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Abstract
Identifying genetic variants associated with chemotherapeutic induced toxicity is an important step towards personalized
treatment of cancer patients. However, annotating and interpreting the associated genetic variants remains challenging
because each associated variant is a surrogate for many other variants in the same region. The issue is further complicated
when investigating patterns of associated variants with multiple drugs. In this study, we used biological knowledge to
annotate and compare genetic variants associated with cellular sensitivity to mechanistically distinct chemotherapeutic drugs,
including platinating agents (cisplatin, carboplatin), capecitabine, cytarabine, and paclitaxel. The most significantly
associated SNPs from genome wide association studies of cellular sensitivity to each drug in lymphoblastoid cell lines
derived from populations of European (CEU) and African (YRI) descent were analyzed for their enrichment in biological
pathways and processes. We annotated genetic variants using higher-level biological annotations in efforts to group variants
into more interpretable biological modules. Using the higher-level annotations, we observed distinct biological modules
associated with cell line populations as well as classes of chemotherapeutic drugs. We also integrated genetic variants and
gene expression variables to build predictive models for chemotherapeutic drug cytotoxicity and prioritized the network
models based on the enrichment of DNA regulatory data. Several biological annotations, often encompassing different
SNPs, were replicated in independent datasets. By using biological knowledge and DNA regulatory information, we propose
a novel approach for jointly analyzing genetic variants associated with multiple chemotherapeutic drugs.

Introduction

A better understanding of genetic variation contributing to
cellular sensitivity to chemotherapeutic drugs can lead to
more precise and personalized treatment of cancer patients
[1]. Lymphoblastoid cell lines (LCLs) have been estab-
lished as a model system to study the genetic components
of drug-induced cytotoxicity by measuring cell growth
inhibition following drug exposure [2]. Previous genome-
wide association studies (GWAS) have identified numerous
genetic variants and gene expression variables associated
with drug cytotoxicity [3–6]. However, a comprehensive
study of multiple drugs in different populations can reveal
new insights into the genetic susceptibility of cytotoxicity.

We studied genetic factors associated with cytotoxicity
of five mechanistically distinct chemotherapeutic drugs:
cisplatin, carboplatin, capecitabine, cytarabine, and pacli-
taxel (Fig. 1). Cytotoxicities were measured for all drugs in
two HapMap populations: Utah Residents with European
ancestry (CEU) and African individuals from Yoruba in
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Ibadan, Nigeria (YRI). Platinum-based compounds,
including cisplatin and carboplatin are the most widely
applied group of cytotoxic drugs worldwide, are used to
treat head and neck, testicular, lung, endometrial and
ovarian cancers [7–9]. Capecitabine is mainly used to treat
colorectal and breast cancers [10]. Patients with acute
myeloid leukemia have long been treated with cytarabine
[11]. Paclitaxel is commonly used for the treatment of lung,
breast, and ovarian cancers [12]. Previous studies have
shown that drugs in the same class have common genetic
loci associated with drug induced cytotoxicity, for example,
cisplatin and carboplatin [4]. An individual’s ancestral
background has also been linked to differential risks for
cytotoxicity [13]. Thus, a more comprehensive under-
standing of the distinct and shared genetic components
associated with cytotoxicity between drugs and populations
would be valuable to identify new treatment options.

However, a molecular understanding of individual
genetic variations is challenging because there are a large
number of genetic variations that can be associated with
drug cytotoxicity and each variant is a surrogate for many
other variants in the same region. To address these issues,
we evaluated genetic variants using higher-level biological
annotations in efforts to group variants into more inter-
pretable biological modules. Comparing CEU to YRI, we
found population specific annotations for each drug. Within
individual populations, we observed drugs that treat similar

types of cancers are enriched for the same biological
annotations. In some cases, we identified similar biological
annotations across CEU and YRI, as well as across multiple
drugs.

Previous studies relied on GWAS to identify genetic
variants that have the strongest independent genetic effects
on drug-induced cytotoxicity and incorporated gene
expression levels through studies of expression quantitative
trait loci (eQTL) analysis [14]. This work led to the
important observation that pharmacological GWAS SNPs
are enriched in eQTLs for many cytotoxic drugs [15].
While the eQTL method can capture a linear relationship
between SNPs and gene expression, it overlooks the pos-
sibility that interactions among SNPs or gene expression
could also play a crucial role in drug cytotoxicity. To
identify these non-linear interactions, we applied the
grammatical evolution neural network (GENN) algorithm
to build interaction networks consisting of SNPs and gene
expression variables. Although the identification of asso-
ciated SNPs and gene expression variables is an important
first step in understanding drug cytotoxicity, a challenge
remains on how to interpret the functional relevance of the
interaction models. It has been shown that many regulatory
elements can aid in identifying important functional SNPs
[16, 17]. To this end, we used DNAseI and genome seg-
mentation data published by the ENCODE consortium to
prioritize the network models.

Fig. 1 Using functional annotations and network analysis to model
chemotherapeutic induced cytotoxicity, chemotherapeutic drugs’ IC50

and SNPs’ genotype were measured on the HapMap CEU and YRI
cell lines. GWAS were used to identify the most significantly asso-
ciated SNPs for each drug and population; the resulting SNPs were

annotated using Biofilter. To integrate SNP and gene expression, the
associated SNPs and gene expression variables were trained using the
grammatical evolution neural network. The resulting network models
were prioritized using the ENCODE functional data.
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In this study, our goal is to better understand che-
motherapeutic drug responses from three new avenues:
First, while most of the existing studies have analyzed one
drug at a time [5, 9, 18], our study investigated multiple
drugs in two different populations. Second, to overcome the
bias of selecting individual causal variants, we grouped the
associated SNPs to higher biological modules including
genes, protein families, and other biological annotations.
While individual variant’s association is affected by the
linkage disequilibrium patterns, it should have minimal
impact on the higher-level annotations. Third, we integrated
SNPs and gene expression variables using a network
approach and quantified the importance of the additional
data source in terms of prediction accuracy. We believe that
a comparative study of multiple drugs and integration of
different data sources could be a useful approach for
interpreting genetic factors contributing to chemother-
apeutic drug responses.

Methods

Genetic variants and gene expression data

Genetic variants data for Utah residents with Northern and
Western European ancestry (CEU) and African individuals
from the Yoruba in Ibadan, Nigeria (YRI) were
downloaded from the 1000 Genome project (phase1_
release_v3.20101123) [19]. RNAseq gene expressions on
the same individuals were downloaded from the gEUVA-
DIS project [20]. The gene expression data was normalized
by library depth and transcripts length (RPKM). Gene
expressions with 0 counts in more than half the samples
were removed and technical variations were adjusted by
PEER normalization. The detailed normalization process
was described in [20].

Cytotoxicity data

Lymphoblastoid cell lines from HapMap phase 1 CEU and
YRI populations were treated with increasing concentra-
tions of capecitabine [18], carboplatin [3], cisplatin [6],
cytarabine [21], and paclitaxel [22] as previously reported.
For carboplatin and cisplatin, their IC50, concentration
required to inhibit 50% of the cell growth, were calculated
and log2 transformed to normality. The areas under the
survival curve (AUC) were calculated for capecitabine,
cytarabine, and paclitaxel. To satisfy the regression
assumptions, all AUC values were also log2 transformed to
allow for normal distribution. For replication studies,
HapMap phase 3 YRI and CEU cell lines were treated with
four of the drugs under the same concentrations: capecita-
bine, carboplatin, cisplatin, and cytarabine.

Quality control for genetic variants and gene
expression data

The SNP data was first transformed into the variant call
format. Only SNP data from the autosomes were used for
the GWAS analyses. To minimize error accompanied with
the sequencing technology, only SNPs with 100% call
rate were retained using GATK [23]. To remove extreme
outliers and increase statistical power, we limited our ana-
lysis to SNPs that have all three possible genotypes and
each genotype has at least two representing samples [5].
This effectively removed all of the rare variants, which do
not have the power to be detected given the small sample
size. Between 2.7 and 4.7 million SNPs have passed the
quality control. Gene expressions were filtered so that 90%
samples have non-zero expression values. This resulted in
around 20,000 gene expression probes being retained
(Table 1).

GWAS analyses of drug susceptibility

In order to perform subsequent integration analyses using
genetic variants and gene expression data, only samples that
are common between cytotoxicity data, 1000 Genome
genetic variant data, and gEUVADIS gene expression data
were used for GWAS analyses. As a result, the number of
samples is different for each drug (Table 1) and all of the
study samples are unrelated. To control for potential con-
founding effects due to population structure, SNPs that
passed quality control criteria were first LD-pruned (--indep
50 5 2) using PLINK software [24]. The principal compo-
nents of the pruned SNP data were estimated using Eigen-
strat [25]. Along with individual’s sex, significant principal

Table 1 SNPs and gene expression variables count after quality
control

Drugs Population Sample size SNP (million) Expression

Cisplatin CEU 72 3.87 19,919

YRI 77 4.69 20,380

Carboplatin CEU 72 3.87 19,923

YRI 75 4.64 20,427

Cytarabine CEU 72 3.87 19,911

YRI 77 4.68 20,380

Capecitabine CEU 73 3.88 19,859

YRI 76 4.66 20,421

Paclitaxel CEU 29 2.71 19,683

YRI 29 2.99 20,045

Autosome SNPs that have 100% call rate and gene expression
variables that have 90% non-zero values were retained. To increase
statistical power, SNPs were further filtered so that all three genotypes
are present and each genotype has a minimum of two samples.
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components (2 or 3) were adjusted in the association ana-
lysis for each SNP. For gene expression data, individual’s
sex was adjusted for each expression probe.

Functional meta-analysis of associated SNPs

To determine the biological annotations that are associated
across populations and drugs, Biofilter (v2.2) [26] was
used to separately map the associated SNPs of each cyto-
toxicity phenotype to functional groups including genes
regions [27], protein family (Pfam) [28], gene ontology
(GO) term [29], KEGG pathway [30], and Reactome [31].
Then, for each of the functional groups, we investigated
whether any of its functional terms were shared in multiple
populations and drugs. To evaluate the significance of the
sharing, we carried out 1000 permutation tests, where we
permuted each drug’s cytotoxicity and performed GWAS
on the permuted outcome. If less than 5 out of 1000 per-
mutations resulted in equal or larger number of sharing for a
function term, the term was deemed significant (p < 0.005).
After permutation, 63 genes, 35 GO terms, 2 KEGG path-
ways, 12 Pfam, and 39 Reactome were determined to be
significant.

Integration analysis using ATHENA

The Analysis Tool for Heritable and Environmental Net-
work Associations (ATHENA) is a multifunctional software
package that provides machine learning tools to analyze
genomics data. The software has been extensively tested
and applied in simulation data and real world data with
great success [32, 33]. The software and its modeling pro-
cesses have been described previously [34]. Briefly, we
used an evolutionary algorithm, grammatical evolution
neural network (GENN), to optimize artificial neural net-
works (ANNs), which are used to integrate genetic variants
and gene expression data. The evolution process initiates a
set of random models and these random models compete
with each other through generations. The “fittest” models,
or the models that maximize desired target function, can
exchange components of themselves. Through transferring
of the components, some models may acquire beneficial
components and eventually take over the population pool.
This evolution process mimics natural selection where the
“fittest model” will survive at the end of evolution. The
algorithm is described below.

Step 1: The data is divided into five parts for five cross
validations with 4/5 for training and 1/5 for testing.

Step 2: Under population size constraint, a random
population of models (ANNs) is generated.

Step 3: All models are evaluated with training data. The
models with highest fitness are selected for crossover,
mutation, reproduction and migration.

Step 4: Step 3 is repeated for a set number of generations.
Step 5: The best solution at the final generation is tested

on the testing data and saved.
Step 6: Steps 2–5 are repeated for each cross validation.
The fitness of the model aims to measure how well the

variables can explain the cytotoxicity, a continuous value.
We used R-squared as our fitness metric to represent the
percentage of cytotoxicity variation explained by SNPs and
gene expression. We scaled the cytotoxicity to be between 0
and 1 using min-max scaling so that it matches the output of
neural networks, where

Narmalized Di ¼ Di �min Dð Þ
max Dð Þ �min Dð Þ ð1Þ

*Di is the IC50 value for the ith sample, D is the vector of
IC50 values.

And the R2 is calculated as:

R2¼1�
Pn

i Dpredict i � Di

� �2

Pn
i Di � D
� �2 ð2Þ

Dpredict i is the predicted IC50 for the ith sample, Di is
the IC50 value for the ith sample, D is the average value of
IC50.

Linkage disequilibrium patterns exist in the associated
SNPs because many are proximately located. Even though
the SNPs may have distinct biological functions, they are
indistinguishable in regards to their association with cyto-
toxicity because they are highly correlated. To reduce the
correlated signals resulting from LD, for each cytotoxicity
phenotype, pairwise LD among all associated SNPs were
estimated. r2 > 0.7 was used as a threshold to form LD
clusters among the associated SNPs and if a cluster has
more than one SNP, the SNP that is the most significantly
associated with cytotoxicity was selected as the tag SNP for
the cluster. To reduce multi-collinearity in the gene
expression data, Pearson correlation was calculated for all
possible gene pairs. Genes that have correlation coefficient
r > 0.8 were grouped into a cluster. The most significantly
associated gene from each cluster was selected as the tag
gene for the cluster.

We first used ATHENA to perform variable selection on
tagging SNPs and gene expressions. SNPs and gene
expressions were integrated together to build neural net-
works that model the data. We selected SNPs and gene
expressions that were consistent between cross validations
[33]. The variable selection step used training R squared to
select candidate SNP and gene expression variables; how-
ever, the final models are selected based on testing R
squared. Using the selected SNPs and gene expressions, we
used ATHENA to build five models, one for each cross
validation, and for each cytotoxicity phenotype.
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Using functional data to prioritize neural network
models

In order to distinguish Neural Network models that have
similar predictable power of cytotoxicity, we utilized func-
tional data produced by the ENCODE project [35] to quantify
the functional relevance of each model. We downloaded 128
DNase-I hypersensitivity samples from the ENCODE project
(http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_
data_jan2011/byDataType/openchrom/jan2011/combined_
peaks/). The data contains merged DNAse-I peaks from
UW and Duke that passed FDR 1% cutoff. Genome
segmentations of six ENCODE cell lines (GM12878,
K562, H1-hESC, HeLa-S3, HepG2, and HUVEC) were
obtained from (http://ftp.ebi.ac.uk/pub/databases/ensembl/
encode/integration_data_jan2011/byDataType/segmentations/
jan2011/hub/). We used the combined segmentations calls
based on the consensus calling of ChromHMM and Segway
algorithms. The combined segmentations split the genome
into non-overlapping regions of CTCF enriched element,
enhancer, weak enhancer, promoter flanking region, promoter
region including TSS, transcribed region, and repressed
region. For every SNP in the neural network model, we
determined whether it is located in DNase-I hypersensitive
regions or genome segmentation regions across all cell types.
Because the network models only include the tagging SNPs,
we also determined the functional region overlaps for SNPs
that are in LD with the tagging SNP. The functional score for
each model is calculated as the sum of overlap for each
individual SNP, normalized by the model size. In the case
where SNPs in LD with the tagging SNP has a higher number
of overlaps, the tagging SNP was replaced with the LD SNP.
In order to select the final model, we first selected 3 models
that have the best testing accuracy (R2). Of those, we selected
the model with highest functional score as the final model.

Once we had the final model, we used SNPs and gene
expressions to separately build SNP and gene expression only
models. In the case where the models have worse prediction
than predicting using the mean IC50, the R2 value was
replaced with 0, thus effectively removed.

Results

Chemotherapeutic drug genetic associations

Cell growth inhibition was measured previously on unre-
lated CEU and YRI LCLs following treatment with
increasing concentrations of cisplatin [6], carboplatin [3],
cytarabine [21], capecitabine [18] or paclitaxel [36]. Their
dose-dependent inhibition was calculated as IC50, con-
centration required to inhibit 50% of cell growth, or AUC,
area under the survival-drug concentration curve for up to
77 LCLs (Table 1).

Genome-wide SNP data for the LCLs were obtained
from the 1000 Genomes Project (http://www.1000genomes.
org/) and were evaluated for their association with each
drug’s cytotoxicity. We adjusted for sex and significant
principal components of ancestry (2 or 3) in the linear
regression model. The quantile-quantile plots and the
genomic inflation factors (λ) showed that there was minimal
inflation (S1 Fig). We identified between 1230 and 2749
SNPs significantly associated with each drug response at p
< 0.0005, respectively (Table 2). Gene expression levels for
the LCLs, measured by RNA-Seq, were downloaded from
the gEUVADIS consortium (http://www.geuvadis.org/).
Normalized RPKM (reads per kilobase per million) values
for ~20,000 genes were tested for association with each
drug’s IC50 or AUC. To keep the number of associated
genes similar across drugs, we used p < 0.005 or p < 0.0005

Table 2 Genotype and gene
expression associations with
chemotherapeutic drugs

Drugs Population Discovery
associated SNPs

Discovery
associated
expressions

Hapmap 3
replication LCLs

Replicated
SNPs

Cisplatin CEU 1945 121 40 292

YRI 2157 76a 46 266

Carboplatin CEU 2530 169a 40 302

YRI 2364 194 44 247

Cytarabine CEU 2156 126 40 275

YRI 2749 106a 46 722

Capecitabine CEU 2014 65a 40 122

YRI 2485 295 46 297

Paclitaxel CEU 1230 94 NA NA

YRI 1466 80 NA NA

Associated SNPs and gene expressions were identified in the discovery HapMap phase 1 samples.
Replication of SNPs were performed in the HapMap phase 3 LCLs. SNPs association threshold was at p <
5 × 10−4. Gene expressions association threshold were at p < 5 × 10−4 or p < 5 × 10−3.
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Fig. 2 Pan-drug analysis of functional annotations. For each drug in
CEU and YRI, associated SNPs were mapped to various functional
annotations. A colored square indicates SNP(s) were mapped to that
functional term (Cisplatin: Red, Carboplatin: Blue, Cytarabine:
Orange, Capecitabine: Purple, Paclitaxel: Black). Only functional

terms that have significant enrichment across drugs and populations
(permutation analysis p < 0.005) were shown. Functional terms were
grouped using hierarchical clustering according to its enrichment. a
Gene; b GO term; c KEGG pathway; d REACTOME; e Pfam
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to select candidate genes. We identified between 65 and 295
genes whose expression levels were associated with drug
outcome (Table 2). A list of all associated SNPs and gene
expression levels can be found in the supplemental mate-
rials (S1 Table).

To replicate the SNP associations, we exposed an inde-
pendent set of HapMap phase 3 LCLs to four of the five
chemotherapeutic drugs: cisplatin, carboplatin, cytarabine,
and capecitabine. We performed an association analysis on
the independent LCLs and using the same p-value threshold
(p < 0.0005) and direction of effect, we replicated between
122 and 722 SNPs that were associated in the original
samples (Table 2).

Pan-drug analysis of associated SNPs reveals
distinct patterns of functional enrichment

To get a better understanding of the biological processes
involved in the differential cytotoxicity, we annotated all
the SNPs that are associated with each drug response using
gene regions, KEGG pathways, GO terms, REACTOME,
and Pfam using Biofilter [26]. We observed that many
biological annotations were shared across different drugs
and/or populations. To remove annotations that were shared
due to random chance, we performed a permutation test
(1000×) for each drug’s IC50 or AUC. Using the permuted
IC50 or AUC, we identified associated SNPs using the same
criteria as our original analysis. For each permutation, we
calculated how many times an annotation is shared across
the drug and population. We then removed any annotations
that are over-represented in the permutations (p < 0.005).

Cellular sensitivity to drugs is a broad phenotype that
includes cell cycle arrest, cell damage, and cell death
through apoptotic and non-apoptotic mechanisms [37, 38].
Cytarabine (5 and 40 uM), cisplatin (5 uM) and paclitaxel
(12.5 nM) were evaluated for chemotherapeutic-induced
apoptosis because they cause a significant increase in cel-
lular caspase-3/7 activation, a measure of apoptosis [22].
For each drug, apoptosis was measured in 30 CEU LCLs
and 35 YRI LCLs. We identified SNPs that are associated
with drug-induced caspase 3/7 activation (S2 Table) and
mapped them using biological annotations. To obtain the
most stringent list of biological annotations that are shared
between different drugs and populations, we kept only the
annotations that passed the permutation test and were also
identified in the replication or apoptosis dataset (Fig. 2).

When we compared the associated functional annotations
across CEU and YRI LCLs, we observed that some anno-
tations are population specific. For gene annotations, a
group of genes including HUNK, MTMR9, PRAMEF4, and
ACACA were only associated in the CEU population for at
least two chemotherapeutics (Fig. 2a). Meanwhile, Sper-
matogenesis family BioT2, GNS1/SUR4 family, Translin

family, and Leukotriene A4 hydrolase C-terminal in pfam
(Fig. 2e), IKK related terms in REACTOME (Fig. 2d), and
several neuronal development and leukocytes GO terms
(Fig. 2b) were only identified in the YRI population. On the
other hand, there is a common group of functional terms
associated in both CEU and YRI populations. This group
consists of mostly fatty acid related functional terms clus-
tered together in GO term, REACTOME, and KEGG
pathway. One notable example is the NF-kappa B signaling
pathway in the KEGG pathway. This pathway was asso-
ciated with all of the drugs in both populations (Fig. 2c).

Within each population, we observed that drugs within
the same class have similar associated annotation patterns.
In particular, cisplatin and carboplatin, both platinating
agents have many functional annotations in common.
Cytarabine and capecitabine, both antimetabolites, have a
number of overlapping annotations (Fig. 2).

We also observed overlapping annotations between drug
cytotoxicity and apoptosis. TSNAX-DISC1 and DISC1 gene
was associated with cytarabine and paclitaxel for both cell
cytotoxicity and apoptosis. A number of triglyceride and
fatty acid GO terms and REACTOME pathways were
shared for cytarabine, paclitaxel and cisplatin. Both Fatty
acid elongation and NF-kappa B signaling pathway in
KEGG are enriched for both processes. In Pfam, GNS1/
SUR4 family, Translin family, and RFX DNA binding
domain were enriched for cytotoxicity and apoptosis.

Network modeling identified interactions between
SNPs and gene expression variables important in
cytotoxicity

Starting with the SNPs and gene expression variables that
were associated with each drug’s cytotoxicity, we calculated
pairwise correlations among SNPs or gene expression.
Using cutoffs of r2 > 0.7 for SNPs and Pearson’s r > 0.8 for
gene expression, we grouped SNPs and gene expression
variables that are highly correlated to the same clusters. To
reduce multi-colinearity for the network analysis, we
selected one tag SNP or tag expression that had the highest
association with cytotoxicity to represent each cluster.

We integrated the tag SNPs and gene expressions using
GENN and built interaction network models for each drug
and population combinations.

Using ENCODE data to prioritize network models

It is possible that a number of network models can be
similarly predictive for each drug’s cytotoxicity. To prior-
itize these models, we selected the model that contains
variables with evidence of functional relevance from
the ENCODE. Previous studies suggested that SNPs that lie
in the open chromatin and regulatory regions are more
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likely to be functional [35]. Thus, we used DNAseI
hypersensitivity sites from 124 cell lines and genome seg-
mentation data from 6 cell lines produced by the ENCODE
project to give functional relevance for each model. The
DNAseI data marks genomic regions that are not occupied
by heterochromatin and the genome segmentation data
divides the genome into enhancer, transcription start sites,
promoter-flanking regions, CTCF binding sites, and
repressed regions. For each network model, we first identify
the full set of features by including SNPs that are in the
same clusters as the tag SNPs in the model. We then cal-
culated a functional score for each feature that is proportion
to the number of functional elements it overlaps with in all
of the cell lines. The final score for a network model is the
summation of the individual score for each feature nor-
malized by network size (Fig. 3). Using the functional
score, we were able to prioritize models that have similar
predictive power in terms of R2 (amount of variability
explained by the model) and identified one final model for
each drug and population (Table 3 & S2-10 Fig). As an
example, the multi-layer neural network for capecitabine in
CEU population uses 6 SNPs to model IC50 response
(Fig. 4).

Discussion

Understanding a patient’s genetic susceptibility to che-
motherapeutic drugs will provide important information for
precision medicine. Previous studies have evaluated geno-
type associations to an individual chemotherapeutic drug;
however, a comparative study of multiple drugs in different
populations could reveal common or unique mechanisms
that can be exploited in terms of therapy. Here, we present
the first study to analyze the genetic associations of

cytotoxicity induced by five chemotherapeutic drugs (cis-
platin, carboplatin, capecitabine, cytarabine, and paclitaxel)
in LCLs derived from two populations (CEU and YRI). To
comparatively analyze the associated genetic variants across
multiple drugs in two populations, higher-level biological
knowledge was used to group variants into functional
modules. We discovered that mechanistically distinct drugs
are enriched in the same functional modules such as NF-kB
pathway. We also set to identify biomarkers that are pre-
dictive of the drug cytotoxicity. To this end, we found that
integrated networks of SNP and gene expression performed
better than either data type alone. Finally, we used DNA
regulatory information to select network models that are
both predictive and functionally important.

We performed genome-wide SNP association analysis
for each of the five drugs in both populations to identify
significant genetic associations with drug-induced cyto-
toxicity. A major challenge to interpreting significant SNP
associations across different drugs and populations is that
comparing individual SNPs alone can be misleading. A
slight change in allele frequency could result in any of the
SNPs in linkage disequilibrium to be identified, however,
SNPs in LD are likely located in the same genes or regions.
We, therefore, annotated the associated SNPs to higher-
level biological processes using gene regions, GO term,
KEGG pathway, REACTOME pathway, and Pfam. We
found that biological annotations are considerably different
between LCLs derived from individuals of European and
African ancestry. Interestingly, ancestry has also been
reported to affect gene expression [14], modified cytosines
[39] and sensitivity to chemotherapy [13]. The disparities
might lie in the differences in population susceptibility to
cancer, which could also affect cytotoxicity-induced
response. HUNK and ACACA genes were associated only
in the CEU population and are both related to breast cancer
[40, 41] (Fig. 2a). A previous report has shown that dif-
ferences exist between African American and European
American women in the nature of breast cancer [42].
SEMA4D and CCDC7 genes were associated in the YRI
population (Fig. 2a). Expressions of the genes have been
reported to correlate with poor outcome in cervical cancer
[43, 44]. In addition, a recent survey has found that Black
American females are more likely to develop cervical can-
cer than White American females [45] and Black American
males have higher lung cancer incidence compared to White
American males [46]. These candidate genes could be fur-
ther validated in their respective population. Several IKK
related REACTOME pathways were associated with the
YRI population (Fig. 2d). IKK is a central regulator of NF-
kB pathway [47] and activation of NF-kB pathway has been
observed in many solid tumors [48]. Interestingly, NF-kB
pathway is associated in both CEU and YRI populations
(Fig. 2c), but IKK is only associated with the YRI

Fig. 3 Schematic for functional score calculation. Functional score of a
model is calculated as the sum of scores of individual SNP or SNPs in
LD normalized by the model size. Individual score was determined by
its positional overlap with functional regions. In this example, yellow
squares represent DNAseI or genome segmentation regions. The score
for a network model of SNP A, B, C, D is (7+ 3+ 5+ 1)/4= 4
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Table 3 Network model identified by GENN

Drugs Population R2 SNPs (LD) DNAseI Genome segmentation Gene

Integration SNP Expression

Capecitabine CEU 67.9 67.9 NA rs4855025 NA R, R, R, R, R, R NA

rs28444711 NA R, R, R, R, R, R

rs7153327 11 R, R, R, R, R

rs75202456 NA R, R, R, R, R

rs1596124 NA R, R, R, R, R, R

rs2570317 NA R, R, R, R, R, R

YRI 64.3 64.3 NA rs11204113 NA R, R, R, R, R, R NA

rs10760086 NA R, R, R, R, R, R

rs9303059 NA R, R, R, R, R, R

rs9661131 NA R, R, R, R, R, R

rs6671214 NA CTCF, CTCF, CTCF, CTCF, CTCF, R

Carboplatin CEU 60.4 62.1 23.1 rs11233413 9 T, E TMEM14E

rs12816395 NA T, T, R, R, R, R

rs79062064 NA T, T, R, R, R, R

YRI 66.2 66.2 NA rs16823342 NA R, R, R, R, R, R NA

rs2553650 5 WE, R, R, R

rs2079192 3 T, T, T, T, WE

rs7325063 NA T, R, R, R, R, R

rs916396 NA T, T, R, R, R, R

Cisplatin CEU 66.6 46.3 14.0 rs11715866 NA T, R, R, R, R, R FABP6
HCFC1
TAS2R30
ZNF192P1

rs344946 NA R, R, R, R, R, R

rs11628331 NA R, R, R, R

rs77859257 NA R, R, R, R, R, R

rs557453 NA T, T, R, R, R, R

rs9422887 9 CTCF, CTCF, CTCF, CTCF, CTCF, CTCF

rs8074638 5 R, R, R, R, R, R

rs557453 NA T, T, R, R, R, R

rs812652 NA R, R, R, R, R, R

rs4750139 5 TSS, TSS, R

rs7257166 2 WE, T, R, R, R, R

YRI 52.4 36.8 12.7 rs12255911 NA T, T, T, T, R, R IL27

rs6814234 9 WE, T, T, R, R

rs10426529 NA E, R, R, R, R, R

Cytarabine CEU 47.7 42.9 0 rs1281461 NA R, R, R, R, R, R RP11-463J10.3
IL11RArs2780788 NA T, R, R, R, R, R

rs593525 11 T, T, T

rs4910512 2 T, R, R, R

rs7962806 NA R, R, R, R, R, R

YRI 72.2 28.2 45.4 rs7666224, NA R, R, R, R, R, R MAB21L3
RP11-134G8.8rs9564627 NA R, R, R, R, R, R

rs2216926 NA R, R, R, R, R, R

rs10913404 NA R, R, R, R, R, R

Paclitaxel CEU 67.1 67.1 NA rs2116796 NA R, R, R, R, R, R NA

rs28634858 2 WE, R, R, R, R, R

rs10773683 3 R, R, R, R, R, R

YRI 87.8 57.0 19.0 rs10478863 NA R, R, R, R, R, R
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population. This suggests a possible alternate regulator of
NF-kB pathway for cytotoxic response.

Many annotation terms were also associated in both
populations. Fatty acid and triglyceride related functional
terms were identified in GO term, KEGG pathway, and
REACTOME (Fig. 2b, c, d). In Pfam, GNS1/SUR4 family
is also involved in fatty acid elongation systems [49]. Fatty
acid synthase is an important process for cancer cells to
expand and proliferate and has been found to be associated
with cytotoxicity in cells [50, 51]. High expression of fatty
acid synthase was also observed in colon, prostate, ovarian,

breast and endometrium cancers [52, 53]. Recent studies
have shown that fatty acid synthase inhibitors are potent
therapeutic agents for cancer [54, 55]. Altered growth is one
of the direct results of cytotoxic response, so it is likely that
fatty acid synthase is also involved in the observed differ-
ential drug responses. Positive regulation of endothelial cell
migration was associated with all five drugs. In addition, it
was reported that during metastasis, cancer cells extravasate
metastasis sites by attaching to endothelial cells [56]. We
also observed drugs that were known to treat similar cancers
have high overlap of biological annotations. In particular,
cisplatin and carboplatin are both platinum compounds that
treat lung, head and neck, testicular, and ovarian cancer [4,
9]. It can be seen that cisplatin and carboplatin have high
overlap in all annotations, especially in the YRI population
(Fig. 2).

LCLs’ cellular sensitivity to drugs is a broad phenotype
that encompasses many sub-phenotypes including drug-
induced apoptosis. Cell apoptosis, as measured by caspase
activity, was shown to be weakly correlated with cyto-
toxicity [22]. Despite the weak correlation at the phenotypic
level, we found that many functional terms enriched for cell
cytotoxicity are also associated with cell apoptosis (Fig. 2),
indicating shared biological mechanism for the two
responses. As an example, SNPs in RFX2 gene were
identified in a clinical trial evaluating paclitaxel-induced
neuropathy of breast cancer patients and shown to be
functionally important in paclitaxel-induced cytotoxicity
using siRNA [36]. In our analysis, RFX DNA binding
domain was associated with both paclitaxel-induced cyto-
toxicity and apoptosis (Fig. 2e).

The integration of SNP and gene expression data yielded
higher predictive R2 than SNP or gene expression data alone
(Table 3), which supports the potential value for combining
multiple types of genomics data [57–59]. Because we
prioritized our model based on overlaps with DNA reg-
ulatory regions, many of our models contain SNPs that are
located in the DNAseI region and functional genome

Table 3 (continued)

Drugs Population R2 SNPs (LD) DNAseI Genome segmentation Gene

Integration SNP Expression

MAPKBP1
LPP

rs10094960 NA R, R, R, R, R, R
rs446139 NA R, R, R, R, R, R

rs9905351 8 T, T, T, R, R, R

rs28570663 NA R, R, R, R, R, R

rs10948390 NA T, T, R, R, R, R

The testing R2 for integration models, SNP only models, and gene expression only models were obtained through cross validations. NA for gene
expression only models were due to no expression variables being identified in the integration model. SNPs identified by the network as well as
SNPs that are in LD with the network SNPs (r2 > 0.7) are shown. Genome segmentations abbreviations are: Enhancer (E), weak enhancer (WE),
CTCF binding (CTCF), transcribed region (T), repressed region (R), transcription start site (TSS)

Fig. 4 Neural Network model for capecitabine’s chemotherapeutic
response in CEU. W is a weight node, PADD is an addition activation
node. In this network, the SNP genotype values are multiplied with
their associated weights and then added together in the PADD node
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segmentation regions. This information can provide addi-
tional interpretability to our models compared with using R2

alone.
Due to the small sample size of LCLs in the original

analysis, we sought for replication in independent HapMap3
LCLs to confirm our result. Of note, we found a large
number of biological annotations were replicated in the
independent datasets. Of annotations/drug pairs identified in
the discovery analysis, between 15–100% were also sig-
nificant in the respective HapMap3 replication population.
This confirms that the associated SNPs might not be iden-
tical between discovery and replication studies, but the
underlying biological mechanisms are the same. Our results
show that many genetic variants and genes are involved in
chemotherapeutic drugs cytotoxicity. By mapping genetic
variants to higher-level biological processes, we were able
to encapsulate variants in the same genomic region into
more informative units. Comparing biological processes
groups showed population specific patterns between CEU
and YRI. However, as CEU LCLs were derived from an
earlier time point [60], further studies are needed to verify
whether some of the observed differential patterns might be
due to time in culture. Nonetheless, a previous study
showed that the cellular proliferation rate was not sig-
nificantly different between CEU and YRI and no wide-
spread genetic differences on common SNPs were observed
between phase 2 and phase 3 YRI LCLs [60]. Also, there
are common processes across all drugs as well as between
drugs that belong to the same class. These results could
identify new drug repositioning candidates based on sharing
of biological processes. Using the ENCODE data, we built
predictive network models for drug cytotoxicity that are
also functionally relevant. Future work could explore the
use of additional types of functional data to better reflect the
functional relevance of the models.
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