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Abstract

Multiple pharmacogenetic studies investigated the effectiveness of methotrexate. However, due to the use of nonvalidated
outcomes, lack of validation or conflicting results it remains unclear if genetic markers can help to predict response to MTX
treatment. Therefore, a systematic review was performed. PubMed was searched for articles reporting potential
pharmacogenetic biomarkers associated (p <0.05) with MTX efficacy using the validated endpoints DAS(28), EULAR,
or ACR response criteria. The PICO method was used for study selection, and PRISMA guidelines to prepare the report.
Thirty-five studies met the inclusion criteria, providing 39 potential genetic biomarkers in 19 genes. After Bonferroni
correction, six genetic biomarkers were associated with the efficacy of MTX: ATIC 1s7563206; SLCI19A1 rs1051266; DHFR
1s836788; TYMS 152244500, rs2847153, and rs3786362 in at least one study. Only SLCI19A1 1rs1051266 was replicated in an

independent cohort and promising for predicting methotrexate efficacy.

Introduction

Low-dose methotrexate (MTX) is considered the “anchor
drug” for the treatment of rheumatoid arthritis (RA). The
precise mechanism of action of MTX remains to be eluci-
dated, but it is known that MTX is transported over the
membrane by multiple solute carriers (SLC) and that intra-
cellular MTX has to be bound to polyglutames molecules by
folylpolyglutamate synthase (FPGS) to exert its function. As
illustrated in Fig. 1, the polyglutamated MTX affects multiple
cellular pathways, e.g., adenosine, de novo purine synthesis,
folate, methionine, and de novo pyrimidine synthesis.
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In particular, an essential function of the folate pathway
is to provide cofactors for key enzymes, such as dihy-
drofolate reductase (DHFR) that converts dihydrofolate into
the folic acid derivative tetrahydrofolate (THF). THF and
other derivatives are required for the purine and pyrimidine
synthesis, which are important for cell proliferation and cell
growth [1]. The methionine pathway is responsible for the
synthesis of adenosine, which is an anti-inflammatory
agent, alterated by methionine synthase and methionine
synthase reductase (MTRR). Further, methionine is a pre-
cursor for S-adenosyl-methionine, which is a methyl donor
that serves a variety of cellular functions, including DNA
methylation [2]. The ubiquitin pathway is not directly
related to the other pathways, but has an essential function
in homeostasis and recognition of MHC class 1 for the
cytotoxic T cells [3].

Approximately one-third of RA patients experience
insufficient clinical response to MTX. Pharmacogenetics
studies the impact of genetic variation to drug response and
genetic variants in the MTX pathways described above
may affect the potential effects of methotrexate on
inflammation in RA. Indeed, multiple studies reported
associations between single nucleotide polymorphisms
(SNPs) and the efficacy of MTX. However, to date, none of
the proposed markers are applied in clinical practice due to
lack of validation or conflicting results. In addition, pre-
vious systematic reviews [4—10] described the effect of
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Fig. 1 Intracellular MTX mechanism pathway, divided into the
methionine, folate, de novo pyrimidine synthesis, de novo purine
synthesis, and adenosine pathway. 10-CHO-THF methylenetetrahy-
drofolate  dehydrogenase, 5,10-CH-THF methyltetrahydrofolate
cyclohydrolase, 5-10-MTHF formyltetrahydrofolate synthetase, 5-
MTHF L-methylfolate, ABC ATP-binding cassette transporters, ADA
adenosine deaminase, ADORA2A adenosine A2A receptor, AICAR 5-
aminoimidazole-4-carboxamide ribonucleotide, AMP adenosine
monophosphate, AMPD1 adenosine monophosphate deaminase 1
ATIC  5-aminoimidazole-4-carboxamide  ribonucleotide  for-
myltransferase, ATP adenosine triphosphate, cCAMP cyclic adenosine
monophosphate, CD37 transmembrane protein, CD39 transmembrane

SNPs on the efficacy of MTX, but some included studies
with MTX in different diseases such as juvenile idiopathic
arthritis [10] or leukemia [5] or applied nonvalidated end-
points, such as red blood cell MTX polyglutamate con-
centrations [5, 11] or physicians’ assessment of patient’s
response [9].

The goal of this review is to systematically explore
which SNPs related to MTX pharmacology are associated
with efficacy in RA by selecting only studies with the
validated endpoints DAS(28), European League Against
Rheumatism (EULAR), or American College of Rheuma-
tology (ACR) response criteria [12, 13].

Methods
Data extraction and identification of eligible studies

Identification and selection of studies were performed
according to the PICO method [14]. Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines were used to prepare the report [15]. PubMed was
used to identify and extract all relevant articles published
between April 2002 and March 2017. Search terms consisted
of rheumatoid arthritis, methotrexate, pharmacogenetics, and
SNP. The full search string is provided in Supplementary File
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protein, DHF dihydrofolate, DHFR dihydrofolate reductase, DTMP
deoxythymidine monophosphate, DTTP deoxythymidine triphosphate,
DUMP deoxyuridine monophosphate FAICAR 5-
formylaminoimidazole-4-carboxamide ribonucleotide, FPGS
folylpoly-y-glutaminase synthetase, GGH y-glutamyl hydrolase, IL-10
interleukin-10, IMP inosine monophosphate, IPTA inosine tripho-
sphatase, MS methionine synthase, MTHFDI1 methylenetetrahy-
drofolate dehydrogenase 1, MTHFR methylenetetrahydrofolate
reductase, MTRR methionine synthase reductase, MTX methotrexate,
MTXPG methotrexate polyglutamate, NT nucleoside transporter,
SHMT-1 serine hydroxymethyltransferase 1, SLC solute carrier, THF
tetrahydrofolate, TYMS thymidylate synthase

Adenosine
pathway

De novo
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S1. Also, we manually checked reference lists from reviews to
identify relevant cross-references.

Records were screened on title and abstract. Comments,
editorials, narrative reviews, letters (without original data),
abstracts, and publications in languages other than English
were excluded. Only studies utilizing the DAS(28), the
response criteria of the ACR or the EULAR were eligible for
inclusion. Included SNPs were analyzed under the additive,
allelic, genotypic or haploid genetic model, and had at least
one association with either DAS(28), ACR or EULAR
response (p <0.05, uncorrected for multiple testing).

SNPs were divided into MTX-related pathways: adeno-
sine, de novo purine synthesis, transporters, polyglutama-
tion, folate, methionine, de novo pyrimidine synthesis, and
ubiquitin. Results from included studies were summarized,
and reported odds ratio (OR) with 95% confidence
interval (CI), p-value, type of association and SNP ID
were collected. Finally, SNPs were checked on linkage
disequilibrium by SNP  Annotation and Proxy
Search (SNAP, Broad Institute) [16], with the LD threshold
of R*>0.8.

To control the risk of false positive findings, Bonferroni
correction was applied when no correction for multiple
testing was performed in the original study by calculating a
significant cut-off p-value at a/n (p =0.05 divided by the
number of tested SNPs within each study). SNPs were
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Fig. 2 Study flow diagram of the systematic review inclusion [15].
MTX methotrexate, MAF minimum allele frequency, ACR American
College of Rheumatology, DAS Disease Activity Score, EULAR
European League Against Rheumatism

significantly associated if the p-value was <0.05 after
Bonferroni correction. Ultimately meta-analyses were used
to support our findings of potential significant SNPs.

Results
Study selection

Figure 2 shows the results of the study selection. Initially,
115 publications were identified. We excluded 30 com-
ments, editorials, letters, narrative reviews, and seven non-
English written publications. Of the remaining 78 studies,
41 were excluded because none of our defined endpoints
was reported and one because the report of the study could
not be obtained. By cross-references, three more studies
were included. In total, 35 original studies were available
for analysis in this systematic review and seven meta-
analyses were used to support our findings.

Study characteristics

Most studies (34 out of 35) were candidate gene studies
investigating 1-35 polymorphisms. There was one genome-
wide association study (GWAS) investigating 559,007
polymorphisms [17]. The mean study population of the

studies was 197 patients (ranging from 48 to 422 patients).
Most studies used the EULAR good response criteria
(32%), tested <10 SNPs (76%), were conducted in Europe
with RA patients of (self-)reported Caucasian origin. The
average rate of good EULAR response to MTX mono-
therapy at t =6 months was 55%, ranging from 23 [18] to
85% [19].

The included studies reported 39 SNPs in 20 genes
associated with either DAS(28), EULAR, or ACR response
with a p-value < 0.05. After Bonferroni correction, 16 SNPs
in 10 genes remained significantly associated with MTX
efficacy.

Adenosine pathway—ADA, ADORA2A, AMPD1, and
ITPA

AMPDI 1517602729 (allelic T) showed a significant asso-
ciation with DAS28 <3.2 (OR: 6.73, 95% CI: 1.74-26.01)
between =3 and 6 months [20]. However, this was not
confirmed with the genotypic CC model at =6 months
[21]. None of the other SNPs in the adenosine pathways—
ADA (rs244076), ADORA2A (rs5751876), and ITPA
(rs1127354)—were significantly associated with the MTX
response at t =6 months using allelic or genotypic genetic
models.

De novo purine synthesis—ATIC

Four SNPs in ATIC (rs2372536 [22], rs4673993 [23],
rs7563206 [1], and rs12995526 [1]) had at least one study
reporting a significant association with MTX efficacy. ATIC
187563206 (allelic T carrier) was tested in one study, and
showed an association with MTX nonresponse with the
endpoint DAS28 <3.2 at t=6 months (OR: 0.20 95%
CI:0.09-0.46) [1]. At t=6 months, ATIC rs4673993 (gen-
otypic TT) showed a significant association with a better
response (DAS28 <3.2, OR:3.86 95% CI:1.50-9.91), while
rs12995526 (allelic T carriers) showed a significant asso-
ciation with a worse response (DAS28 <3.2, OR:0.23 95%
CI:0.10-0.53) to MTX [23].

ATIC (rs2372536, genotype CC) was significantly asso-
ciated with DAS <2.4 at t =6 months, with an OR of 2.5
(95% CI: 1.3-4.8) [22]. Three other studies—using ATIC
rs2372536 genotypic CC at =6 months—reported no
significant association, of which one study reported that the
CC genotype was related to MTX nonresponse with a OR
below 1.0 (OR:0.27, 95% CI: 0.08-0.92) [1, 20, 24].

Transporters—ABCB1C1, ABCC1, SLC19A1 (RFC1),
and SLC22A11

None of the SNPs in ABCBI (rs1045642), ABCCI
(rs246240 and rs3784864), and SLC22A11 (rs11231809)
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were significantly associated with DAS28 <3.2 or EULAR
good response at =6 months. The most studied genetic
SLCI9A1 SNP was rs1051266, which was investigated in
11 studies. Three studies reported a significant association
with MTX efficacy at = 6 months using ACR20 or DAS28
and different genetic models (either allelic A carriers, gen-
otypic GG or genotypic AA). Other studies did not inves-
tigate the same genetic models, using the same efficacy
endpoints with the same time evaluation point for SLC19A1
rs1051266.

Polyglutamation—FPGS and GGH

FPGS 134451422 (allelic C carriers) was associated with
MTX efficacy using EULAR good response at t=
6 months, with an OR of 0.73 (0.54-0.98) [17]. FPGS SNPs
(rs1544105, rs10106, and rs10987742) and GGH SNPS
(rs2305558 and rs1800909) were not significantly asso-
ciated with MTX efficacy.

Folate pathway—DHFR, MTHFR, and SHMT

Both MTHFR 151801131 (A1298C) and 1s1801133
(C677T) have frequently been studied (>10 studies). One
study showed a significant association with MTHFR
rs1801133 CC genotype with DAS28 < 3.2 at r = 6 months,
with an OR of 3.4 [25]. Three other studies investigated the
association of MTHFR genotypic CC at t =6 months, and
did not find an association using other endpoints (EULAR
GR, ADAS44 <0.6, and ACR20) [26-28]. For two other
SNPs in MTHFR (rs17421511 and rs1476413) there was no
significant association with MTX response. Also, no asso-
ciation was found between MTHFDI rs17850560 or SHMT-
1 151979277 with MTX response using DAS28(<3.2) or
EULAR GR. DHFR 1s836788 was associated in one
study with EULAR response at = 6 months, with an OR of
1.44 (95% CI: 1.09-1.93) and 1.47 (95% CI: 1.09-1.96),
respectively for the allelic A carriers and the genotypic
AA [17].

Methionine pathway—MTR and MTRR

Six studies investigated the role of the MTR A2756G
(rs1805087), of which one study reported a significant
association [19]. Here, MTR rs1805087 was associated with
MTX efficacy at t = 12 month, and the use of the endpoint
EULAR good response with the genotypic AA (OR was not
available). Other studies could not confirm the association
with rs1805087, using the DAS28 with genotypic AA on
t =4 months [29], EULAR GR with the allelic G carriers
on t=4 months [30], or with the DAS28 <3.2 allelic
G carriers on ¢t =6 months [31]. No significant association
was reported with MTRR 15162040 and rs1801394.
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De novo pyrimidine pathway—TYMS

TYMS 152244500, rs2847153, and rs3786362 were all sig-
nificantly associated with EULAR good response at ¢ =
6 months and had OR of resp. 1.48. 1.92, 0.51, and 2.76
[17, 21]. No other studies investigated the effect of TYMS
with MTX response.

Ubiquitin pathway—CUL1

Negi et al. investigated the association of CULI haplotypes
with MTX efficacy using the DAS28 <3.2 at = 6 months
[32]. Here, CULI rs122571 haplotype A-T-T (OR: 2.83,
95% CI: 1.33-6.04) and rs243480 haplotype G-T-T (OR:
0.16, 95% CI 0.04-0.67) were significant.

KIR gene

One study tested multiple length variants of the KIR gene
and showed that the full-length KIR2DS4 gene was sig-
nificantly associated with DAS28 <2.5 (OR: 0.4344, 95%
CI: 0.215, 0.987) at t = 6 months [33]. Here, possessing the
KIRSDS4 gene had a lower chance of responding to MTX
treatment.

Most promising genetic variants related to MTX
efficacy

Table 1 lists the most promising SNPs that were sig-
nificantly associated with MTX efficacy after Bonferroni
correction without having conflicting results from other
studies. For instance, it is ATIC rs467393 genotypic TT
with better response, while allelic T carriers results in worse
response or lacks validation.

The most promising SNPs were derived from the path-
ways de novo purine (ATIC), de novo pyrimidine (TYMS),
and transporters (SLC19A1). The SNPs have a minor allele
frequency > 0.2, except TYMS rs3786362 (MAF <0.2 for
all races). ATIC rs7563206 and TYMS rs2244500 were
found significantly associated with an OR below 1.0, while
the other eight SNPs had an OR between 1.42 and 2.83. The
used genetic models were with either allelic, genotypic or
haplotype. No linkage disequilibrium (R*>0.8) was
observed for any of the SNPs in Table 2. SLCI9A1
rs1051266 was tested in multiple studies and positively
associated in three studies.

Of the six promising SNPs, ATIC rs7563206, TYMS
rs2847153, and rs3786362 were associated with non-
response to MTX, while SLCI9AI1 rs1051266, DHFR
rs836788, and TYMS rs2244500 were associated with
response to MTX. ORs range from 0.2 to 0.68 for MTX
nonresponse and 1.42-2.76 for MTX response. The six
SNPs had a MAF of >0.2 in all races except for TYMS
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Table 1 Most promising SNPs that were significantly associated with MTX efficacy

Gene SNP Location MAF Association OR [95% CI] Study
AF AFR AMR EUR SAS

SLCI9A1 151051266% 21:45537880 0.4886 0.3268 0.5821 0.5487 0.5941 Genotypic AA 1.78 [1.13-2.81] Drozdzik et al. [41]

ATIC rs7563206 2:215325931 0.4018 0.5129 0.4280 0.4871 0.3292 Allelic T carriers 0.20 [0.09-0.46] Lima et al. [1]

DHFR rs836788 5:80616225 0.4235 0.5106 0.3631 0.3807 0.4335 Allelic A carriers 1.44 (1.08-1.93) Senapati et al. [17]
Genotypic AA 1.47 (1.09-1.96) Senapati et al. [17]

TYMS 1s2244500  18:661005 0.6160 0.8101 0.4251 0.4612 0.5706 Allelic A carriers 1.48 [1.12-1.94] Senapati et al. [17]
Genotypic AA 1.48 [1.13-1.94] Senapati et al. [17]

TYMS 1s2847153  18:661647 0.2901 0.2428 0.2305 0.2097 0.3865 Allelic A carriers 0.68 [0.51-0.91] Senapati et al. [17]

TYMS rs3786362  18:662247 0.0623 0.0015 0.0490 0.0000 0.1063 Allelic G carriers 0.51 [0.30-0.86] Senapati et al. [17]

*Confirmed by the meta-analyses of Kung et al. [49] and Li et al. [50]

AFR African population, AMR American population, EAS East Asian population, EUR European population, SAS South Asian population, derived

from the HapMap project

rs3786362 which is sparse and even does not occurred in
the European population.

Despite the findings of one significant association of
ATIC 13473993 and 1rs12995526, AMPDI 1s17602729,
MTHFR 1s1801133, and MTR 1s180508, and FPGS
154451422, we did not mark those as promising genetic
variants due to conflicting results. Also, we did not include
the full-length KIR2DS4 gene as a promising genetic
marker for the response to MTX, due to the complexity of
the determination of the whole KIR2DS4 gene (with 15,894
bases) and the fact that it is not one SNP. This was also the
case of CULI that was significantly associated with MTX
response for two haplotypes; A-T-T (rs122571) and G-T-T
(rs243480).

Discussion

This systematic review assesses the effect of genetic
variation on the efficacy of MTX in RA using the vali-
dated endpoints DAS, EULAR, or ACR response criteria.
After Bonferroni correction for multiple testing, we
identified six genetic biomarkers related to MTX efficacy.
Of these, SLCI9AI rs1051266 had the most convincing
evidence with two independent studies showing sig-
nificant associations. Other potentially promising SNPs
are ATIC rs7563206, DHFR rs836788, TYMS rs2244500,
rs2847153, and rs3786362, but these lack replication
studies. The six genetic biomarkers could have clinical
implications for the disease outcome of RA. In fact,
SLCI9A 1s1051266, DHFR 1s836788, and TYMS
1rs2244500 showed a 40% or more increased chance of the
effectiveness of MTX, and ATIC 187563206 and
rs378636, and TYMS rs2847153 showed 45% or more
chance of the reduced effectiveness of MTX. Still we
believe that additional studies are necessary before

implementing pharmacogenetic testing for these SNPs in
the treatment of RA.

A limitation of the investigated studies in this systematic
review is the difference in the evaluation time points for
measuring MTX efficacy. MTX is a slow-acting prodrug
that becomes active when polyglutamated in the cells. The
process of polyglutamation is slow and takes up to
27.5 weeks (range 6.6-62.0 weeks) to reach steady state
[34]. This delay in steady-state polyglutamation explains
the relatively long time to clinical response, and therefore
most studies had the endpoint set to 6 months after the start
of MTX therapy. However, some studies evaluated
response earlier than # = 6 months, while MTX may not yet
have exerted its full potential. Furthermore, the genotypic or
allelic genetic models were often used, when in fact the
hypothesis-free driven additive genetic model seems more
appropriate because the underlying genetic model is
unknown.

Another limitation is that most studies tested with uni-
variate analysis, without taking into account baseline vari-
ables (multivariate testing), such as gender, smoking status,
disease severity which are known to influence response to
MTX. Most drug-gene interaction studies were explorative,
with the use of retrospective data and lack validation.
Pharmacogenetic testing in RA remains limited mainly
because the evidence for drug-gene interactions are mar-
ginal. MTX is involved in multiple pathways with different
genes. Yet, most pharmacogenetic studies were candidate
studies that tested only a single or a small number of SNPs,
but not a combination of multiple genes or pathways [35].
To get clear evidence, additional studies with the use of a
combination of multiple genes are needed. This review can
show a basis, to test all suggestive SNPs together in asso-
ciation with the efficacy of MTX.

The strength of our study is that a systematic approach
was used to identify SNPs and the selection of the articles
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Table 2 Genetic biomarkers related to MTX efficacy

Gene SNPs Genetic model Endpoint Time of response N Reported P-value OR (95% CI) Study
evaluation (months)

Adenosine pathway

ADA rs244076 Allelic A carriers EULAR GR 6 281 0.02 1.66 (1.01-2.75) Sharma et al. [21]
Genotypic AA EULAR GR 6 281 0.17 - Sharma et al. [21]
ADORA2A rs5751876 Allelic C carriers EULAR GR 6 281 0.04 1.55 (1.01-2.37) Sharma et al. [21]
Genotypic TT EULAR GR 6 281 0.12 - Sharma et al. [21]
AMPD1 rs17602729 Allelic T carriers DAS<2.4 6 204 <0.05 2.1 (1.04.5) Wessels et al. [22]
(C347) Allelic T carriers DAS28<3.2 3-6 205 0.006* 6.73 (1.74-26.01) Grabar et al. [20]
Allelic C carriers EULAR GR 6 281 0.39 - Sharma et al. [21]
Genotypic CC EULAR GR 6 281 0.38 - Sharma et al. [21]
ITPA rs1127354 Genotypic CC DAS<24 6 204 <0.05 2.7 (1.1-8.1) Wessels et al. [22]
(C94A) Allelic A carriers EULAR GR 4 255 0.006 2.95 (1.36-6.38) Dervieux et al. [30]
De novo purine synthesis pathway
ATIC 1s2372536 (C347G) Allelic C carriers DAS28<3.2 6 233 0.568 0.83 (0.43-1.69) Lima et al. [1]
Allelic C carriers EULAR GR 6 281 0.96 - Sharma et al. [21]
Allelic C carriers EULAR GR 12 98 0.56 - James et al. [19]
Allelic C carriers EULAR GR 6 319 0.94 0.98 (0.67-1.43) Muralidharan et al. [36]
Allelic C carriers ACR 20 & 50 12 217 NS - Ghodke-Puranik et al. [18]
Allelic C carriers DAS28<2.4 6 422 0.229 1.29 (0.87-1.91) Kurzawski et al. [24]
Allelic G carriers EULAR GR 4 255 0.71 1.09 (0.66-1.80) Dervieux et al. [30]
Genotypic GG DAS28 6 170 NS - Hayashi et al. [37]
Genotypic GG DAS28<2.4 6 422 0.005 2.40 (1.30-4.42) Kurzawski et al. [24]
Genotypic CC EULAR GR 6 281 0.17 - Sharma et al. [21]
Genotypic CC EULAR GR 12 98 0.85 - James et al. [19]
Genotypic CC DAS28<3.2 6 233 0.036 0.27 (0.08-0.92) Lima et al. [1]
Genotypic CC DAS28<3.2 3-6 208 NS - Grabar et al. [20]
Genotypic CC DAS<24 6 205 0.007* 2.5 (1.3-4.8) Wessels et al. [22]
Genotypic CC EULAR GR 6 61 0.12 1.95 (0.83-4.56) Salazar et al. [38]
rs4673993 Allelic C carriers DAS28<3.2 6 233 0.036 0.27 (0.08-0.92) Lima et al. [1]
Genotypic TT DAS28<3.2 6 120 0.006%* 3.86 (1.50-9.91) Lee et al. [23]
Genotypic TT DAS28<3.2 6 233 0.950 0.98 (0.51-1.89) Lima et al. [1]
17563206 Allelic T carriers DAS28<3.2 6 233 <0.001* 0.20 (0.09-0.46) Lima et al. [1]
Genotypic TT DAS28<3.2 6 233 0.558 0.81 (0.40-1.65) Lima et al. [1]
112995526 Allelic T carriers EULAR GR 6 233 0.001%* 0.23 (0.10-0.53) Lima et al. (2016) [1]
Allelic T carriers DAS28<2.4 6 422 0.112 0.71 (0.47-1.07) Kurzawski et al. [24]
Genotypic TT DAS28<2.4 6 422 0.138 0.65 (0.38-1.10) Kurzawski et al. [24]
Genotypic TT EULAR GR 6 233 0.413 0.74 (0.37-1.51) Lima et al. [1]
Genotypic CC EULAR GR 6 61 0.22 1.78 (0.70-4.52) Salazar et al. [38]
Transporters
ABCBI rs1045642 Genotypic CT DAS28<3.2 6 281 0.01 1.97 (1.13-3.42) Sharma et al. [39]
(C3435T) Genotypic CC DAS28<3.2 6 281 0.01 0.32 (0.13-0.80) Sharma et al. [39]
Genotypic CC DAS<24 6 186 0.769 - Kooloos et al. [40]
Allelic C carriers DAS<24 6 186 0.082 - Kooloos et al. [40]
ABCCl 15246240 Allelic G carriers DAS28<3.2 6 233 0.008 5.47 (1.56-19.25) Lima et al. [31]
Genotypic GG DAS28<3.2 6 233 0.846 0.76 (0.05-11.46) Lima et al. [31]
rs3784864 Allelic A carriers EULAR GR 6 233 0.402 0.64 (0.23-1.80) Lima et al. [31]
Genotypic AA EULAR GR 6 233 0.015 4.24 (1.32-13.65) Lima et al. [31]
SLCI9A1/RFC1 rs1051266 (G80A) Allelic A carriers ACR 20 & 50 12 217 0.030 2.20 (1.1-4.4) Ghodke-Puranik et al. [18]
Allelic A carriers EULAR GR 12 98 0.009 - James et al. [19]
Allelic A carriers ACR 20 6 174 0.021%* 3.32 (1.26-8.79) Drozdzik et al. [41]
Allelic A carriers DAS28<3.2 6 233 0.672 1.23 (0.47-3.18) Lima et al. [31]
Allelic A carriers DAS28<3.2 6 281 NS - Sharma et al. [39]
Allelic A carriers EULAR GR 6 225 0.28 1.24 (0.85-1.81) Muralidharan et al. [42]
Allelic A carriers EULAR GR 4 255 0.07 1.63 (0.95-2.79) Dervieux et al. [30]
Genotypic AA EULAR GR 12 98 0.036 - James et al. [19]
Genotypic AA ACR 20% 6 174 0.013* 1.78 (1.13-2.81) Drozdzik et al. [41]
Genotypic AA DAS28<3.2 6 233 0.924 1.05 (0.36-3.09) Lima et al. [31]
Genotypic AA DAS28<3.2 6 281 NS - Sharma et al. [39]
Genotypic GG DAS28 4 255 0.27 - Dervieux et al. [30]
Genotypic GG DAS28 6 170 0.0018* 2.27 (1.36-3.80) Hayashi et al. [37]
Genotypic GG EULAR GR 6 76 0.602 - Moya et al. [43]
Genotypic GG EULAR GR 6 54 NS - Chatzikyriakidou et al. [44]
Genotypic GG DAS28<3.2 6 240 NS - Swierkot et al. [25]
Genotypic GG EULAR GR 6 225 0.56 0.81 (0.46-1.43) Muralidharan et al. [42]
SLC22A11 rs11231809 Genotypic AA DAS28<3.2 6 233 0.031 0.19 (0.04-0.86) Lima et al. [31]
Allelic A carriers DAS28<3.2 6 233 0.116 0.44 (0.16-1.22) Lima et al. [31]
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Table 2 (continued)

Gene SNPs Genetic model Endpoint Time of response N Reported P-value OR (95% CI) Study
evaluation (months)
Polyglutamation
FPGS rs4451422 Allelic A carriers DAS28<3.2 6 232 0.077 0.52 (0.025-1.07) Lima et al. [1]
Allelic C carriers EULAR GR 6 457 0.035+* 0.73 (0.54-0.98) Senapati et al. [17]
Genotypic AA DAS28<3.2 6 232 0.27 1.57 (0.70-3.49) Lima et al. [1]
Genotypic CC EULAR GR 6 457 0.05* 0.72 (0.52-1.00) Senapati et al. [17]
rs1544105 Allelic A carriers EULAR GR 6 281 0.008 3.47 (1.19-10.12) Sharma et al. [21]
Allelic G carriers DAS28<3.2 6 233 0.316 1.53 (0.68-3.60) Lima et al. [1]
Allelic G carriers DAS28<3.2 6 281 0.043 1.55 (1.01-2.37) Sharma et al. [39]
Allelic A carriers DAS28<2.4 6 422 0919 0.96 (0.65-1.43) Kurzawski et al. [24]
Genotypic GG DAS28<3.2 6 233 0.115 0.56 (0.27-1.15) Lima et al. [1]
Genotypic AA DAS28<2.4 6 422 0.398 0.77 (0.44-1.36) Kurzawski et al. [24]
rs10106(A1994G) Allelic C carriers DAS28<2.4 6 422 0.841 0.94 (0.64-1.40) Kurzawski et al. [24]
Allelic C carriers DAS<24 6 352 0.9 2.90 (1.50-5.40) van der Straaten et al. [45]
Allelic A carriers DAS28<3.2 6 233 0.317 1.50 (0.68-3.29) Lima et al. [1]
Allelic A carriers DAS<24 6 186 0.638 - Wessels et al. [46]
Allelic A carriers DAS<24 6 352 NS — van der Straaten et al. [45]
Genotypic AA DAS<24 6 186 0.128 - Wessels et al. [46]
Genotypic AA DAS28<3.2 6 233 0.070 0.51 (0.25-1.06) Lima et al. [1]
Genotypic TT EULAR GR 6 76 0.041 - Moya et al. [43]
Genotypic CC DAS28<2.4 6 422 0.253 0.70 (0.69-1.24) Kurzawski et al. [24]
rs10987742 Genotypic GG EULAR GR 6 76 0.033 - Moya et al. [43]
GGH 1rs2305558 Allelic A carriers EULAR GR 6 457 0.05# 1.46 (0.98-2.17) Senapati et al. [17]
Genotypic AA EULAR GR 6 457 0.23# 1.51 (0.74-3.08) Senapati et al. [17]
rs1800909 Allelic C carriers DAS<24 3 352 0.036 2.1 (1.04.7) van der Straaten et al. [45]
(C167T) Allelic C carriers DAS<24 6 352 NS - van der Straaten et al. [45]
Allelic C carriers EULAR GR 4 255 0.66 1.11 (0.68-1.83) Dervieux et al. [30]
Allelic T carriers DAS<24 6 186 0.705 - Wessels et al. [46]
Genotypic TT DAS<2.4 6 186 0.308 - Wessels et al. [46]
Folate pathway
DHFR rs836788 Allelic A carriers EULAR GR 6 457 0.014%" 1.44 (1.08-1.93) Senapati et al. [17]
Genotypic AA EULAR GR 6 457 0.011+ 1.47 (1.09-1.96) Senapati et al. [17]
rs12517451 Allelic A carriers EULAR GR 6 457 0.05" 1.35 (0.99-1.85) Senapati et al. [17]
Genotypic AA EULAR GR 6 457 0.016* 1.56 (1.07-2.26) Senapati et al. [17]
rs408626 Genotypic ADAS 6 125 0.050 - Milic et al. [47]
(-317) Genotypic EULAR GR 6 125 0.2 - Milic et al. [47]
rs1643650 Additive EULAR GR 6 61 0.026 0.31 (0.10-0.96) Salazar et al. [38]
MTHFR rs17421511 Additive EULAR GR 6 61 0.024 3.35 (1.10-10.24) Salazar et al. [38]
rs1801131 (A1298C) Additive EULAR GR 6 61 0.08 2.19 (0.89-5.37) Salazar et al. [38]
Allelic A carriers ACR 20 & 50 12 217 0.020 2.6 (1.1-5.8) Ghodke-Puranik et al. [18]
Allelic A carriers EULAR GR 12 98 1.00 - James et al. (2008) [19]
Allelic A carriers ACR20 6 69 0.56 - Taraborelli et al. [28]
Allelic C carriers DAS28<3.2 6 233 0.045 0.51 (0.26-0.98) Lima et al. [31]
Allelic C carriers EULAR GR 4 255 0.66 0.89 (0.54-1.46) Dervieux et al. [30]
Genotypic AA ADAS44<1.2 6 186 0.014 2.30 (1.18-4.41) Wessels et al. [27]
Genotypic AA ACR20 6 69 0.35 - Taraborelli et al. [28]
Genotypic AA EULAR GR 12 98 0.92 - James et al. [19]
Genotypic AA DAS28<3.2 6 240 NS - Swierkot et al. [25]
Genotypic DAS28 4 48 NS - Dervieux et al. [29]
Genotypic CC DAS28<3.2 6 120 0.84 0.90 (0.40-2.02) Lee et al. [23]
Genotypic CC DAS28<3.2 6 233 091 1.07 (0.35-3.28) Lima et al. [31]
Genotypic AA EULAR GR 6 120 0.23 - Soukup et al. [48]
rs1476413 Additive EULAR GR 6 61 0.0086 3.56 (1.28-9.91) Salazar et al. [38]
rs1801133 (C677T) Additive EULAR GR 6 61 0.53 0.73 (0.27-1.98) Salazar et al. [38]
Allelic T carriers ACR 20 & 50 12 217 NS - Ghodke-Puranik et al. [18]
Allelic T carriers EULAR GR 4 255 0.86 1.04 (0.63-1.72) Dervieux et al. [30]
Allelic C carriers EULAR GR 12 98 0.39 - James et al. [19]
Allelic C carriers ACR20 6 69 0.34 - Taraborelli et al. [28]
Allelic C carriers DAS28<3.2 6 233 0.019 3.86 (1.25-11.89) Limaet al. [1]
Genotypic CC EULAR GR 6 113 NS - Aggarwal et al. [26]
Genotypic CC ADAS44<0.6 6 186 0.044 2.73 (1.03-7.26) Wessels et al. [27]
Genotypic CC ACR20 6 69 0.26 - Taraborelli et al. [28]
Genotypic CC EULAR GR 12 98 0.64 - James et al. [19]
Genotypic CC DAS28<3.2 6 240 0.001%* 34 Swierkot et al. [25]
Genotypic TT DAS28 4 48 NS - Dervieux et al. [29]
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Table 2 (continued)

Gene SNPs Genetic model Endpoint Time of response N Reported P-value OR (95% CI) Study
evaluation (months)
Genotypic TT EULAR GR 4 48 <0.05 22.2(1.2422) Dervieux et al. [29]
Genotypic TT EULAR GR 6 120 0.432 1.41 (0.51-4.55) Soukup et al. [48]
MTHFDI rs17850560 (G1958A) Genotypic GG DAS28<3.2 3-6 208 0.021 4.67 (1.27-17.26) Grabar et al. [20]
Genotypic GG DAS<24 6 186 0.101 - Wessels et al. [22]
Allelic A carriers EULAR GR 4 255 0.11 1.62 (0.90-2.92) Dervieux et al. [30]
SHMT-1 rs1979277 Genotypic DAS28 4 48 <0.05 7.4 (1.0-56.4) Dervieux et al. [29]
(C1420T) Allelic T carrier EULAR GR 4 255 0.53 0.85 (0.52-1.40) Dervieux et al. [30]
Methionine pathway
MTR (MS) 151805087 (A2756G) Allelic A carriers EULAR GR 12 98 0.06 - James et al. [19]
Allelic A carriers ACR 20 & 50 12 217 NS - Ghodke-Puranik et al. [18]
Allelic G carriers EULAR GR 255 0.41 1.23 (0.73-2.10) Dervieux et al. [30]
Allelic G carriers DAS28<3.2 6 233 0.017 0.42 (0.20-0.86) Lima et al. [31]
Genotypic AA EULAR GR 12 98 0.003* - James et al. [19]
Genotypic AA DAS28 4 255 NS - Dervieux et al. [29]
Genotypic GG DAS28<3.2 6 233 0.247 0.27 (0.03-2.51) Lima et al. [31]
MTRR rs162040 Allelic C carriers EULAR GR 6 457 0.04 1.45 (1.00-2.10) Senapati et al. [17]
Genotypic CC EULAR GR 6 457 0.02 2.22 (1.11-4.43) Senapati et al. [17]
rs1801394 (A66G) Allelic A carriers DAS28<3.2 6 233 0.041 2.16 (1.03-4.53) Lima et al. [31]
Allelic A carriers ACR 20 & 50 12 217 NS - Ghodke-Puranik et al. [18]
Genotypic AA DAS28 4 48 NS - Dervieux et al. [29]
Genotypic AA DAS28<3.2 6 233 0.046 2.36 (1.01-5.52) Lima et al. [31]
De novo pyrimidine pathway
TYMS r$2244500 Allelic A carriers EULAR GR 6 457 0.005+" 1.48 (1.12-1.94) Senapati et al. [17]
Genotypic AA EULAR GR 6 457 0.004+* 1.48 (1.13-1.94) Senapati et al. [17]
rs2847153 Genotypic AA EULAR GR 6 61 0.26 1.92 (0.62-5.97) Salazar et al. [38]
Allelic A carriers EULAR GR 6 457 0.009+* 0.68 (0.51-0.91) Senapati et al. [17]
Genotypic AA EULAR GR 6 457 0.04* 0.71 (0.52-0.98) Senapati et al. [17]
rs3786362 Allelic G carriers EULAR GR 6 457 0.011%# 0.51 (0.30-0.86) Senapati et al. [17]
Genotypic GG EULAR GR 6 457 0.99# - Senapati et al. [17]
Ubiquitin pathway
CULI rs122571 Haplotype A-T-T DAS28<3.2 6 29 0.0051* 2.83 (1.33-6.04) Negi et al. [32]
15243481 Haplotype G-C-T DAS28<3.2 6 74 0.05 1.42 (1.0-2.02) Negi et al. [32]
15243480 Haplotype G-T-T DAS28<3.2 6 25 0.0045* 2.83 (1.33-6.04) Negi et al. [32]
Other
KIR 2DS4 gene Full-length DAS28<2.5 6 312 0.0334* 0.43 (0.215-0.987) Majorczyk et al. [33]

P values marked in bold p-values have a reported p-value below 0.05. P-values marked with an asterisk (*) were significantly associated after
multiple testing correction (Bonferroni correction, p < 0.05). P-values marked with hash (#) have a reported P-values that was already corrected by

multiple testing

BF Bonferroni EULAR GR European league against rheumatism good response criteria, ACR American College of Rheumatology, OR odds ratio,
CI confidence interval, SNPs single nucleotide polymorphisms, NS not significant

was performed according to the PRISMA guidelines.
Another strength is that only validated outcome criteria
were used and that adjustment for multiple testing by
Bonferroni correction was applied for the included studies.
A potential weakness of this review is that only English
publications were included. This results in the exclusion of
seven non-English studies, and important findings could
have been missed. Another weakness was the limited
sample size of some studies and the lack of power analysis
to check the validity of the outcomes.

Finally, a common limitation of systematic reviews is
publication bias. Meaning that important—albeit negative
—results were never published, which could lead to
misinterpretation of the actual findings. Another limitation
was that not all studies were performed with MTX
monotherapy, and therefore the effect on response could
be influenced by other DMARDs. Several meta-analyses

SPRINGER NATURE

have been performed on pharmacogenetics biomarkers for
the efficacy or toxicity of MTX in RA. Of our promising
SNPs, SLCI9A1 151051266 with the genotypic AA (vs
AG/AG) was tested in MTX efficacy in three meta-
analyses. Two meta-analyses, conducted by Li et al. [50]
and Chen et al. (2016), confirmed the significant asso-
ciation with an OR of 1.42 (95% CI: 1.04-1.93) and 1.49
(CI: 1.17-1.90), respectively. However, the third meta-
analysis by Chen et al. (2016) showed substantial het-
erogeneity (I*) of 72% for the allelic model and thus
represented inconsistencies of the pooled studies and
affects the validity of the results. None of the other var-
iants was evaluated in meta-analysis.

In summary, through the use of a systematic review
and inclusion of studies with validated RA efficacy end-
points, we identified six SNPs for which there is sub-
stantial evidence for an association with MTX response
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in RA patients. For clinical application more evidence
from prospective studies with multivariate testing is
needed.
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