR-ASD: U= 125, z=−0.408, exact 2-tailed p= 0.701,
r=−0.07; MdnLR= 0.0162, IQRLR= 0.0335; MdnHR-TD

= 0.0156, IQRHR-TD= 0.0180; MdnHR-Atyp= 0.0133,
IQRHR-Atyp= 0.0327; and MdnHR-ASD= 0.0170, IQRHR-

ASD= 0.0241. Similar results were obtained when the HR-
ASD group was compared with the HR-no ASD group
(HR-TD and HR-Atyp group combined, see S2.4) and
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when only selected connections from the previous study
were used (see S2.5).
Third, we conducted additional analyses taking into

account age, MSEL scores, proportion of epochs from the

social condition, and gender. The results of these analyses
are reported in (see S2.3). Global functional connectivity
was similar across groups after controlling for each of
these factors.
Of note, infants in the HR-ASD group spent an equal

percentage of time looking at the screen, and experienced
an equal percentage of interference from parent or
experimenter during the EEG session when compared to
the other groups (see Table S7). Furthermore, the quan-
tity of epochs included in analyses for the infants did not
differ between groups. Grand average alpha power
(7–8 Hz) in HR-ASD infants was similar to the power
levels in the comparison groups (see S2.1 and 2.2 for more
details). Thus, group comparisons for connectivity cannot
be confounded by differences in behaviour during EEG,
the number of epochs included, or spectral power.
In summary, we did not replicate the previous obser-

vation of elevated connectivity in high-risk infants with
later ASD.

Functional connectivity and dimensional traits
We then examined the relation between functional

connectivity and dimensional ASD-related traits. Both
ADI-R and ADOS-2 data were missing for 1 HR-TD and
1 HR-ASD infant at the 36-month visit. The final sample
for the brain behaviour correlations consisted of 46 HR-
TD infants, 21 HR-Atyp infants, and 12 HR-ASD infants.
First, Orekhova and colleagues reported an association

between over-connectivity and higher scores on the ADI-
R RRB scale within the HR-ASD group that was parti-
cularly strong for a selected set of fronto-central con-
nections based on findings of group differences in
connectivity. We thus attempted to replicate this pattern
using both global connectivity and connectivity within the
selected fronto-central connections found in the previous
study10 using Spearman’s correlations within the HR-ASD
sample. In the current HR-ASD sample, a trend correla-
tion was found between global connectivity and the ADI-
R RRB scores (Spearman’s rho= 0.52, p= 0.086, see Table
2). The correlation between global connectivity and the
other symptom severity scales did not approach sig-
nificance (p’s ≥ 0.526); ADOS-2 RRB, ADOS-2 Social
Affect total, or ADI-R Social and Communication scale
total. For the fronto-central selected connections, the
correlation between connectivity and ADI-R RRB total
was significant within the HR-ASD group (Spearman’s
rho= 0.60, p= 0.037, see Fig. 3a). This correlation
remained significant when replacing the highest func-
tional connectivity value for the next highest value (win-
sorizing;46 Spearman’s rho= 0.61, p= 0.035), and showed
a trend when this participant was removed from the
sample (Spearman’s rho= 0.54, p= 0.088). As in the
previous paper, the correlations between fronto-central
connectivity and the other symptom severity scales did

Table 1 Demographics of the final sample in the current
cohort

LR HR-TD HR-Atyp HR-ASD

Number of participants (male) 20 (11) 47 (22) 21 (14) 13 (11)

χ2(1)= 3.11, χ2(1)= 5.88, χ2(1)= 1.33,

p= 0.078a p= 0.015 p= 0.249

Age at EEG assessment,
in days

473 (49)b 470 (41) 465 (46) 446 (57)

U= 91.5, U= 234.5, U= 113,

p= 0.158c p= 0.203d p= 0.420c

Age at diagnostic assessment,
in months

38.0 (1.0)b 39.0(1.3) 38.0 (2.0) 38.5 (1.0)

U= 106, U= 230.5, U= 118.5,

p= 0.950c p= 0.369d p= 0.782c

MSELe Composite standard
score at visit at 14 months

102 (14)f 98 (12) 93 (16) 87 (13)

81–133g 71–121 67–123 65–113

t(31)= 3.10, t(58)= 2.96, t(32)= 1.12,

p= 0.004 p= 0.004 p= 0.270

MSELe Composite standard
score at visit at 36 monthsh

123 (15)b 115 (20) 83 (26) 78 (40)

69–137g 79–142 54–145 49–142

U= 37, U= 103.5, U= 107,

p= 0.002c p= 0.001 d p= 0.494c

ADI-R Social totalh,i 1 (2)b 1 (2) 2 (3) 13 (5)

0–6 g 0–11 0–10 2–25

U= 6, U= 16.5, U= 13,

p < 0.001c p < 0.001d p < 0.001c

ADI-R, Communication totalh,j 0 (1)b 1 (3) 3 (6) 12 (5)

0–4 g 0–11 0–14 4–19

U= 0.5, U= 17, U= 25,

p < 0.001 c p < 0.001 d p < 0.001 c

ADI-R 0 (0)b 0 (1) 1 (2) 6 (4)

RRB totalh,k 0–1 g 0–3 0–9 0–10

U= 10, U= 35.5, U= 32,

p < 0.001c p < 0.001d p < 0.001c

ADOS-2, 2.5 (5)b 1 (1) 6 (7) 5 (6)

Social affect totalh,l 0–9g 0–5 0–13 1–12

U= 68, U= 111.5, U= 109,

p= 0.095c p= 0.001d p= 0.542c

ADOS-2 1 (1)b 1(1) 2 (2) 1 (3)

RRB totalh,m 0–3g 0–3 0–6 1–6

U= 57, U= 141, U= 124.5,

p= 0.031c p= 0.006d p= 0.956c

aPearson Chi-Square with asymptotic significance values (2-sided)
bMedians and interquartile range in parentheses, with results for the
Mann–Whitney U-test when compared with the HR-ASD group
cExact 2-tailed
dAsymptotic 2-tailed
eMullen Scale for Early Learning (MSEL)
fMeans and standard deviations in parentheses, with results for the t-test for
independent samples when compared with the HR-ASD group
gRange with minimum and maximum score
hData for the 36-month-old visit was only available for 18 LR infants, 46 h-TD
infants, 21 h-Atyp infants, and 12 h-ASD infants
iAutism Diagnostic Interview–Revised, Social Algorithm Total at 36 months
jAutism Diagnostic Interview–Revised, Communication Algorithm Total at
36 months
kAutism Diagnostic Interview–Revised, Behaviours/ Repetitive Interests Algo-
rithm Total 36 months
lAutism Diagnostic Observation Schedule–2, Social Affect Total 36 months
mAutism Diagnostic Observation Schedule–2, Restricted and Repetitive Beha-
viours Total 36 months
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not reach significance (p’s ≥ 0.211). These findings repli-
cate the previous results in a separate group of infants.
Second, the previous study found trend-level correla-

tions in the overall HR sample for global connectivity with
ADI-R RRB, and ADI-R Social and Communication
composite scores, whereas correlations with ADOS-2 RRB
and ADOS-2 Social Affect did not reach significance. In
the current overall HR sample (NHR= 79), there were no
significant correlations between global connectivity and
the ADOS-2 RRB, ADOS-2 Social Affect, the ADI-R RRB
(Fig. 3b and Table 2), or ADI-R Social and Communica-
tion scale (p’s ≥ 0.254) (Fig. 3c and Table 2). Nor were any
significant correlations found between global connectivity
among selected connections and the measures of ASD
symptom severity (p’s ≥ 0.259) (Table 2).
The previous study found no correlations reaching

significance in the HR-no ASD group. In the current
cohort, no associations reaching significance were
observed for the HR-TD and HR-Atyp group separately
(see S2.6). The use of ADOS-G Algorithm scores as in the
previous study10 instead of ADOS-2 scores did not change
the results (see S2.7). Lastly, no correlations with sub-
scales of the MSEL were observed (see S2.8).
In summary, we replicate the finding of an association

between elevated connectivity over fronto-central connec-
tions based on the previous study and later restrictive and
repetitive behaviours in infants with later ASD in the cur-
rent independent cohort. We did not replicate the findings
of associations between global connectivity and ADI-R
RRBs, and social and communication scores in the overall
HR group. Neither study however found associations with
the ADOS scales in the overall HR group.

Functional connectivity and subtypes of restricted and
repetitive behaviours
Since the observation of a relation between higher

functional connectivity over selected connections and
restricted and repetitive behaviours was replicated in the
present sample, we capitalised on the ability to combine
our samples (characteristics of the previous cohort can be
found in ref. 10) to ask how the association might differ
between subtypes of these behaviours: Repetitive Motor
Behaviours, Insistence on Sameness, and Circumscribed
Interests38 (see S1.1.4). We believe that focussing on the
whole HR sample here as opposed to the HR-ASD infants
only would increase power to detect associations with
subtypes of RRBs. We examined ‘ever’ scores that rate the
highest symptom severity during the child’s life across
these three subtypes, as these scores were also used to
calculate scores on the ADI-R Behaviours/Repetitive
Interests Total scale. Results for the combined overall HR
sample are reported in Table 3 (also see S1.1.4 and S2.9
for analyses in separate cohorts, and HR-ASD and HR-no
ASD groups separately). Results show that associations
between connectivity both across all connections and
across selected connections from the previous study, and
circumscribed interests reached significance. In summary,
we observed associations between alpha EEG connectivity
at 14 months, and circumscribed interests at age 3 years in
the combined cohorts.

Discussion
The current study aimed to replicate previously repor-

ted associations between higher EEG functional con-
nectivity in 14-month-old infants, and later diagnosis of

Fig. 2 Functional EEG connectivity and categorical outcome. a Mean (standard error of the mean, in blue) and median (red) global dbWPLI
(averaged across all electrodes) for each group for 0 to 30 Hz. The alpha band (7–8 Hz) is highlighted in cyan. b Topoplots for global dbWPLI across
the alpha band (average connectivity for one electrode with all other 115 electrodes) for each group. c Global dbWPLI for the alpha band (7–8 Hz) for
each group. Each square represents an individual participant. Red horizontal lines display group medians. NLR= 20, NHR-TD= 47, NHR-Atyp= 21, and
NHR-ASD= 13
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ASD and dimensional variation in restrictive and repeti-
tive behaviours10. Our results partially replicate previous
reports. Specifically, we did not replicate the observation
of increased functional connectivity in the alpha range in
the HR-ASD group for either global connectivity, or
selected fronto-central connections. Nor did we replicate
the trend level correlations between global functional
connectivity and ASD symptoms measured by the ADI-R
in the whole HR sample. However, we did replicate the
significant correlation between higher functional con-
nectivity over fronto-central regions, and the later severity
of restricted and repetitive behaviours (RRBs) measured
by the ADI-R within the group of infants with later ASD.
Further, by combining the two samples we showed that

functional connectivity across selected channels was
specifically associated with circumscribed interests and
not repetitive motor behaviour or insistence on sameness.
Our findings are important both in terms of the failure to
replicate effects in terms of categorical outcomes, and the
replication of observed effects at a dimensional level.
Conducting and full reporting of replication studies in
independent cohorts sets a new standard for our field.

Brain connectivity and categorical outcome
We did not replicate previous observations of hyper-

connectivity in the alpha range for infants later diagnosed
with ASD at the group level10. Reports of altered EEG
connectivity are highly inconsistent within the ASD lit-
erature, and several other studies report null effects in
toddlers29,48 and from infancy to adolescence49. Whilst
heterogeneity in approach, population and analytic
method could explain inconsistencies in previous work,
our present failure to replicate findings at a group level
using identical techniques including recruitment, and
experimental and analyses methods is evidence that
functional connectivity in the alpha band assessed using
our present protocol is either not a strong candidate
biomarker for categorical ASD, or is a only a feature of a
sub-set of infants that go on to later diagnosis.
Our failure to observe altered connectivity using our

present protocol does not rule out the possibility of aty-
picalities that could be detected through other methods.
For instance, fNIRS methods provided evidence of atypi-
cal connectivity in 12-month-old infants at risk for ASD
compared to infants with low risk50, and fMRI methods
measuring functional connectivity in 6-month-old infants
can predict later ASD diagnosis51. Nonetheless, the high
temporal resolution of EEG connectivity provides an
important measure of connectivity. Phase lagged mea-
sures such as the dbWPLI used here are also more likely
to pick up on ‘true’ connectivity differences compared to
other EEG measures of connectivity that are more influ-
enced by volume conduction and the magnitude of the
signal. However, the weighting we used removes the effect
of small phase lags, thereby minimizing both volume
conduction effects, and potential short-range connectivity
with small phase lags. It is possible that differences
between outcome groups exist for connectivity with small
phase lags that were underestimated by the dbWPLI.
Other possible explanations to consider are intra- and

interindividual variability. Intra-individual variability in
connectivity within a session may constrain our ability to
capture a stable marker of trait connectivity. Frequent
short fluctuations in connectivity might be related to
connectivity calculated over longer durations in EEG52,53,
As for inter-individual variation, it is widely accepted that
there is substantial heterogeneity in the genetic and
environmental risk factors for ASD54. Analyses of large

Table 2 Associations between functional connectivity
and dimensional traits in the current cohort

Dimensional trait

scale

Global

connectivity

across all

channels

Global

connectivity

across selected

channels

HR-ASD

infants

N= 12

ADI-R Social and r= 0.20, r= 0.39,

communicationa p= 0.526 p= 0.211

ADI-R r= 0.52, r= 0.60b,c

RRBd p= 0.086 p= 0.037

ADOS-2 r= –0.09, r= –0.01,

Social affecte p= 0.776 p= 0.983

ADOS-2 r= –0.06, r= 0.08,

RRBf p= 0.847 p= 0.797

All HR

infants

N= 79

ADI-R Social and r= 0.12g, r= 0.03,

communication p= 0.300 p= 0.788

ADI-R r= 0.06g, r= –0.02,

RRB p= 0.584 p= 0.890

ADOS-2 r= –0.07, r= –0.05,

Social affect p= 0.523 p= 0.664

ADOS-2 r= 0.13, r= 0.13,

RRB p= 0.254 p= 0.259

Spearman’s rho values are represented by r. P-values are 2-tailed. The
correlations are given for functional connectivity calculated across all channels
and across the selected channels. Correlations reaching significance in the
current, as well as previous cohort printed in bold
aAutism Diagnostic Interview–Revised, sum of the Social Algorithm Total and
Communication Algorithm Total at 36 months
bCorrelations expected to reach significance based on the previous study
cCorrelation reaching significance at 0.05 significance level (uncorrected for
multiple comparisons)
dAutism Diagnostic Interview–Revised, Behaviours/ Repetitive Interests Algo-
rithm Total 36 months
eAutism Diagnostic Observation Schedule–2, Social Affect Total 36 months
fAutism Diagnostic Observation Schedule–2, Restricted and Repetitive Beha-
viours Total 36 months
gCorrelations expected to show a trend based on the previous study
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cohorts have indicated inter-individual variability in early
cognitive and symptom trajectories55–57. Further, MEG
and fMRI studies have shown that inter-individual varia-
bility in brain development and brain activation patterns
in ASD is high58–60. The same likely applies to the current
cohorts. Indeed, careful inspection of the individual data

from Orekhova’s study and the current study reveals that
inter-individual variation is also evident in HR-ASD
infants. The sample in Orekhova’s study contained 6
infants with very high connectivity levels, whereas 4 other
infants had lower connectivity levels. In contrast, the
current sample contained 2 out of 13 infants displaying

Fig. 3 Correlations between global connectivity and dimensional traits. a Global connectivity among selected connections and scores on the
ADI-R RRB total at 36 months of age for HR-ASD infants only. b Global connectivity across all connections and scores on the ADI-R RRB total at
36 months of age for the complete HR sample. c Global connectivity across all connections and scores on the ADI-R Social and Communication Scale
Total at 36 months of age for the complete HR sample. Each asterisk represents one infant: black for HR-TD infants, cyan for HR-Atyp infants, and
purple for HR-ASD infants. R and p values in the left upper corners reflect values for the lines in the scatterplots

Table 3 Relationship between functional connectivity and subtypes of restricted and repetitive behaviours from the
ADI-R at 36 months for the combined HR sample of the previous and current cohort

Subtypes of RRB on the ADI-R Global connectivity across all channels Global connectivity across selected channels

Repetitive motor behaviours NHR= 103 r= 0.15, r= 0.15

p= 0.126 p= 0.126

Insistence on sameness NHR= 102 r= 0.14, r= 0.07,

p= 0.153 p= 0.500

Circumscribed interests NHR= 90 r= 0.26, r= 0.30,

p= 0.015 p= 0.004

Spearman’s rho values are represented by r. P-values are 2-tailed. Correlations reaching significance after FDR correction across the 6 comparisons are printed in bold.
RRB restricted and repetitive behaviours, ADI-R autism diagnostic interview–revised
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high levels of connectivity. Thus, the stratification of HR-
ASD infants into subtypes of ASD based on functional
connectivity in the alpha range at 14 months of age could
be used to determine whether these represent distinct
‘subtypes’ of ASD. In relatively modest sample sizes there
will be stochastic variation in the proportion of the sample
showing elevated connectivity, creating difficulties in
replicability at the group level.

Functional connectivity and the severity of restricted and
repetitive behaviours
The heterogeneity poses a genuine challenge for

research in ASD and some researchers even question the
validity of ASD as a construct itself61. One potential
solution to manage this is to take a dimensional approach
in addition to a categorical classification and look at
specific core ASD symptom domains and brain-behaviour
associations as a diagnosis of ASD can be reached by
multiple different combinations of specific symptoms62,63.
To this end, we focussed on investigating associations
between functional connectivity and ASD core symptoms
measured by the ADI-R and ADOS-2. Replicating Ore-
khova and colleagues10, we found a significant relation-
ship between functional connectivity averaged across
selected connections from the previous study and the
severity of RRBs within the HR-ASD group. Overall, our
findings suggest that the heterogeneity in brain mechan-
isms is associated with specific heterogeneity in the
behavioural phenotype. The absence of significant find-
ings based on categories and the presence of significant
brain-behaviour associations support the notion that a
dimensional perspective should be taken when consider-
ing ASD, rather than solely a categorical approach5. To
our knowledge, this result is the first replication of an
infant neural predictor of dimensional variation in later
ASD symptoms.
What mechanism underlies our replicated association

between functional connectivity in fronto-central regions
and later RRBs? The high alpha connectivity in fronto-
central regions in HR-ASD infants in our study could
contribute to the observed behavioural abnormalities and/
or reflect common pathological factors affecting both
EEG and behaviour, such as e.g. functional/neurochemical
abnormalities64–68, and structural changes observed in
frontal and related subcortical areas in ASD (69,70, also
see71–74). Of note, it has been found that severity of RRBs
in older children and adults with ASD correlated with
frontal and/or striatal neurochemical abnormalities64,66,
and structural changes in frontal cortex and related sub-
cortical areas (such as the cerebellum, and caudate
nuclei)69.
Studies of structural connectivity in infants at high

familial risk for ASD show a somewhat converging pattern
of findings in relation to RRBs. Specifically, cortical area

and cortical thickness of the corpus callosum during the
first year of life were positively associated with later RRBs
in HR-ASD infants75. Further, higher structural con-
nectivity between the genu of corpus callosum and the
cerebellum at 6 months of age was related to more severe
higher order RRBs (such as rituals, compulsions, insis-
tence on sameness, and circumscribed interests) at later
age76. The genus of the corpus callosum plays an
important role in the frontal-striatal circuits. It has been
suggested that fronto-striatal circuits might be implicated
in the underlying mechanisms of RRBs39,77,78, occurring
in ASD but also in for example obsessive compulsive
disorder.
Further, analyses conducted on the combined high-risk

sample suggest these findings arise from associations
between functional connectivity in the alpha frequency
EEG and circumscribed interests that can be detected at
the trait level in the high-risk group as a whole. This
observation seems consistent with the idea that elevated
alpha connectivity reflects an over-focused attentional
style, which is more closely related to circumscribed
interests than the other subtypes of RRBs. Possibly, we did
not observe an association between alpha connectivity
and RRBs in the high-risk group because the circum-
scribed interests are the driving factor, and might not be
strong enough to show an association with alpha con-
nectivity when combined with the other RRB subtypes.
Langen and colleagues39 have proposed that circum-
scribed interests are mediated by a limbic loop consisting
of the anterior cingulate cortex (ACC), orbitofrontal
cortex (OFC), ventral striatum, ventral palladium, and
medial dorsal thalamic nucleus. Our observation of
functional hyperconnectivity over frontal and central
scalp regions would at least be consistent with functional
changes in the cortical part of this loop, though source
analysis combining MRI and EEG techniques would be
required to confirm this.
Finally, the association between functional connectivity

for selected connections with RRBs should be taken with
consideration of the measurements of RRBs. The asso-
ciation between functional connectivity and RRBs reached
significance when measured with the ADI-R, but not with
the ADOS-2, and only in the HR-ASD group, not the HR-
TD or HR-Atyp group. This is consistent with the pre-
vious paper that did not find any associations reaching
significance in HR infants who did not develop ASD at
later age. The ADI-R has been designed to measure aty-
picalities in RRBs, and might therefore not pick up typical
variation within smaller ranges in the HR-no ASD groups.
Furthermore, RRBs in infants are relatively low-frequency
behaviours which will more likely be reported during the
ADI-R where parents report on their child’s behaviour
over time, rather than being observed during the brief
behavioural capture by the ADOS-2.
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This study is the first to replicate a neuroimaging pre-
dictor of dimensional variation in ASD symptoms in
young infants. Findings from structural and functional
MRI studies show converging evidence in support of
associations between abnormalities in fronto-striatal cir-
cuits and circumscribed interests in ASD. Future direc-
tions would be to combine EEG with methods with higher
spatial resolution (like MRI or the more infant-friendly
NIRS) to unravel the brain systems that underlie func-
tional overconnectivity and circumscribed interests. Fur-
ther, it will be important to trace whether we can identify
early cognitive manifestations of circumscribed interests
in infants with ASD that may relate to concurrent
hyperconnectivity, for example atypical visual exploration
during play79, or with eye-tracking methods23. Lastly,
increased sample sizes would allow for specificity and
sensitivity calculations needed for clinical application of
this infant neural predictor of phenotypic variation.
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