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Neutrophil extracellular traps in homeostasis and disease
Han Wang1, Susan J. Kim2, Yu Lei1, Shuhui Wang1, Hui Wang3, Hai Huang4, Hongji Zhang2✉ and Allan Tsung2✉

Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel
decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune
regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections
but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in
vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation
of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as
autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and
chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of
NETs’ role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this
comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their
potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum
from physiology to pathology.
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INTRODUCTION
Neutrophils are the first line of defense within the innate immune
system, crucial for protecting the host against pathogens. Along-
side traditional defense mechanisms, recent attention has focused
on unique fibrous web-like chromatin structures, termed neu-
trophil extracellular traps (NETs).1,2 NETs aid neutrophils in
immobilizing and trapping pathogens, thereby contributing to
host defense.3–5 This process relies on associated histones,
proteolytic enzymes from granules, and enzymatic myeloperox-
idase (MPO).1,2 Accumulating evidence strongly supports the
direct and indirect regulatory effects of NETs on both adaptive and
innate immunity,6–8 playing a crucial role in immune homeostasis.
Moreover, NETs contribute specific mechanisms to potentiate
immunothrombosis,9–12 potentially playing a protective role in the
context of infection.13

NETs are typically formed and exhibit antibacterial activity in a
variety of infectious conditions, including bacterial, parasitic, and
fungal infections,14,15 where these pathogens can act as stimuli to
induce NET formation. Impaired NET function may facilitate
pathogen evasion from the immune system and create a niche
for chronic infection.16–18 Nevertheless, akin to a double-edged
sword, sustained inflammation or persistent stimuli can lead to
excessive NET formation, thereby exacerbating tissue damage
during inappropriate inflammation. Additionally, NET formation is
observed in nonpathogenic conditions, including but not limited
to sterile inflammation, autoimmune disorders, metabolic dysre-
gulation, vasculitis, thrombosis, and carcinogenesis when dysre-
gulated.19–21 Under sterile conditions, NETs can be induced by
interleukin-8 (IL-8),22 immune complexes,23 crystals,24 or damage-
associated molecular patterns (DAMPs), such as high mobility

group Box 1 (HMGB1).25 Evidence thus far suggests that NETs play
dual roles in these nonpathogenic conditions. On one hand, NETs
may act as autoantigens in autoimmune conditions, contributing
to tissue destruction, amplifying the inflammatory cascade, and
promoting thrombosis formation.19–21 On the other hand,
aggregated NETs formed during sterile inflammation, containing
a diverse array of enzymes, have the potential to serve as
inflammatory mediators by degrading proinflammatory cytokines
and chemokines, thereby promoting inflammation resolution and
wound healing.10,11 Despite the controversial role of NETs, major
studies confirm their more detrimental roles in nonpathogenic
inflammation.
Emerging evidence emphasizes the protumorigenic role of NETs in

various cancers,26–28 primarily due to their contribution to cell
damage and regeneration, leading to subsequent excessive inflam-
mation. NETs have been reported to promote tumor cell prolifera-
tion,29 metastasis,30–32 immunosuppression,33,34 and cancer-
associated thrombosis.35 Additionally, NETs can capture circulating
tumor cells and facilitate their colonization.36 The antitumor effects of
NETs vary depending on tumor type and microenvironment.37 While
the debate continues regarding whether NETs inhibit or promote
tumor progression, their role in promoting tumor development
appears more evident.38 Accumulated NETs provide an immunosup-
pressive microenvironment favoring the survival of premalignant cells
and cancer cells.39 Elevated NET markers correlate with poor clinical
outcomes in cancer patients and may serve as prognostic
indicators.40–42 This review explores the molecular mechanisms
underlying NET formation and clearance, along with recent advances
in comprehending how NETs contribute to both infection defense
and pathologies associated with various diseases, including specific
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inflammatory, autoimmune, thrombotic, and cancerous conditions.
Additionally, we provide an overview of current clinical trials and
therapies targeting NETs, offering insights into the development of
therapeutic strategies targeting NETs in the clinical practice.

HISTORY OF RESEARCH ON NETS
NETs have a rich history in research, beginning approximately two
decades ago. NETs were first described in the early 2000s as a
protective mechanism against pathogenic bacteria,1 which was
subsequently expanded to protection against yeast43 and proto-
zoal species. Quickly thereafter, NETs were associated with a
variety of human disease processes, first described in the female
reproductive tract.44–46 As NETs continued to be studied, it was
revealed that certain bacteria expressed endonucleases that
degraded NETs as a protective mechanism.47–49 As these
mechanisms for pathogen evasion50,51 became better understood,
this led to research developments on harnessing exogenous
methods of inhibition or degradation to address human
pathology.
In 2007, models of NET activity began to expand into other

animal models including fish,52 and zebrafish,53 demonstrating
the conserved function of NETs across species. Simultaneously,
research shifted toward elucidating the mechanism of NETosis, as
well as the structural components that are responsible for their
functionality; Pentraxin-3 (PTX3) was identified as a structural
protein dotted on NETs54 and the connection with toll-like
receptor-mediated activation, which was monumental in the
study of NETs in sepsis.
Thus began the era of NETs as prognostic biomarkers in the

clinical setting,55–57 particularly in the realm of autoimmune
disease. Beginning in 2010, the role of NETs in cancer began to
emerge,58 first being implicated in non-human animal models. In
2011, exogenous deoxyribonuclease (DNase) came to the
forefront as a modality of NET degradation in human disease
models59 and has remained a primary agent for NET degradation
in current pre-clinical and clinical trials. Causative mechanisms for
how their degradation led to these improved outcomes expanded
substantially,60,61 leading to studies that focused on inhibiting NET
formation62,63 in addition to the degradation that was emphasized
previously.
Quickly after the association between human cancers and NETs

was made, it became evident that NETs were also responsible for
malignancy-related complications such as tumor-associated
thrombosis64,65 and metastases.66 Due to the immunogenic

environment of cancers, it was natural that at this time the ability
of NETs to modulate the innate as well as the adaptive immune
microenvironment was also recognized, notably in terms of
modulating the T cell compartment.67

The first human observational studies regarding NETs in critical
care literature was published in 2014,68 then rapidly expanded to
the transplant69 and cardiac70,71 populations. With these observa-
tional studies, the in-vivo effects of NETs became better under-
stood72 and the use of NET components in prediction models
grew.73–76 Furthermore, the beginnings of high throughput
biomarker detection systems started to be explored.77,78

Beginning in 2016, the concept of iatrogenic NET induction was
introduced, with commonly used medical tools such as anti-
biotics79,80 and ventilators81 implicated in NET formation and
subsequent poor outcomes. A key cause of iatrogenic NET
induction was found to be chemotherapy, leading to treatment
resistance.82 In addition to chemotherapy resistance, significant
advances were made in identifying the role of NETs in metastatic
disease, with a heavy emphasis in their role in modulating the
immune microenvironment,83–85 inducing escape mechanisms
such as epithelial-mesenchymal transition (EMT),33,86,87 and
migration.88–91 This ultimately led to the expansion of research
on NET targeting therapies,92–96 and mitigating the adverse effects
of NETs. In the 2020s, agents targeting NET degradation or
inhibition have been expanded outside of DNase, exploring
thrombomodulin97 or necrostatin-198 as promising agents in the
preclinical space. Furthermore, more selective targeting of NET
components has become more prominent, demonstrating similar
outcome efficacy as degradation.99 Interestingly, the role of
exercise in reversing the effects of NETs has become a popular
topic of research interest100,101 in recent years.
While the connection of NETs and the immune system,

particularly in its modulation of other immune players102 has
been well researched in the decades of NET-related research, NETs
have also been found to connect to a myriad of homeostatic
mechanisms, in particular cellular metabolism.103,104 As the
knowledge of NETs multi-functionality and its role in disease has
expanded in recent years, research has shifted to elucidating its
role as a prognostic and predictive biomarker in acute stages of
disease,105–107 and strides have been taken to elucidate its role in
other disease processes through genomics research108 within the
past five years. Research thus far has illustrated the wide breadth
and comprehensive scope of NET functionality and continues to
make rapid advancements (Fig. 1).

Fig. 1 History of research on NETs. The major discoveries related to NETs, from their initial identification and role in pathogen eradication to
their involvement in diseases such as cancer. It illustrates the progression of research over time and the increasing recognition of their clinical
significance. This figure was created by Adobe Illustrator Artwork 16.0 (Adobe Systems, USA)
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STRUCTURE OF NETS
NETs are web-like extracellular filamentous structures released by
activated neutrophils. A distinctive feature of NETs is the exposed
DNA fibers with diameters of 15-17 nm formed by decondensed
neutrophil nuclear chromatin, which are important components of
NETs. Although DNA is extruded from NETs for defense purposes,
it has both antimicrobial and pro-inflammatory properties
throughout the immune responses.109 High concentrations of
DNA can chelate divalent metal cations, which can destroy the
membranes of bacteria. As a cue for tissue damage locally or
programmed cell death, extracellular DNA can be rapidly
degraded by circulating nucleases, as well as engulfed by
phagocytes.110,111 Impairment of the process might trigger a
strong inflammatory response. Mitochondrial DNA (mtDNA) is
another source of NETs and acts as a DAMP capable of triggering a
pro-inflammatory response. The rapid activation of important
NETs by mtDNA stimulates other neutrophils, which amplify the
inflammatory responses by further releasing NETs through a
positive feedback mechanism.112,113

Notably, histones, including H1, H2A, H2B, H3, and H4, are also
major components of NETs, accounting for ~70% of the proteins
of NETs.114 Although unstimulated neutrophils have the same
proportion of all core histones, there are higher amounts of H2A
and H2B compared with H3 and H4 in NETing neutrophils.115

Posttranslational modifications of histones also have been found
in NETs, even during NET formation. As serine proteases shear the
histones of NETs during NET formation, histones of NETs are
2–5 kDa smaller than those unstimulated.116 Acetylation is another
modification neutralizing the positive charges in histones,
allowing them to detach from DNA and chromatin loss.117 The
conversion of arginine into citrulline by peptidyl arginine
deiminases (PAD) is named histone citrullination, and it is
noteworthy that citrullinated histones have been recognized as
one of the major sources of autoantibodies in certain autoimmune
diseases, such as rheumatoid arthritis (RA).118,119 In addition,
histones also have immunophysiological characteristics, such as
antimicrobial activity, cytotoxicity, and immunomodulation. Extra-
cellular histones can cause potent pro-inflammatory responses,
leading to organ damage and even death.111

Furthermore, cytoplasmic proteins (including S100 calcium-
binding proteins A8/A9/A12) and granular proteins (such as MPO),
neutrophil elastase (NE), proteinase 3 (PRTN3), cathepsin G,
neutrophil defensins) bind in globular patterns to NETs. During
the formation and release of NETs, the chromatin swells up,
allowing the granule components and cellular components to
come into contact.111,120 The toxicity of the various components
released by degranulation might cause tissue damage at the site
of infection and play an important role in some non-infectious
diseases, especially autoimmune diseases and tumors.

MECHANISMS OF NET FORMATION
Activation of NETs
NETs catch a wide range of bacterial pathogens and prevent their
spread. Previous studies have shown that Streptococcus suis
(S. suis) can be recognized by toll-like receptors (TLRs), which
activate NET formation in an nicotinamide adenine dinucleotide
phosphate oxidase (NOX)-dependent manner.121 Although small
pathogens exhibit weaker stimulatory effects of NETs, small
bacteria have been reported to induce NET formation. This occurs
when small microorganisms evade death by phagosomes and
tend to aggregate. The size of the external invaders is not a
determining factor in activating formation of NETs, but the
number of particles in the neutrophil cytoplasm may be a
sensitive indicator, as Staphylococcus aureus (S. aureus) aggregates
when exposed to plasma in a murine model of sepsis, which
triggers NET formation.122,123 Moreover, NET activation has been
perceived in response to virus infection caused by respiratory

syncytial virus (RSV), human immunodeficiency virus (HIV),
hepatitis B virus (HBV), and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2).124–127 In RSV and HIV-induced
infections, NETs seem to be beneficial to the immune systems,
whereas NET formation in patients with Coronavirus disease 2019
(COVID-19) has been shown to be deleterious.
In addition to pathogens, different immunological stimuli

(including interleukins, interferons, autoantibodies, and immune
complexes), tumor-associated stimuli (including granulocyte-
colony stimulating factor (G-CSF), C-X-C motif chemokine ligands
(CXCLs)), lipopolysaccharides (LPS) and DAMPs can also promote
the formation of NETs. The stimuli may activate the cell surface
receptors of neutrophils; for example, immune complexes activate
the FcgRIIIb receptor, CXCLs recognize CXC chemokine receptors
(CXCRs), C3a recognizes C3a receptor (C3aR), as well as HMGB1
recognizes receptor of advanced glycation end products (RAGE)
and TLR4.2,128,129 Upon activation of receptors on neutrophils by
stimuli, a variety of intracellular signaling mechanisms are further
activated, resulting in NET formation. Notably, activated platelets
and endothelial cells, the important parts of microenvironment in
vivo, have also been reported to exhibit a role in activating NET
formation in diseases such as sepsis, stroke and tumors.130,131

Phorbol 12-myristate 13-acetate (PMA) is a well-known activator
of NET formation used for scientific studies. Recent studies have
demonstrated that certain metabolites and external environmen-
tal factors, and also induce NET activation. Metabolites from gut
microbiome dysbiosis and free fatty acids are involved in both
infectious and non-infectious diseases by promoting NET forma-
tion.132 Cigarette smoke and PM2.5 might contribute to pulmon-
ary diseases through activating NETs as well.133,134 Moreover,
bleomycin has been shown to induce NET formation and fibrosis
in the lungs of mice.135 Diverse particles also have been shown to
induce NET formation, such as hydrophobic nanoparticles, acicular
microparticles, and other natural and artificial crystals. Nanopar-
ticles with specific surface properties can be used as adjuvants
that stimulate NETs.136 Munoz et al. found that lysosomal
destabilization and nuclear disassembly occur simultaneously
after exposure of neutrophils to nonpolar nanoparticles, followed
by the formation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase-dependent chromatin externalization, suggest-
ing that, in addition to exogenous factors, lysosomal leakage in
neutrophils might also trigger NET formation.137 However, to date,
the formation of NETs in response to a variety of stimuli is not fully
understood.

NET formation pathways
In various diseases, neutrophils are recruited into the microenvir-
onment by diverse mediators to form NETs. Chemokine concen-
tration gradients influence the direction of neutrophil migration.
For instance, local tissue injury can lead to increased production of
G-CSF, which stimulates neutrophil recruitment.138 Additionally,
CXCLs and C-C motif chemokine ligands (CCLs), such as CXCL1,
CXCL5, and CCL2, play key roles in neutrophil recruitment in
diseases.139,140

Although the specific process of NET formation differs depend-
ing on the stimuli, it can be categorized as two main pathways
(Fig. 2). The first is a cell death pathway termed NETosis, which
begins with nuclear delobulation, disassembly of nuclear mem-
branes, a constant loss of cellular polarization, decondensation of
chromatin, and eventually rupture of plasma membranes. This
process of lytic cell death is that taking 2–4 h usually.20,141 An
alternative pathway is non-lytic NETosis that can occur without
cell death, whereby chromatin expulsion is accompanied by
granular proteins release. These components are formed extra-
cellularly, leaving behind active anucleate phagocytes with
microbial phagocytosis and chemotaxis capabilities. This pathway
occurs relatively quickly, usually within 5–60min, but depends on
the inducer.20,142
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The lytic NETosis. The lytic NETosis pathway is also known as
“suicide NETosis”, as well as NOX-dependent NETosis. Antibodies,
microorganisms, cholesterol, and PMA can induce the lytic
NETosis.143 These stimuli trigger the activation of signaling
pathway proteins, leading to increased cytosolic calcium levels
and activation of NOX. Further downstream, oxidase converts
molecular oxygen to create reactive oxidative species (ROS). NE is
located in the granules of phagocytosis in the resting neutrophils,
partly bound to MPO and attached to the granule membranes,
with another part in the lumen. ROS induces the activation of NE,
as well as its release into the cytoplasm from the MPO-containing
azurosome complex. NE binds to F-actin and mediates degrada-
tion of actin filaments. NE then translocates to the nucleus and
partially cleaves histones to promote chromatin decondensation.
Hydrogen peroxide releases NE into the cytoplasm selectively,
which depends on MPO. However, inhibition of the enzymatic
activity of MPO only delays rather than prevents NETosis, most
likely because of the role of MPO in activating the hydrolytic
activity of NE on bulky protein substrates.144

The role of the MPO-NE pathway is supported by studies of
neutrophils from diabetes patients with hereditary MPO deficiency
at high risk of infection.145 Bellaaouaj et al. have reported that
mice with NE deficiency are more susceptible to sepsis and
death,146 and NE inhibition prevents NET formation and rescues
mice from ischemia/reperfusion injury, infection, and tumor.147–150

Lacking the NADPH oxidase in the respiratory burst pathway can
decrease the ability to kill microorganisms, leading to recurrent
microbial infections. Similarly, neutrophil elastase gene (ELANE)
mutation is one of the most common genetic mutations in
neutropenic patients. ELANE-induced neutropenia is associated
with dysfunction of the theisprotease enzyme rather than due to
NE deficiency. Patients with heterozygous mutations in the ELANE
gene might develop severe life-threatening congenital

neutropenia, or cyclic neutropenia with mild to moderate clinical
characteristics.151

Recent studies have shown another nuclear chromatin-binding
protein implicated in NETosis is DEK. Both DEK depletion and
treatment with DEK-targeted aptamers attenuate inflammation
in vivo and greatly impair NET formation, while NETosis can be
reversed by addition of exogenous recombinant DEK protein,
suggesting that chromatin decondensation mediated by DEK
binding is similar to MPO.152,153

Another factor involved in NETosis is PAD4, which decreases the
positive charge of histones, as well as their electrostatic
interactions with DNA. The formation of a catalytically active
conformation of this enzyme requires five calcium ionophores,
which are always employed in studies on exploring the role of
PAD4 in NETosis.144 ROS also promotes PAD4 activation.154

Citrullination mediated by PAD4 can be triggered by hydrogen
peroxide, which can be reduced by inhibiting NADPH oxidase,
indicating an association between PAD4 and production of ROS.
The results of experiments with PAD4 inhibitor-treated cell lines or
with neutrophils from mice with PAD4 deficiency are difficult to
interpret because of low NET yields.135 For example, PAD4
inhibition prevents NET formation activated by nicotine rather
than cholesterol crystals.24,155 However, studies with a variety of
NET markers have shown that inhibition of PAD4 suppresses NET
release in murine models of sepsis and cancer. Moreover, recent
studies demonstrate that blockade of citrullination inhibits the
pro-inflammatory effects of histones and the formation of
atherosclerotic plaques in mice, but not NETosis. In contrast,
granule proteases in mouse neutrophils may be indispensable for
NETosis in response to calcium ionophores. These findings
suggest that citrullination mediated by PAD4 and NE-dependent
protein hydrolysis of histones share common features but may
play a key role in different situations.144,156

Fig. 2 NET formation pathways. NET formation can be categorized into two main pathways. The first type is the classic pathway known as
NETosis, which initiates with nuclear lobulation, followed by disassembly of nuclear membranes, loss of cellular polarization, chromatin
decondensation, and eventual rupture of plasma membranes. An alternative pathway is termed non-lytic NETosis which can occur without
cell death, where chromatin expulsion is accompanied by the release of granular proteins. These components are formed extracellularly,
leaving behind active anucleate phagocytes with capabilities for microbial phagocytosis and chemotaxis. This figure was created by Adobe
Photoshop CS6 (Adobe Systems, USA)
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Activation of cell cycle and DNA repair signaling is also
important in NETosis. The cell cycle protein-dependent kinase
(CDK) 4/6 is activated during NETosis. CDK6 is required for NETosis,
as a previous study has reported mice with CDK6-deficiency are
more susceptible to infection. S-phase events (including DNA
synthesis and histone gene transcription) are not found during
NETosis, while M-phase events (laminin phosphorylation and
centrosome segregation) are important the formation of NETs.157

These results suggest that neutrophils utilize the properties of the
cell cycle to break down the nuclear membrane. Upon rupture of
the nuclear membrane, the dispersed chromatin mixes with
granule proteins in the cytoplasm to form NETs.

The non-lytic NETosis. The non-lytic NETosis, occurs through a
NOX-independent pathway as known as ‘vital NETosis’, which can
be induced by activated platelets, certain microbes, and calcium
ionophore carrier A23187. It does not require ROS generation nor
result in cell death and is especially critical for acute invasive
infection. In contrast to lytic NETosis, neutrophils do not rupture
and die, but rather excrete NETs to the outside of the cell by
vesicular transport.128 In this pathway, neutrophils can release
mtDNA to form NETs when stimulated by LPS or C5a. Furthermore,
it has been illustrated that some pathogens can trigger a rapid
non-lytic NETosis by activation of TLR2 and C3, such as S. aureus
and Candida albicans (C. albicans).109,123 Moreover, platelets
stimulated by LPS can also induce non-lytic NETosis by activating
TLR4 in platelets. It is important to note that several studies have
described a new formation of NETs containing mainly mitochon-
drial instead of nuclear DNA. Massive and fast release of mtDNA
without loss of viability is detected in neutrophils primed with IL-
5/IFNγ or LPS. Unlike the non-lytic NETosis containing nuclear
DNA, mitochondrial NET formation depends on ROS, since ROS
inhibitor treatment or utilization of neutrophils from patients with
granulomatous diseases with ROS deficiency, could not release
NETs. However, the detailed molecular mechanisms remain
unclear.109,156

More importantly, these pathways of NET formation are not
completely independent from each other. For example, acetyla-
tion modification of histones in NETs upregulates the immunor-
eactivity of NETs, and the use of low concentrations of
deacetylation inhibitors promotes the formation of NETs, but
when the dose is increased to a certain level, the NET formation is
inhibited.158

Recently studies have shown that NETs formed by neutrophil
subpopulations with varying densities play distinct roles in diverse
pathologies. High-density neutrophils (HDNs) are typically found
in healthy conditions, whereas low-density neutrophils (LDNs) are
predominantly associated with pathological settings. LDNs can be
co-segregated with the peripheral blood mononuclear cell fraction
after centrifugation.159 LDNs often exhibit immunosuppressive
effects and are prone to forming NETs. Elevated levels of LDNs
have been observed in the blood of patients with systemic lupus
erythematosus (SLE), antiphospholipid syndrome, and lung
infections.160–162

Molecular mechanisms regulating NET formation
Kinases in NET formation. Since 2020, increasing evidence has
concentrated on the molecules involved in the regulation of NET
formation, particularly kinases and receptors.156,163 The kinases
implicated in NETosis include kinases activated by calcium influx,
or cell cycle regulators, and cytokines involvement in downstream
activation (Fig. 3). The protein kinase C (PKC), which is dependent
of phospholipid and activated by ester and calcium, in particular
PKCα, PKCβ1, and PKCζ, mediates NET formation induced by
different stimuli.164 Dowey et al. have demonstrated that PKC
inhibitor, ruboxistaurin, reduces pro-inflammatory and tissue-
damaging consequences, as well as NET formation. Downey
et al. have completed phase III trials for other indications without

safety concerns.165 It is also important to clarify that PKCβ/δ/Cζ are
all implicated in the oxidative burst, spreading and activation of
NET formation by calcium ionophore A23187, whereas in PMA-
activated NET formation, only PKCβ is associated with these
functions.164 The regulator of cell cycle G1/S transition CDK6, and
the Raf-MEK-ERK pathway are also critical for PMA-induced
NETosis.157 In addition, receptor-interacting protein kinase (RIPK),
and the mixed lineage kinase domain-like (MLKL) are involved in
NET formation induced by antineutrophil cytoplasmic antibody
(ANCA) and monosodium urate (MSU) crystals.166,167 Neutrophils
from patients with chronic granulomatous diseases are unable to
be phosphorylated by PMA-induced MLKL, while RIPK3 genetic
depletion in mice blocks NET formation activated by MSU
crystals.167

Oliveira et al. have identified that in response to different NET
stimuli, phosphatidylinositol 3-kinase (PI3K) isoforms and related
signaling partners can be mobilized, including inflammatory
cytokines, growth factors, and chemokines. PI3Kα and PI3Kγ
isoforms contribute to NET formation across multiple stimuli,
whereas the involvement of other isoforms depends on stimuli.
Some PI3K isozymes are found to signal through the typical
downstream effector of PI3K, AKT, while others cannot. Down-
stream of PI3K, all stimuli can regulate NET formation with
mammalian target of rapamycin (mTOR) and phospholipase C γ 2
(PLCγ2). Conversely, the participation of other kinases depends on
the different stimuli, both tumor necrosis factor alpha (TNFα) and
GM-CSF rely on pyruvate dehydrogenase kinase 1 (PDK1) and AKT,
and TNFα relies on s6 kinase (S6K).168 In addition, the requirement
for PI3K has also suggested the role of autophagy in NET
formation, as it also relies on this enzyme. Consistent with this, in a
bone marrow-specific murine model of autophagy deficiency,
Bhattacharya et al. identified the significance of autophagy in
neutrophil degranulation regulation. Neutrophils deficient of
autophagy could inhibit degranulation of neutrophils by suppres-
sing ROS production mediated by NADPH oxidase, indicating the
correlation of NADPH oxidase with the impacts of autophagy on
neutrophil degranulation.169–171 Autophagy inhibition (e.g., PI3K
inhibitors) can result in a reduction of NET release, while its
activation (e.g., rapamycin) enhances the formation of NETs.172 In
addition, ROS can rapidly increase the pH value of primary vesicles
and then induce autophagy, which is necessary but insufficient to
induce NET formation.
Recently, c-Jun NH2-terminal kinase, and nonreceptor tyrosine

kinase janus kinase (JAK), especially JAK2, have been implicated in
NET formation.173–175 Jak2V617F has been identified as one of the
most common driven factors of myeloproliferative neoplasms.
Mice carrying Jak2V617F are more prone to NET and thrombus
formation, while ruxolitinib, a clinically available JAK2 inhibitor,
can eliminate the formation of NETs in a murine model of deep
vein stenosis.175

Receptors in NET formation. Neutrophils recognize PAMPs or
DAMPs when they are recruited to infectious sites, thereby
activating specific surface receptors (Fig. 3). These receptors
activate different intracellular signaling mechanisms to regulate a
variety of neutrophil functions, including NET formation.
TLRs play a crucial role in recognizing host cells and responding

to microbes. Except TLR3, all other TLRs are expressed on the
surface of neutrophils in human. TLR2 and TLR4 are necessary in
the induction of NOX-dependent NETosis by the fungus Fonsecaea
pedrosoi (F. pedrosoi). In bacteria, Wolbachia endobacteria (W.
endobacteria) can be recognized and initiate NETosis by TLR2 or
TLR6. Furthermore, HIV-1 is captured and killed by NETs through
the mediation of TLR7 and TLR8.123,176 In addition to pathogens,
substances such as DAMPs, oxidized low-density lipoprotein
(OxLDL), and activated platelets have been reported to promote
NET formation via TLRs.131,141,177 Inhibition of TLRs can reduce NET
formation, for example, TLR9 antagonist administration
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significantly abrogates NET formation, as well as cell death
mediated by endoplasmic reticulum (ER) stress and induced by
NETs.178,179

The cytoplasmic receptors, NOD-like receptors (NLRs), is the
second line of defense against pathogens. Alyami et al. found that
Fusobacterium nucleatum (F. nucleatum) upregulates the expres-
sion of nucleotide-binding oligomerization domain 1 (NOD1) and
NOD2 to trig NET formation in a time-dependent manner.180

Another study on diabetic wound healing identified the role of
NLRP3/Caspase-1/Gasdermin D (GSDMD) pathway in NET forma-
tion and release.181 Uptake or formation of cholesterol crystals in
lysosomes can also cause membrane disruption, as well as
activation of NLRP3 inflammasomes. Activation of inflammasomes
in neutrophils cleaves GSDMD, followed by the formation of
membrane pores and release of IL-1β and IL-18, ultimately
resulting in pyroptosis or NET formation in hyperlipidemic mouse
models.182

Immune cells (including lymphoid and myeloid cells) express a
variety of C-type lectin receptors (CLRs) on their surface, for
instance, L-selectin, macrophage inducible C type lectin (Mincle),
macrophage inhibitory cytokine 1 (MIC1), of which Dectin 1 and

Dectin 2 are usually expressed on neutrophils. The CLRs are able to
recognize polysaccharides of microbial membranes directly and
activate the immune responses by promoting the secretion of
inflammatory cytokines and the formation of NETs. Numerous
studies have reported that viruses may interact with lectins in
immune cells via terminal glycan on their surface.183,184 Among
members of the human CLRs, dendritic cell/lymphocyte-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC/L-
SIGN), LSECtin, as well as spleen tyrosine kinase (Syk)-coupled
C-type lectin member 5A (CLEC5A) and CLEC2, have been shown
to play roles in virus-associated NET formation and inflamma-
tion.185 Stimulation of P-selectin upregulates the expression level
of P-selectin glycoprotein ligand-1 (PSGL-1) and increases the
phosphorylation of Syk, thus modulating NET formation in
neutrophils.186 Sung et al. have illustrated that extracellular
vesicles (EVs) from activated platelets can induce NET formation
via activation of CLEC5A/TLR2 heterocomplex, while inhibition of
CLEC5A and TLR2 by a bi-specific antibody almost completely
abolishes NET formation-induced by EVs.187 Interestingly, besides
being involved in NET formation, CLRs can inhibit the release of
NETs as well. For example, Dectin-1 acts as a size sensor for

Fig. 3 Molecular mechanisms regulating NET formation. The formation of NETs, also known as NETosis, can be initiated by microbial and
endogenous stimuli. Various receptors, including those activated by immune complexes, bacteria, fungi, viruses, oxLDL, S100 calcium-binding
proteins, and crystals, trigger NETosis via downstream effector proteins. Activated platelets can also induce NETosis through interaction
between HMGB1-RAGE and P-electin-PSGL1. Signaling pathways such as MEK/ERK/PKC or JNK induce ROS generation, which is central to
triggering NETosis by releasing NE from the azurosome complex. NE degrades the actin cytoskeleton and translocates to the nucleus to drive
chromatin decondensation by processing histones. Additionally, chromatin decondensation can be promoted by MPO and DEK binding, as
well as the activation of PAD4, which always employs calcium ionophores and mediates histone citrullination. NETosis also relies on CDK4/6
and the segregation of centrosomes. Autophagy and PI3K/AKT/mTOR signaling are also implicated in NET formation. NOD1/NOD2-linked
signaling pathways may promote NET formation through both MPO-NE and PAD4 pathways. EVs can act as endogenous danger signals to
induce NET formation by activating multiple receptors, including CLECs. Phagocytic receptors like Dectin-1 inhibit NETosis in response to small
microorganisms by sequestering NE to phagosomes, while Siglec-5 and Siglec-9 suppress NETosis by limiting neutrophil activation. This figure
was created with the assistance of Figdraw (www.figdraw.com)
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microbial phagocytosis by neutrophils to prevent NETosis via
blocking NE translocation to the nucleus.122,188

Complement receptors (CRs) are also mainly expressed on
lymphoid and myeloid cells, and play an important role in the
regulation of innate and acquired immune responses. There are
specific interactions between complement factors that eliminate
circulating antigens and clear apoptotic cells. One of the first
evidence showing the importance of a complement system in NET
formation is that neutrophils from mice with C3 deficiency have
difficulty in NET formation,189 and those from mice with C3aR
deficiency cannot form NETs either.190,191 To date, the most
common CRs promoting NET formation are CR1, CR3, CR4 and
CR5. In addition to CR1 antagonist, blocking of CR3 can inhibit NET
formation in response to certain pathogens.192,193 A recent study
has indicated that in neutrophils infected with SARS-CoV-2, the
process of NETosis might be amplified by C5a/C5aR1 signaling,
while treatment of neutrophils with DF2593A, a selective C5aR1
allosteric antagonist, inhibits NET formation, which provides a
promising therapeutic strategy for COVID-19.194

RAGE is a multiligand transmembrane pattern recognition
receptor, and its ligands include HMGB1, advanced glycation
end products (AGEs), and the S100 family, etc. When activated,
RAGE activates multiple intracellular signaling pathways and
promotes the production of various inflammatory substances.
HMGB1, by binding to RAGE, induces neutrophil activation and
promotes the formation of NETs, a process that is dependent on
the involvement of NADPH oxidase. The disulfide HMGB1 has also
been observed in venous thrombosis to promote pro-thrombotic
NET formation mediated by RAGE. More importantly, the employ-
ment of HMGB1-neutralizing antibodies eliminates NET forma-
tion.195 In the lupus-prone mice, NET formation in the glomerulus
is remarkably suppressed in RAGE-deficient mice, along with the
improvement of renal pathological scores, suggesting that the
blockade of RAGE might be a promising therapeutic target for
SLE.196 HBV-induced S100A9 accelerates the formation of NETs
mediated by TLR4/RAGE-ROS signaling in hepatocellular carci-
noma (HCC).126 In addition, S100 family calprotectins are also
released upon the formation of NETs, shown as the failure of
neutrophils from patients deficient in PMA-induced NETosis to
release S100A8 or S100A9 in response to PMA stimulation,
indicating that these calprotectins might amplify the activation
of NET formation.197

Moreover, other receptors have also been shown to mediate
NET formation. Multiple immune cells express Fc receptors (FcRs),
thus driving humoral and cellular immune responses by facilitat-
ing the uptake of immune complexes. In one report, FcγRIIa
directly participates in activation of NETosis, while another report
demonstrates that FcγRIIa merely promotes phagocytosis and NET
formation can be induced by FcγRIIIb through MEK/ERK signaling
pathway.198,199 It remains unclear which receptor plays a major
role or whether their interactions are critical for the formation of
NETs. FcRs also seem to be involved in NET formation during
infection of bacteria, as neutrophil exposure to ammoniated S.
aureus suggests that activation of FcRs promotes NET release.200 In
addition, neutrophil effector functions (e.g., degranulation and
NETosis) are also reported to be mediated by chemokine
receptors. Only CXCR1/2/4 have been identified to be implicated
in NET formation to date.200 For example, CXCR1 and CXCR2 have
been confirmed to be involved in mediating chemokines-
promoted NETosis in tumors.201 CXCR2 induces NET formation
by cooperating with PSGL-1, which signals the recruitment of
neutrophils, thereby further promoting deep vein thrombosis.202

Overlapping subsets of immune cells express sialic acid-binding
immunoglobulin-like lectins (Siglecs). Each Siglec binds to specific
endogenous glycosylated glycan to initiate signaling programs
and participate in cellular responses. Several Siglecs have been
reported to play a regulatory role in NET formation, especially
Siglec-9. Siglec-9 is considered as a neutrophil checkpoint and can

suppress NETosis in inflammation and cancer immune evasion.
Delivery of an artificial glycopeptide targeting Siglec-9 to the
surface of intact cells could suppress NET formation and induce
neutrophil apoptosis. A pair of receptors, Siglec-5 and Siglec-14,
are expressed on monocytes and neutrophils, as Siglec-5
promotes bacterial survival through impairing NET formation,
while Siglec-14 has opposing effects in the regulation of host
immunity.203,204

NETS IN HEALTH
The bulk of materials associated with NETs are derived from the
nucleus, resulting in a significant enrichment of core histones.205

Additionally, these materials contain elevated levels of cytosolic
proteins such as S100 proteins, MPO, and granule proteins (NE and
proteinase).144 The proteins contained within the reticular
structure of NETs serve as the foundation for the physiological
functions of NETs.144,206 NETs are integral components in the
preservation of homeostasis, as evidenced by their involvement in
host defense, immune regulation, immune thrombosis and wound
healing, thereby serving beneficial functions to a certain degree
(Fig. 4).207–209 Comprehending these physiological functions will
aid in the formulation of more holistic clinical treatment
strategies.210

Host defense
As a foundational element of innate immunity, the primary
function of NETs is to defend the host from pathogenic invasion
(Fig. 4a).20 NETs effectively combat infections by ensnaring,
immobilizing, and neutralizing a diverse array of pathogens,
encompassing fungi, Gram-positive and Gram-negative bacteria,
parasites and viruses.144,211 Neutrophils possess a distinctive
microbe-detection mechanism, which enables them to customize
their antimicrobial reactions towards pathogens based on
microbial size.212,213 The ineffectiveness of phagocytosis in
eliminating the large filamentous form of fungi highlights the
necessity of NETs in effectively controlling these pathogens,
particularly in individuals with MPO deficiency, leading to
recurrent fungal infections.214–216

Candida albicans, a significant pathogen in invasive candidiasis,
has been demonstrated to be effectively eliminated by calpro-
tectin (S100A8/A9) within NETs in vitro and in vivo.217,218 This
antimicrobial protein complex functions as a divalent metal ion
chelator, exhibiting strong efficacy against a range of fungal
pathogens such as Candida albicans, C. neoformans, and
Aspergillus spp.219 Upon interaction, calprotectin demonstrates
antifungal properties by sequestering Zn2+ and/or Mn2+, crucial
elements for the growth of these pathogens.197,220 Moreover,
NETs have the capability to alter the cell wall composition of
Candida albicans, resulting in the exposure of β-glucan and
increased detection by Dectin-1-positive immune cells.221 Asper-
gillus spp are widely distributed environmental fungi that emit
spores, which are consistently inhaled but effectively eliminated
by individuals with intact immune systems.222 As previously
stated, calprotectin serves as a crucial antifungal agent in
combating Aspergillus spp and has the ability to induce irreversible
zinc deprivation at elevated concentrations.214,223 In a clinical
investigation of chronic granulomatous disease patients under-
going gene therapy, the restored release of calprotectin is
essential for protecting against Aspergillus spp and managing
invasive pulmonary aspergillosis.224 NETs have also been observed
to influence host immunity to Aspergillus fumigatus by releasing
long PTX3, a pattern recognition receptor that triggers comple-
ment activation and aids in pathogen detection.225

The antibacterial properties of NETs continue to be a subject of
scholarly discussion, with the potential for NETs to exhibit varying
degrees of efficacy in the eradication of diverse bacterial strains.20

The morphological effects of NETs in bacterial infections represent
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a prominent and direct approach. NETs can alter the morphology
of bacteria by ensnaring them with the web-like structure.1,211,226

Imaging techniques utilizing flow chamber systems or intravital
microscopy effectively demonstrated the capture of E. coli by
accumulated NETs in hepatic sinusoids during sepsis.227 In the
absence of bactericidal elements, NETs capture pathogens without
completely eliminating them, as they may not disrupt the
structural integrity of bacterial cell walls or induce further
alterations in bacterial morphology.228–231 Histones, which are
rich in positively charged lysine and arginine residues, have been
shown to exhibit bactericidal activity at low concentrations.232,233

Likewise, NE eradicates bacteria through the degradation of
proteins located on the outer membrane of bacteria, while also
focusing on the virulence factors specific to colonic enterobac-
teria.234 MPO continues to be active on the extruded NETs,
producing ROS-like hypochlorous acid to kill bacteria.211,235

Additionally, NETs play a role in disrupting bacterial biofilms,
which can also contribute to alterations in bacterial morphol-
ogy.236,237 Interestingly, the environment in which NETs are
formed affects their ability to kill bacteria. NETs formed under
dynamic conditions trap more bacteria but kill them less
effectively compared to those formed under static conditions.228

The mechanisms by which NETs defend against viral pathogens
exhibit a range of diversity.176,238 First of all, the web-like structure

can trap and immobilize viral particles, preventing their spread
through electrostatic attraction.239 In addition to mechanically
trapping, NETs also possess the ability to attract viral envelopes
with negative charges, such as those found in influenza A
particles, HIV-1, and norovirus, through the presence of positively
charged amino acids. This process leads to the aggregation of
these viruses, ultimately aiding in the containment and eradica-
tion of the pathogens.239,240 Furthermore, antimicrobial proteins
such as MPO, cathelicidins, and α-defensin are attached to the
chromatin backbone of NETs.241,242 These proteins have demon-
strated antiviral activity against both enveloped and non-
enveloped viruses.124,239,243 Additionally, the activity of human
respiratory syncytial virus is also impeded by NETs, a phenomenon
that may be associated with the presence of serine proteases and
bactericidal permeability-increasing protein within NETs.244,245

A series of studies have shown that parasite infections can result
in significant neutrophil infiltration and the production of NETs,
although most parasites are typically captured but not entirely
eradicated.246 In vitro formation of NETs has been documented as
a mechanism capable of ensnaring E. histolytica; however, NETs do
not impede its proliferation, with additional studies indicating that
only a minor fraction of trophozoites are eradicated.247,248

Similarly, Strongyloides stercolaris and Brugia malayi can induce
neutrophils to release NETs, which may help trap larvae but does

Fig. 4 NETs in health. NETs play a crucial role in maintaining homeostasis. a NET function by capturing and immobilizing pathogens, relying
on specific proteins embedded within the NETs to modify the morphological structure of these pathogens, thereby neutralizing and
ultimately killing them. b NETs enhance neutrophil defense, promote macrophage polarization, induce pyroptosis, and facilitate pDC
differentiation, thereby aiding antiviral functions. They also support CD4+ T cell and B cell activation while potentially impairing NK cell
activity. c NETs promote immunothrombosis by activating factor XII, binding VWF, and triggering platelet activation via histones H3 and H4.
They also inactivate anticoagulants and facilitate activation of the extrinsic pathway, aiding in pathogen defense. d AggNETs promote
inflammation resolution and wound healing by degrading pro-inflammatory cytokines and sequestering NE to protect the extracellular matrix
from proteolysis. This figure was created with the assistance of Figdraw (www.figdraw.com)
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not lead to their death in vitro.249,250 NETs cannot kill Trypanosoma
cruzi, the cause of Chagas disease, but they can restrict its invasion
and replication.251 Overall, the defensive protective role of NETs in
parasitic infections remains poorly understood, potentially due to
limited availability of experimental models for
investigation.20,246,252

In this chapter, we focus on the reported host defense
mechanisms related with NETs. Further research and discussion
are needed to understand how NETs eliminate microbes. While
NETs play a crucial role in combating infections, their tendency to
trigger a systemic inflammatory response, referred to as the
“waterfall effect,” can negatively impact host survival, particularly
in viral infections.253–255 In cases of HBV-related acute-on-chronic
liver failure, elevated NET levels are associated with poor patient
outcomes.256 Similarly, excessive NET release in patients with
COVID-19 contributes to complications such as coagulopathy and
lung damage.127,257,258 These pathological effects are discussed in
detail in subsequent sections. Therefore, precise control over the
production and breakdown of NETs is imperative in order to
mitigate pathogenic inflammation.

Immune regulation
Recent studies suggest that while NETs are part of the innate
immune system, they also play a significant role in modulating the
functions of various immune cells (Fig. 4b).42,206,259 In light of the
crucial role of immune homeostasis, it is essential to comprehen-
sively investigate the interplay between NETs and both adaptive
and innate immune responses.260

Neutrophils exposed to isolated NETs activate various neutro-
phil functions in a concentration-dependent manner, according to
several studies.130,261,262 These functions include the induction of
granule exocytosis, generation of ROS and the NADPH oxidase
NOX2, formation of NOX2-dependent NETs, increased phagocy-
tosis, and eradication of microbial pathogens. Additionally, it has
been observed that the activation of neutrophils by NETs involves
pathways that entail the phosphorylation of p38 Akt/ERK1/2.
Collectively, NETs stimulate neutrophil effector function and
bolster antimicrobial defense. Moreover, NETs possess the
capacity to connect the adaptive and innate immune responses
through the stimulation of B-cell Activating Factor (BAFF) from
neutrophils.262–264

The plasticity of macrophages renders them essential in the
immune response to pathogens, tissue regeneration, and the
preservation of homeostasis.265 Studies have demonstrated that
the DNA component of NETs contributes to the activation and
polarization of pro-inflammatory macrophages via the TLR9/NF-κB
signaling pathway.266,267 In a separate study, it was observed that
the levels of iNOS, CD80, and CD86, markers associated with M1
macrophages, were markedly elevated following treatment with
NETs. Conversely, the expression of CD206, an M2 marker, was
significantly reduced.268 Additionally, NETs aid in the transfer of
antimicrobial peptides by macrophages, thereby augmenting their
antimicrobial capabilities.259 It is important to acknowledge that
NETs have the potential to induce caspase-1-dependent pyropto-
sis in macrophages via HMGB1.269 This interaction additionally
aids in combating extracellular pathogens.270 Upon exposure to
Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomo-
nas aeruginosa, it was observed that NET formation enhances
antimicrobial efficacy by promoting macrophage phagocytosis
and facilitating the transfer of neutrophil-specific antimicrobial
peptides to macrophages.270–272 These findings underscore the
importance of the crosstalk between NETs and macrophages in
achieving optimal bactericidal activity through NET formation.
NETs have a dual impact on the function of dendritic cells

(DCs).273 They attract DCs and stimulate them through the IgG Fc
fragment via the IIa receptor with low affinity (FCγII), resulting in
the generation of interferon-alpha (IFN-α) through TLR9.274

Specific granule proteins found in NETs, such as MPO, HMGB1,

and secretory leukocyte proteinase inhibitor (SLPI), stimulate
plasmacytoid DCs (pDCs) to produce antiviral factor.275 Further-
more, pDCs have the capacity to induce the differentiation of
naïve CD4+ T cells into Th17 and Th1 cells subsets.133,276 However,
it has been observed that NETs have the potential to impede the
differentiation and maturation of DCs in response to LPS
stimulation.277 Moreover, the treatment of immature DCs with
NE resulted in the generation and secretion of transforming
growth factor beta (TGF-β), which in turn facilitates the
differentiation of regulatory T cells (Tregs).278

Monocytes possess the capability to undergo differentiation
into either DCs (mo-DCs) or macrophages (mo-Macs), with the
balance between the mo-DC and mo-Mac fate being subject to
adjustable homeostasis.279,280 Furthermore, the incorporation of
NETs into monocytes treated with interleukin-4/granulocyte-
macrophage colony-stimulating factor (IL-4/GM-CSF) resulted in
the downregulation of IL-4 receptor on monocytes, hindering their
full differentiation into DCs while promoting their differentiation
into M2 macrophages.281 mo-DCs are a significant contributor to
the progression of pathogenic processes in chronic inflammation.
Consequently, NETs serve a crucial function in regulating immune
homeostasis.282–284

Natural killer (NK) cells, a significant subset of innate immune
cells, are known to have their function predominantly suppressed
by NETs.260 The addition of DNase I to degrade NETs in
postoperative immunotherapy for HCC has been shown to
enhance the infusion of NK cells and reduce the risk of HCC
recurrence, indicating a potential alleviation of the inhibitory
effects of NETs on NK cell activity.285 RNA-Seq analysis demon-
strated that NETs impede NK cell function via the interaction with
carcinoembryonic antigen-related cell adhesion molecule 1
(CEACAM1) during the host’s antiviral immune response.286

Furthermore, in a murine model where NET formation was
disrupted, a decrease in dNKs was observed.287

The T cell receptor serves as a crucial mechanism for NETs to
engage with T cells, leading to a reduction in T cell activation
threshold and enhancement of antigen-specific immune
responses.288 Research has shown that Toxoplasma gondii-
induced NETs enhance the recruitment of CD4+ T cells and the
secretion of TNF, IFN-γ, and IL-6, suggesting that the adaptive
immune response is partially enhanced by NETs.289 Notably, CD4+

T cells exposed to NETs demonstrate elevated levels of activation
markers, including CD69 and CD25. A comparable pattern of
activation marker expression is noted in CD8+ T cells subsequent
to exposure to NETs.259,290 Furthermore, NET-associated histones
have the capacity to induce the differentiation and cytokine
production of Th17 cells through a TLR2/MyD88/STAT3/RORγ-
dependent pathway.291 It is imperative for bolstering immunity
against fungal and bacterial infections, as well as enhancing
anticancer immunity.260 While another study concluded that Tregs
are modulated by NETs, which enhance mitochondrial oxidative
phosphorylation and support the differentiation of Tregs from
naïve CD4+ T cells through TLR4 signaling.39 NETs may also
enhance antiviral adaptive immunity by lowering the activation
threshold of T lymphocytes.242 In summary, NETs have been
observed to promote T cell activation, proliferation, and differ-
entiation, thereby modulating adaptive immune responses during
periods of necessity.
B cells, another important responder to adaptive immunity,

have been identified as associated with NETs, in addition to
macrophages, DCs, NK cells, and T cells.229,259,260 Upon encounter-
ing antigens, B cells undergo rapid proliferation, with the majority
of cells differentiating into plasma cells (effector B cells) and
generating antibodies. LL37-DNA complexes originating from
NETs have been found to possess the distinctive capability of
localizing to endosomal compartments within B cells and inducing
polyclonal B cell activation through TLR9, as well as selectively
amplifying self-reactive memory B cells that generate anti-LL37
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antibodies in response to antigens.292,293 In addition, citrullinated
histones are recognized as a classic antigen for B cell activation,
and the MAPK-p38 pathway represents an additional mechanism
through which NETs induce B cell activation.294,295 B cells play a
crucial role in mediating humoral immune responses, as their
activation is necessary for antigen presentation, antibody-
dependent cell-mediated cytotoxicity against tumors, as well as
antibacterial and antiviral activities.296–299 Hence, it is possible that
the beneficial effects of these functions on health conditions could
be further augmented following exposure to NETs.
NETs are essential in maintaining immune homeostasis, but

they also activate immune cells such as B cells, antigen-presenting
cells, and T cells, contributing to autoimmune diseases including
RA, ANCA associated vasculitis (AAV), SLE, and antiphospholipid
syndrome.109,300 In tumors, NETs create an immunosuppressive
environment that weakens the antitumor immune response of
macrophages, CD4+ T, and CD8+ T cells, thereby accelerating
cancer progression and metastasis.39,301,302 Notably, the impact of
NETs on immune cells varies between tumor and non-tumor
settings.260 Additional specific details will be provided in
subsequent sections.

Immunothrombosis
Researchers introduced the term immunothrombosis, prompting a
shift in contemporary research towards investigating its potential
protective role in the context of infection.13 To uphold home-
ostasis and bolster the host defense against infectious pathogens,
the innate immune system initiates local coagulation, leading to
microvascular thrombosis, a process that is dependent on
neutrophils and NETs (Fig. 4c).9 The development of thrombi is
initiated by the interaction of activated neutrophils and mono-
cytes infected with pathogens, as well as activated platelets and
coagulation factors. This process serves a protective role by
restricting, sequestering, and eliminating pathogens, and can
manifest in veins, arteries, and microvessels across various
anatomical levels.303,304

NETs contribute a cell specific mechanisms to potentiate
immunothrombosis.9–12 NETs can bind to and activate platelets,
forming a platform that boosts neutrophil elastase activity and
promotes coagulation.304 NE on NETs degrades and inactivates
Tissue factor pathway inhibitor (TFPI), with help from activated
platelets that aid in NET formation. Neutrophil serine proteases
facilitate the activation of coagulation by tissue factor, known as

Fig. 5 NETs in diseases. NETs are involved in various human diseases. NETs are central to the immune response against infectious agents, yet
their role can be linked to a double-edged sword due to their potential to exacerbate tissue damage under conditions of sustained
inflammation or persistent stimuli. NETs are implicated in a spectrum of nonpathogenic diseases, including sterile inflammation, autoimmune
disorders, metabolic dysregulation, thrombosis, pregnancy-related diseases, and tumors, when dysregulated. Under sterile conditions, various
stimuli, such as IL-8, immune complexes, and crystals, can facilitate the formation of NETs, leading to conditions like gouty arthritis. AggNETs
facilitate the resolution of sterile inflammation. NETs are also implicated in pancreatitis and I/R injuries such as brain and liver I/R. In
autoimmune disorders, beyond their pro-inflammatory function, NETs have emerged as potential autoantigens, contributing to the
production of autoantibodies. NETs contribute to the disease process of T1D, while further investigation is required for their involvement in
T2D. Circulating NET markers positively correlate with glycated HbA1c levels and the severity of diabetic complications. Additionally, NETs
promote the progression of MASLD, from steatosis to MASH-HCC. NETs are also implicated in both venous (DVT and pulmonary embolism)
and arterial thrombotic events (atherosclerosis, coronary artery disease, and ischemic stroke). Furthermore, NETs are associated with several
pregnancy-related diseases, such as pre-eclampsia, spontaneous abortions, and gestational diabetes, contributing to their pathogenesis. The
protumorigenic role of NETs in various cancers has been confirmed, although a bidirectional interplay between cancer cells and NETs is
proposed. This figure was created by Adobe Illustrator Artwork 16.0 (Adobe Systems, USA)
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the extrinsic pathway. This process allows platelet-neutrophil
conjugates to directly stimulate coagulation by increasing
intravascular tissue factor activity. Thrombomodulin may undergo
degradation via cleavage by NE and inactivation by neutrophil
oxidases in NETs. Factor XIIa can be formed during fibrin formation
when extracellular nucleosomes within NETs activate the contact
pathway of coagulation. Additionally, histone components in NETs
can induce thrombosis by activating platelets through TLR2 and
TLR4.13 Platelets directly interact with neutrophils in response to
bacterial products, inducing the formation of NETs through a
process known as NETosis.12 Additionally, the histone components
of NETs, specifically histones H3 and H4, have been found to
influence platelets by promoting their recruitment and
activation.305,306

Immunothrombosis has been proposed to fulfill a minimum of
four distinct physiological roles.13,303,306 Firstly, it aids in the
capture and entrapment of circulating pathogens, thereby
restricting their spread by confining them within the fibrin
network. As a second benefit, microthrombi resulting from
immunothrombosis in microvessels inhibit tissue invasion by
pathogens. Thirdly, the blood clots create a distinct space that
enhances the concentration of antimicrobial strategies and their
targets, thereby promoting pathogen eradication. Four, micro-
vascular buildup of fibrinogen or fibrin attracts more immune cells
to the infected or damaged tissue, enhancing pathogen recogni-
tion and immune response coordination.13 In conclusion, immu-
nothrombosis with NETs helps identify, contain, and eliminate
pathogens to protect the host without causing harm.303 Therefore,
it has been argued that universal use of anticoagulation in these
patients cannot be recommended.307

It is imperative to acknowledge that uncontrolled immuno-
thrombosis can lead to disseminated intravascular coagulation
(DIC), especially during sepsis, and increases the risk of thrombosis
and cardiovascular issues in individuals with chronic inflammatory
or infectious conditions.9,308 The protective phase of immuno-
thrombosis should be rigorously evaluated from a clinical
perspective.

Wound healing
Many studies view the role of NETs in wound healing negatively,
but there is this is a controversial finding.209 It has been
documented that aggregated NETs, which contain a diverse array
of enzymes, have the potential to act as inflammatory mediators
by degrading pro-inflammatory cytokines and chemokines,
thereby promoting inflammation resolution and wound heal-
ing.309–311 Furthermore, aggregated NETs (aggNETs) have the
ability to sequester NE and shield the extracellular matrix (ECM)
from NE-mediated proteolysis.309 Bicarbonate-induced aggre-
gated NETs have been observed to encapsulate necrotic regions
and wounds. It is evident that aggregated NETs fulfill distinct
functions in the context of wound healing compared to other
forms of NETs (Fig. 4d).312 Previous research, particularly in
diabetic patients, has primarily focused on the association
between impaired wound healing and elevated levels of NETs-
related proteins. Excessive or persistent NETs have been observed
to contribute to delayed healing of diabetic foot ulcers, a topic
that will be further detailed subsequently.313,314 In other words,
research on the intrinsic mechanisms of different types of NET
formation in wound healing is still in its early stage due to the
diverse nature of wound formation and healing processes, as well
as the various pathways that trigger NET formation.209

In conclusion, NETs are crucial for an antimicrobial defense
mechanism within the innate immune system, functioning both as
a physical barrier to impede the dissemination of pathogens and
inflammatory mediators, and as a means to eliminate microbes
through the action of extracellular DNA, citrullinated histones, and
enzymes.211,214,226,238 Furthermore, the inflammatory nature of
NETs serves to modulate the immune response and activate

additional immune cells.205,260,290 NETs exhibit a tendency to
aggregate at high neutrophil densities, degrade soluble inflam-
matory mediators through NET-associated serine proteases,
thereby facilitating the resolution of inflammation and tissue
regeneration.209,313 It is noteworthy that NETs serve a crucial
function in preserving host well-being and physiological
equilibrium.

NETS IN VARIOUS DISEASES
Infectious diseases
As elucidated previously, NETs unequivocally play an essential role
in orchestrating the immune response against infectious agents,
notably by helping neutrophils immobilize, capture, and kill
invading pathogens such as Gram-negative and Gram-positive
bacteria,3,4 virus,126,172,257 fungi,214,217,315 and parasites.316,317

Impaired NET function may promote pathogens’ escape from
the immune system and provide a niche for chronic infection.16–18

Nevertheless, akin to a double-edged sword, the sustained
presence of inflammation or persistent stimuli can precipitate
excessive NET formation, thereby exacerbating tissue damage in
instance of inappropriate inflammation (Fig. 5).
While NETs effectively ensnare pathogens, certain pathogens

have developed mechanisms to evade this process. Various
pathogens, encompassing a spectrum including V. cholerae,
Streptococcus, Staphylococcus genera, P. aeruginosa, N. gonor-
rhoeae, M. tuberculosis, N. brasiliensis, Plasmodium, Mycoplasma,
Leishmania, and Leptospira, produce both endogenous and
secreted endonucleases. These enzymes degrade the extracellular
DNA scaffold of NETs, thereby dismantling and circumventing the
entrapment.207,318–320 This evasion facilitated by endonuclease
promotes subsequent invasion and dissemination from primary
sites to distant organs and the circulation,319 which contributes to
the exacerbation of inflammatory pathological conditions, includ-
ing sepsis.
Sepsis represents a condition characterized by lethal dysfunc-

tion of multiple organs and is associated with a high rate of
morbidity and mortality.130,321 During the early stages of sepsis,
neutrophils are recruited from the blood to the infection site and
release NETs.208,322 Studies have elucidated that dysregulated NET
function during the early stages of infection contributes to the
persistent systemic inflammation that initiates the development of
sepsis.16,130 In contrast, as sepsis progresses, excess NETs damage
tissue, increase vascular permeability and promote organ fail-
ure.16,93,322,323 Circulatory NETs in the bloodstream were signifi-
cantly elevated and NET markers were also increased in patients
with sepsis.324–327 A growing body of evidence reveals that in
sepsis and acute injury, NET-bound histones are cytotoxic because
of their ability to compromise cell membrane integrity.328,329

Meanwhile, other NET proteins, such as defensins and NE can
disrupt cell junctions.20,317 In murine models of sepsis, a study
observed marked platelet aggregation, thrombin activation, and
fibrin clot formation within NETs in vivo.330 Aggumated accumu-
lated NETs contribute to the sustained hyper-immunothrombosis
in sepsis, which leads to lethal DIC complications in
patients.131,303,331

NETs are regarded as the main players in antiviral immunity.15

Neutrophils and NETs have been reported to have protective
effects in the early stage of viral hepatitis.332,333 A study indicated
that NET release was decreased in patients with chronic HBV
infection, and correlated negatively with hepatitis B surface Ag,
hepatitis B E Ag, and hepatitis B core Ab levels.333 Nevertheless,
HBV C protein and HBV E protein might inhibit the release of NETs
by decreasing ROS production and autophagy.333 This suggests
that impaired NET function may promote viral escape from the
immune system and provide a niche for chronic hepatic virus
infection. However, in HBV-related acute chronic liver failure (ALF),
circulating neutrophils display a significantly heightened
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propensity to form NETs, which is closely associated with adverse
patient outcomes.256,334 Excessive generation of NETs is widely
acknowledged as a mediator of further pathophysiological
abnormalities following SARS-CoV-2 infection.335–337 Elevated
NET release has been documented in numerous patients with
COVID-19, contributing to detrimental coagulopathy, immuno-
thrombosis, and pulmonary endothelium damage within the
alveoli.257,335,338 Inhibition of NETs in patients with COVID-19 has
been shown to mitigate thrombotic tissue damage associated
with COVID-19-related acute respiratory distress syndrome (ARDS)
and mortality.338–340 Moreover, NET-derived histones have been
identified in bronchoalveolar lavage fluid from patients with
ARDS,340 underscoring the pivotal pathogenical role of NETs in
lung injury.
In the context of infectious diseases, NETs exhibit dual roles.

During the initial phases of infection, their normal function aids in
pathogen clearance and prevents the transition of inflammation
into a chronic state. However, in conditions such as sepsis and
acute injury, NETs assume a detrimental role, compromising cell
membrane integrity, exerting cytotoxic effects on epithelial and
endothelial cells, and contributing to immunothrombosis forma-
tion.303,329,341 NET-mediated damage may exacerbate rather than
constrain certain infections during chronic inflammation. Conse-
quently, strategies aimed at optimal NET inhibition at pertinent
disease stage represent potential strategies for infection
management.

Sterile inflammation
In contrast to pathogen-targeted mechanisms, sterile-associated
NETs may entail heightened deleterious effects.20,128 Under sterile
conditions, NET formation can be facilitated by various stimuli
including but not limited to IL-8,22 immune complexes,23

crystals,24 or DAMPs, such as HMGB1.25 The deleterious impact
of NETs on tissues manifests through direct cytotoxicity towards
epithelial and endothelial cells, thereby potentiating tissue
inflammatory cascades.342,343 Additionally, the influence of NETs
extends to the modulation of inflammatory cytokines either
through direct or indirect impact on diverse immune cell
populations.
In sterile crystal-mediated inflammation, microcrystals including

monosodium urate (MSU), calcium pyrophosphate dihydrate,
calcium carbonate, calcium phosphate, calcium oxalate, and
cholesterol can stimulate neutrophils to release NETs.310,344

Crystals of MSU monihydrate in joints and soft tissues elicit an
acute inflammatory condition commonly known as gouty
arthritis.345 Within the joint, MSU crystals instigate the release of
inflammatory mediators, orchestrating the recruitment of neu-
trophils and subsequent NET formation.167,346,347 Infiltrated NETs
contribute to the acute, profoundly painful, and tissue-damaging
inflammation observed within the joints.344 NET formation in MSU
crystal-induced arthritis is influenced by diverse factors, including
the presence of inflammatory cytokines such as IL-1β.348

Neutrophils demonstrate increased release of NETs in response
to synovial fluid from patients with gout, albeit partially abrogated
by the IL-1β antagonist.349 Conversely, studies have unveiled that
the excessive accumulation of aggNETs facilitates the resolution of
gouty inflammation by encapsulating MSU crystals, degrading
cytokines and chemokines, and inhibiting neutrophil recruitment
and activation.310,350,351 These findings highlight the potential role
of aggNETs as a mechanism promoting the spontaneous
resolution of gout, thereby presenting novel therapeutic avenues.
However, the precise underlying mechanisms are not fully
understood.
Within the milieu of atherosclerosis (AS), circulating cholesterol

form monohydrate cholesterol crystals, thereby fostering the
formation of atherosclerotic lesions.352,353 These cholesterol
crystals serve as potent inducers of NET formation, and in concert
with cholesterol crystals, NET augment the release of cytokines

released from macrophages via the IL-1/IL-17 and NF-κB signaling
pathways.24 NETs have been discerned within the luminal regions
of murine and human atherosclerotic lesions, as well as arterial
thrombi, implying the potential NET formation across all stages of
AS progression.354–358 Notably, within an atherosclerosis mouse
model deficient in NE and proteinase 3 (PR3), NETs fail to
generate, consequently exhibiting diminished plaque size.24,359

Collectively, NETs-derived extracellular components exhibit cyto-
toxic and pro-inflammatory attributes, culminating in cellular
malfunction and tissue injury, thereby suggesting a nexus
between lipid metabolism, inflammatory immunity, and athero-
sclerosis.360 In patients with suspected or established coronary
artery disease, heightened levels of dsDNA and MPO-DNA
complexes in plasma demonstrate a positive correlation with
both the severity and quantity of atherosclerotic vessels.361,362

Consequently, strategies aimed at inhibiting NET release or the
dissolution of NETs may present a promising therapeutic avenue
in the context of NET-mediated AS and thrombosis.
In pancreatitis, studies substantiated that bicarbonate ions

alongside calcium carbonate crystals can elicit the formation of
aggNETs within the ductal tree via a PAD4-dependent signaling
pathway.344,363 Besides their implication in the inflammatory insult
to the pancreas, the presence of aggNETs within pancreatic ducts
can precipitate catheter obstruction and foster the onset and
progression of severe acute pancreatitis (SAP).363 Histological
analyses of tissue specimens and pancreatic juice samples
obtained from patients with pancreatitis have revealed the
presence of aggNETs.363 A study suggests a fundamental role of
NETs in gallstone formation, with inhibition of NET formation
demonstrating efficacy in inhibiting gallstone development
in vivo.364 Administration of DNase I to mouse models resulted
in a marked reduction in neutrophil infiltration and tissue damage
within the pancreas.365 Cumulatively, NETs exacerbate biliopan-
creatic duct obstruction and exacerbate inflammation, culminat-
ing in the manifestation of SAP. Furthermore, NETs contribute to
multi-organ injury, infected pancreatic necrosis, sepsis, and
thrombotic events associated with SAP.365,366

The involvement of NETs in ischemia/reperfusion (I/R) injury has
generated recent attention. The reperfusion subsequent to abrupt
blood flow restoration frequently triggers cerebral IR injury
following an episode of cerebral ischemia.367 Neutrophils are
prompted to release NETs in response to various stimuli, including
platelet activation and the presence of IL-8, DAMPs, and TNF-α
subsequent to ischemic stroke.368 The accumulation of NETs
exacerbates inflammatory processes, thrombus formation, and
neuron apoptosis.369,370 Constituents of NETs, such as MPO,
histones, and other enzymes contribute to the leakage of blood-
brain barrier. Furthermore, in individuals afflicted with ischemia-
induced Alzheimer’s disease, heightened levels of amyloid-β (Aβ)
precipitate platelet activation, leading to release of HMGB1 and
subsequent NET formation, exacerbating disease progres-
sion.371,372 Notably, inhibition of NETs has been confirmed to
facilitate neovascularization,373,374 indicating a potential thera-
peutic avenue in mitigating ischemic injury. The pro-inflammatory
function of NETs has also been substantiated in liver I/R injury,
exacerbating the inflammatory response and liver injury subse-
quent to I/R.100,375,376 DAMPs emanating from stressed hepato-
cytes, such as HMGB1 and IL-33 released from liver sinusoidal
endothelial cells, serve as pivotal instigators for neutrophil
infiltration and subsequent NET formation.375,377,378 Moreover,
membrane-nonpermeable superoxide generated during I/R impli-
cated TLR-4 signaling pathway activation, which subsequently
instigated NOX and subsequent NET formation.379 Remarkably,
interventions such as DNase treatment or inhibition of PAD4 have
demonstrated considerable efficacy in mitigating liver inflamma-
tion in liver I/R.377

The similarity of NETs in infectious diseases and sterile
inflammation lies in their dual role of both protecting and causing
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harm. In infectious diseases, NETs help clear pathogens and
prevent chronic inflammation but can also cause cytotoxicity and
contribute to immunothrombosis in conditions like sepsis.
Similarly, in sterile inflammation, NETs, triggered by stimuli such
as IL-8 and DAMPs, can cause direct cytotoxic effects on epithelial
and endothelial cells, exacerbating tissue inflammation. In both
scenarios, NETs can have beneficial and harmful effects on tissues
and overall health.

Autoimmune disorders
Accumulating evidence from in vitro, in vivo and clinical
diagnostics suggests significant involvement of NETs in the
pathogenesis of various autoimmune disorders, including but
not limited to RA, AAV, SLE, and antiphospholipid syndrome (Fig.
5). NETs have emerged as potential disruptors of self-tolerance,
serving as reservoirs of autoantigens that contribute to the
production of autoantibodies characteristic of autoimmune
disorders.380,381 Additionally, components of NETs are implicated
in exacerbating the inflammatory milieu by facilitating comple-
ment activation and activaion of other specific immune cells, such
as B cells and antigen-presenting cells, thus perpetuating the
autoimmune responses.292,382–385

RA represents as a chronic systemic disease characterized by
progressive joint inflammation and variable extra-articular mani-
festations.386 Central to its pathology are the anti-citrullinated
protein antibodies (ACPAs), which exhibit high specificity for RA
and can instigate the formation of pathogenic immune complexes
within the affected joints.387,388 Neutrophils are abundant in the
inflamed joints of patients with RA, displaying an augmented
propensity for spontaneous NET formation.389–392 Moreover, this
propensity for NET generation escalates upon stimulation with RA
synovial fluid and ACPA-positive RA serum.389,392 Elevated levels of
MPO-DNA complexes and cell-free nucleosome are observed in
the serum of patients with RA,393,394 with their concentrations
correlating with clinical parameters and ACPA titers in patient
sera.389,393,395,396 Accumulated NETs release novel autoantigens,
including citrullinated histones, which may further fuel the
autoimmune response in RA.389,397 ACPAs have been reported
to recognize autoantigens presented on NETs, especially the
citrullinated histones.398–400 Additionally, NETs have been impli-
cated in disrupting the cartilage structure and facilitating its
citrullination, thereby exacerbating synovial inflammation.401

Overall, NETs play a central inflammatory role in RA and represent
a significant source of autoantigens capable of eliciting pro-
inflammatory responses within various organs, including the lungs
and synovium, in patients with RA.129,402,403 Furthermore, NETs
and NET-derived products hold promise as biomarkers for RA
disease activity.
AAV represents a group of disorders characterized by inflam-

mation and destruction of small and medium vessels, with
autoantibodies against MPO and PRTN3 as key distinguishing
markers.404,405 PRTN3 is expressed on the membrane of resting
neutrophils, whereas MPO is stored within the granules, both of
which are notably enriched within the NET structure.300,406,407

Analogous to RA, neutrophils in patients with AAV exhibit a
heightened capacity for NET synthesis.408,409 In turn, NETs may be
a key origin of ANCA-autoantigens.408,410 Some studies confirm
that release of NETs may be triggered by a response to ANCA
stimulation.411,412 Beyond their antigenic role, NETs exert influ-
ence on AAV progression by directly inflicting vessel damage
through the cytotoxic release of NET-associated histone.413

Importantly, NET structures have been identified within various
tissues from patients with AAV, promoting inflammation in multi-
organs.414,415 Elevated levels of MPO have been detected in
patients with AAV compared to those in remission.416,417 In mouse
model with AAV, inhibiting PAD4-mediated NET formation has
shown promise in reducing disease severity, indicating a potential
therapeutic avenue.417 Thus, NETs may serve as novel biomarkers

for disease diagnosis and represent promising targets for future
therapeutics of AAV.
SLE is a systemic autoimmune disease characterized by

pervasive inflammation across many organs.418 NETs represent a
central origin of SLE autoantigens.419,420 Neutrophils sourced from
healthy individuals exhibit a heightened propensity for NET
formation when exposed to serum or plasma derived from
patients with SLE, SLE–SLE-associated immune complexes and
autoantibodies reciprocally fostering NET generation.23,421 The
compromised clearance of NETs contributes substantively to SLE
pathogenesis by extending the exposure duration of autoantigens
and elevating levels of SLE-associated autoantibodies.420,422,423

Non-degraded NETs precipitate activation of the complement
system, thus perpetuating inflammatory cascades.424 Within the
SLE milieu, LDNs demonstrate augmented presence in circulation,
with their levels correlating with distinct disease manifestations
such as vasculopathy, skin disease, nephritis, and cardiopa-
thy.160,382,425,426 Notably, these specific neutrophils exhibit
increased spontaneous NET formation.427 Neutrophils from
patients with SLE, particularly LDNs, display enhanced ex vivo
NET formation, characterized by elevated levels of modified
autoantigens and immunostimulatory molecules within the NET
structure compared to those from healthy individuals.23,421 LDNs
have been implicated in directly compromising endothelial cell
integrity through the NET product MMP-9.428

NETs have also been implicated in other autoimmune disorders
including but not limited to antiphospholipid syndrome,429–432

idiopathic inflammatory myopathies,433–435 multiple sclero-
sis,436,437 psoriasis,438,439 and inflammatory bowel diseases.440,441

Diverse autoantibodies have been shown to directly induce NET
formation, with resultant NETs reciprocally promoting the
production of autoantibodies. On one hand, NETs exhibit the
capacity to directly inflict tissue damage, while on the other hand,
they serve to catalyze the initiation and perpetuation of systemic
autoimmune disorders, orchestrating intricate inflammatory
responses by direct or indirect interactions with other immune
cells. Collectively, escalated NET formation coupled with
decreased NET degradation contribute to heightened levels of
these structures and augmented exposure to modified autoanti-
gens, thereby exacerbating tissue damage in these autoimmune
conditions. Clinical interventions ought to ideally focus on
selectively modulating dysregulated NET activity while keeping
other essential antimicrobial functions.

Metabolic dysregulation
Metabolic diseases such as diabetes mellitus (DM) and its
associated complications pose a significant threat to public health,
leading to diminished health and quality of life.442,443 The
prevalence of DM is steadily increasing in both developing and
developed countries, reaching epidemic proportions.444–446 Type
1 diabetes (T1D) necessitates insulin and involves the destruction
of a significant number of insulin-producing pancreatic β cells,
stemming from a chronic and progressive autoimmune dysfunc-
tion.446 Type 2 diabetes (T2D) represents a metabolic syndrome
marked by reduced insulin sensitivity and impaired insulin
production.447 The expression of PAD4 is elevated in neutrophils
of patients with both T1D and T2D,448 and these neutrophils
exhibit increased susceptibility to NETosis when stimulated
in vivo.449 NET formation has been observed in the murine model
with T1D,450 and clinical data similarly showed that NETs are
elevated in patients with T1D.451–453 A recent study demonstrated
a significant increase in circulating NE and PR3 levels in patients
with T1D, strongly correlated with β cell autoimmunity, indicating
a potential role of NETs in the onset and pathogenesis of the
disease.451 Increased formation of NETs is associated with gut
permeability in individuals with T1D, but not T2D.454 Further, NETs
caused by gut leakage can trigger autoimmune response in non-
obese diabetic mice.455 Improving gut barrier function via
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intestinal NETs degradation can prevent T1D in node mice.456

Early inhibition of NE finally resulted in decreased incidence of
T1D in murine model.457 NETs can stimulate cytokine production
and promote the generation of IFNγ-producing T cells in samples
from T1D patients.276 Inhibition NET formation prevents the onset
of diabetes in non-obese diabetic mice.458 Furthermore, NET
inhibition alleviates vascular dysfunction in T1D mice.459 Based on
these results, we posit that akin to autoimmune conditions
discussed above, NET might similarly assume an antigenic
function in the etiology of T1D, notably triggering the auto-
immune disorders in the pancreas. Moreover, NETs may further
contribute to systemic inflammation and complications in the
progression of T1D.
A diverse array of circulating NET markers, including cell-free

DNA, nucleosome DNA, and neutrophil expression of PAD4, have
been reported to exhibit elevation in the circulation of individuals
with T2D.449,460,461 These circulating NET markers have been
observed to positively correlate with the level of glycated
hemoglobin A1c.462 Nevertheless, the impact of hyperglycemia
on NET formation remains controversial. Neutrophils isolated from
diabetic patients have demonstrated spontaneous NET production
even in the absence of exogenous stimuli, yet they exhibited
impaired NET generation when stimulated with PMA or LPS.463,464

Furthermore, evidence suggests that neutrophils isolated from the
blood of patients with diabetic foot ulcers exhibit increased
spontaneous NET formation but impaired inducible NET genera-
tion.465 In vitro experiments have indicated that oxidative stress in
a high-glucose microenvironment promotes NET formation,466

whereas contrasting results have been reported, showing
impaired NET production in response to high glucose conditions
in vitro.464 In vivo experiments present a conflicting perspective
on the role of NETs in the pathogenesis of T2D. NETs are
acknowledged to play pivotal roles in fostering diabetic
ulcers,181,449,467,468 retinopathy,469,470 and nephropathy.471 Patient
data suggest that severe obesity is associated with increased
generation of plasmatic NETs, potentially influencing systemic
inflammatory status.472 However, in a murine model of obesity,
inhibition of PAD4 activity leads to NET reduction and attenuation
of adipose tissue inflammation, albeit failing to prevent dia-
betes.473 Although the precise role of NETs in the initiation of T2D
remains unclear, a clear positive correlation between NETs and the
development of poorly controlled diabetes has been established.
Metabolic-dysfunction-associated steatotic liver disease

(MASLD) is a burgeoning global health challenge,474 ranging from
simple steatosis to metabolic-dysfunction-associated steatohepa-
titis (MASH), liver cirrhosis, and even HCC.475,476 Neutrophil
infiltration has long been observed in human MASLD.477

Concurrently, plasma levels of NET markers escalate in patients
with MASLD,66 with a gradual increase noted with disease
progression.478 Experimental induction of steatosis in murine
models correlates with excessive neutrophil infiltration in the
liver.479 Free fatty acids (FFAs), such as linoleic acid and palmitic
acid are considered to be stimulants for augmented NET
formation in MASLD.480,481 Furthermore, cholesterol crystals,
prevalent in MASLD livers,482 serve as potent inducer of NETs.24

However, inhibition of NETs through DNAse I or utilization of PAD4
knockout mice dose not impede FFA accumulation, implying that
NET formation is a consequence of lipid accumulation rather than
a causative factor of steatosis.480 MASH is a progressive form of
MASLD that slowly progresses toward cirrhosis and finally leads to
the development of HCC.483,484 Our research unveils NET
formation in NASH, highlighting elevated serum levels of MPO-
DNA in preoperative NASH patients.480 Furthermore, increased
intrahepatic platelet accumulation correlates with NET formation
in liver biopsies of patients with MASLD.485 Studies underscore the
cytotoxic effects of NETs on endothelial cells,66,486,487 fostering a
procoagulant and pro-inflammatory phenotype,488,489 thereby
accentuating the hypercoagulable state in patients with MASH.

Moreover, NETs contribute to the establishment of a protumori-
genic inflammatory environment, promoting the progression of
HCC in MASH.480 Recent study suggests that NETs play a crucial
role in bridging innate and adaptive immunity by promoting Treg
differentiation through metabolic reprogramming of naïve CD4+

T cells in MASH,39 thereby fostering an immunosuppressive
environment for MASH-HCC initiation. In vivo blockade of NETs
using PAD4-/- mice or DNase I treatment attenuates the Treg
activity and augments cytotoxic CD4+ and CD8+ T-cell function,
thus mitigating MASH-HCC initiation and development. Collec-
tively, NET formation emerges as a pivotal factor driving the
transition from steatosis to NASH, perpetuating chronic inflamma-
tion, and fostering HCC progression by shaping an immunosup-
pressive microenvironment conducive to aberrant hepatocyte
survival.

Thrombosis
Thrombosis, characterized by the obstruction of normal blood
flow due to blood clots in arteries or veins, precipitates various
pathologies, including cerebral thrombosis, atherosclerosis, cor-
onary thrombosis, pulmonary embolism, and deep venous
thromboembolism (DVT).490,491 Over the past few years, the role
of NETs has revolutionized our understanding of thrombosis, with
studies elucidating their role in both venous and arterial
thrombotic events.308,492 As discussed above, NETs facilitate
thrombus formation by acting as a scaffold that triggers platelet
activation and coagulation.20 Nevertheless, dysregulation or
excessive NET generation precipitates pathological thrombotic
processes (Fig. 5).
Recent accumulating evidence from human thrombi under-

scores the presence of NETs within arterial thrombi across various
thrombotic pathologies, including atherosclerosis,24,493–495 coron-
ary artery disease,362,496–499 and ischemic stroke.500–502 In athero-
sclerosis, NETs were observed in both human and murine
atherosclerotic lesions,24,354,495,503 with cholesterol crystals identi-
fied as potential inducers of NET formation. Consequently, NETs
contribute to increased expression of pro-inflammatory cytokines,
fostering further immune cell recruitment to atherosclerotic
plaques and exacerbating atherosclerosis.24 Inhibiting NET forma-
tion has shown promise in reducing atherosclerosis burden in
apoliporotein-E deficient mice.504 Although recent histological
investigations reveal abundant NETs in coronary thrombi from
patients with acute myocardial infarction,71,356,505 the extent to
which NET formation contributes to coronary thrombus formation
remains unclear. Research suggests that NETs are prevalent in
fresh and lytic but not organized coronary thrombi, implicating
their role in thrombus propagation and stabilization, with
potential degradation occurring in the older thrombi.505 Clinical
relevance is underscored by findings linking coronary thrombus
NET burden and infarct size, as well as ST-segment resolution,
reflecting the potential influence of NETs on myocardial infarction
outcomes.71 Evidence further suggests localized NET formation in
acute coronary syndrome, supported by elevated NETs in the
blood from lesion sites compared to other sites.496 Furthermore, a
multicenter European study showed that neutrophils and NETs are
recognized features of thrombi retrieved from patients with stent
thrombosis post-percutaneous coronary intervention.356 Similarly,
in ischemic stroke, abundant NETs are observed in occluding
thrombi,506,507 with plasma NET markers correlating with stroke
severity and outcomes.500,508,509 However, cerebral thrombi can
originate from various sources depending on stroke etiology, with
studies indicating the differential abundance of H3Cit, a marker of
NETs, in cerebral thrombi of cardioembolic origin compared to
other etiologies.506 This indicates the possibility of NETs migrating
from thrombi in other locations to the brain, thereby exacerbating
inflammation in thrombotic processes.
Venous thromboembolism encompasses DVT, pulmonary

embolism, and clot formation in large veins.510,511 Animal models
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have demonstrated the presence of NETs within venous
thrombi.512,513 Studies have indicated elevated levels of circulat-
ing extracellular DNA and MPO in patients with DVT compared to
DVT-negative individuals.514 Moreover, circulating NET compo-
nents have been observed to rise alongside venous thrombus
development in patients.515,516 The identification of citrullinated
histones in the inferior vena cava of DVT mice further support this
conclusion.513,517 NET involvement in thrombosis is supported by
the finding that treatment with DNase and PAD4 inhibitors blocks
DVT in mice.513,518 Venous thrombi may exhibit a lower proportion
of NETs compared to arterial thrombi, as evidenced by a study
comparing patients with coronary artery thrombi and those with
deep vein thrombi.71 NET structures are predominantly localized
in the organizing regions of venous thrombi rather than the
organized areas,519 suggesting a potential role for NETs in venous
thrombus maturation rather than sustained generation. Infections
can accelerate neutrophil recruitment, leading to heightened
involvement of NETs in venous thrombosis. Staphylococcal
infection in mice suffering from inferior vena cava ligation has
shown larger thrombi containing increased neutrophils and
NETs.513 In thrombotic events triggered by infection, such as
those occurring in sepsis, the presence of NETs within lung
thrombi can be observed.110 However, clinical data regarding
NETs in venous thromboembolism are relatively limited, and the
precise contribution of NETs to venous thrombosis remains to be
further elucidated.

Pregnancy-related diseases
Elevated white blood cell counts during pregnancy have been
documented,520,521 with several studies indicating a mild neu-
trophilia associated with pregnancy.520,522 Within the context of
normal pregnancy, neutrophils exhibit heightened susceptibility
to activation with an augmented capacity for phagocytosis in
comparison to non-pregnant women.522,523 Nevertheless, the
precise mechanism and underlying rationale monitoring the
heightened activity of peripheral blood neutrophils during
pregnancy remain unknown.
Pre-eclampsia (PE), whereby activation of leukocytes such as

neutrophils is enhanced, is a paramount contributor to maternal
mortality on a global scale.524,525 Evidence suggests a detrimental
role of NETs in the pathogenesis of PE.526,527 Histological analysis
of placental tissue from patients with PE reveals the presence of
NETs in close proximity with trophoblasts.342,527,528 An elevation of
NET levels within the placental inter-villous space of PE
pregnancies has also been observed.529,530 Concurrently, elevated
levels of maternal cell-free DNA (cfDNA), a hallmark of PE531,532 are
observed, correlating with disease severity.533 NETs are observed
in PE as they are the main origin ofconnected to the presence of
cfDNA in maternal plasma.526,528,534 In vitro experiments demon-
strate that placenta fragments stimulate the formation of NETs by
neutrophils.534 Meanwhile, the release of particles of syncytio-
trophoblast and endothelial cell origin induce NET release.535

Additionally, DNA released from damaged placental cells further
augments NET formation, leading to vascular endothelial cell
damage through a positive feedback loop, thereby exacerbating
pregnancy complications, enhancing blood coagulation, and
increasing the risk of thrombotic events.526,535 Furthermore,
placental NETs are hypothesized to provoke autoimmune reaction
in PE.527,534 However, the precise role of NETs in initiating
pathological changes remains unclear, warranting further inves-
tigations into whether NETs are triggered by placental deficiency
or its consequential outcomes.
Gestational diabetes mellitus (GDM) represents a transient sate

of glucose intolerance occurring during pregnancy.536,537 Preg-
nancies complicated by GDM face an elevated risk of developing
PE.538 Notably, circulatory neutrophils in GDM cases demonstrate
an exaggerated pro-NETosis phenotype, along with heightened
placental infiltration evidenced by the expression of neutrophil

elastase (NE).539 Neutrophils in GDM exhibit heightened activa-
tion, leading to spontaneous NET generation in vitro.540 The
administration of infliximab, a clinically utilized TNF-α antagonist,
notably attenuates the pro-NETotic effect of GDM sera.540

Additionally, degranulated neutrophil release NE, which perturbs
trophoblast physiology and glucose metabolism via modulation of
key signal transduction components.539 A study elucidates
hypoadiponectinemia as a trigger for NET formation, which
promotes trophoblast apoptosis through ROS-dependent mito-
chondrial pathway activation mediated by ERK1/2 signaling.541

Furthermore, induction of GDM in NETs-deficient PAD4−/− mice
leads to a significant increase in placental weight compared to
wild-type mice,542 indicating a potential contribution of altered
NET activity to the pathogenesis of PE in GDM.
Moreover, pregnancies frequently encounter complications

such as spontaneous abortions, often associated with heightened
stress or inflammatory condition.543,544 A study investigated a
cohort of 268 women, observing a correlation between sponta-
neous abortions and elevated fetal cfDNA levels in maternal
blood.545 Dysregulated LDNs have been implicated in early
spontaneous abortions, exhibiting increased in vitro NET forma-
tion.546 Analyses revealed the presence of NETs within placental
tissue from miscarried women, accompanied by elevated MPO
and pentraxin 3 levels.547 Investigation into NETs associated with
spontaneous abortion indicated heightened chorioamniotic NET
levels in cases of chorioamnionitis and preterm delivery.548

Interestingly, PAD4-/- mice displayed significantly reduced inflam-
matory and thrombotic response, leading to a marked decrease in
pregnancy losses.549 The inhibition of NETs emerges as a
promising therapeutic avenue for disorders associated with
impaired placentation.

Tumors
NET components have been directly involved in modifying cancer
biology, with emerging evidence emphasizing the protumorigenic
role of NETs in various cancers.26–28 NETs have even been reported
to favor tumor cell proliferation,29 metastasis,30,31,550,551 immuno-
suppression,33,34 angiogenesis, and cancer-associated thrombo-
sis.35 Moreover, NETs can capture circulating tumor cells (CTCs)
and promote their colonization.36 Conversely, NETs can also
exhibit anti-inflammatory and anti-tumorigenic functions.552 They
have the ability to mitigate inflammation by degrading cytokines
and chemokines, as well as coordinate the resolution of sterile
cancer-related inflammation.310 Thus, there may exist a bidirec-
tional interplay between cancer cells and NETs (Fig. 5). Conversely,
the presence of cancer cells can influence neutrophil activity,
maturation, and cell fate (Fig. 6). Tumor cells have the capability to
prime neutrophils to form NETs.128 IL-8/CXCL8 produced by cancer
cells and several cancer-related stimuli (such as CXCR1/CXCR2
agonists, G-CSF, TGF-β, tumor-derived proteases, and tumor
exosomes), can induce the release of NETs from both human
and murine neutrophils.201,553–556 Besides cancer cell-derived
factors, cancer-associated fibroblasts have also been identified
as drivers of suicidal NETosis.557 Moreover, hypoxia in the TME
may also induce NETs, as HIF-1 plays a critical role in NETosis and
bacteria-killing activity.558

Tumor immune surveillance. Evidence indicates that NETs con-
tribute to the creation of a suppressive inflammatory microenvir-
onment at primary or secondary sites, thereby promoting the
seeding, survival, proliferation and metastasis of primary tumor
cells.33,559,560 CD8+ T cells, key effectors in the anti-cancer immune
response,561,562 interact with NETs in the TME, as confirmed by the
negative correlation between NET density in the serum of patients
with cancer and CD8+ T cells in the TME.560 Furthermore,
neutrophils isolated from patients undergoing resection of color-
ectal liver metastases were found to be predisposed to forming
NETs, resulting in exhaustion and dysfunction of human CD4+ and
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CD8+ T cells,33 accompanied by increased expression of exhaus-
tion markers PD-1, Tim-3, and LAG-3, along with diminished
production of effector cytokines IL-2, IFN-y, and TNF-a.33 Mechan-
istic studies revealed that PD-L1 is embedded within the NET
structure, suggesting that targeting PD-L1-containing NETs may
prevent tumor growth, offering a novel strategy to enhance
immune surveillance in the TME. NK cells, key cells in immune
responses,563 are affected by NETs, as demonstrated by an in vitro
study showing that NETs can inhibit NK cell migration and
motility.201 In a TME abundant in NETs, the therapeutic efficacy of
NK cells is impaired,285 possibly due to MMP9 in NETs contributing
to NK cell dysfunction and tumor invasion.564 Inhibition of NETs in
a murine model of HCC enhanced anti-tumor immunity mediated
by NK cells.
Evidence has also shown that CXCR1 and CXCR2 agonists

produced by tumor cells promote NET formation, which act as a
protective shield against cytotoxicity mediated by NK cells and
T cells.201,565 Additionally, studies have validated that NETs protect
tumor cells by creating a physical barrier at the tumor/stroma
interface,566,567 thus preventing the infiltration of CD8+ T cells into
tumor cell areas. Moreover, NETs contribute to an immune
suppressive microenvironment for tumor survival by interacting
with Tregs. Our recent finding indicates that accumulated NETs
can cause extensive hepatocyte damage and establish an
immunosuppressive microenvironment for premalignant hepato-
cytes and cancer cell survival by promoting Treg activity,39 thereby
facilitating the initiation and development of HCC.480 Inhibiting
NETs may reduce the number and suppressive function of Treg
and enhance the cytotoxicity of effector CD4+ and CD8+ T cells,

thus preventing tumor progression. Moreover, inhibiting NET
formation may sensitize cancer cells to immune checkpoint
blockade.568 In summary, NETs may contribute to the suppressive
TME through: 1) Directly affecting the killing function of NK cells
and cyctoxic T cells. 2) Forming a shield to protect tumor cells
from effector cells. 3) Promoting Treg activity to inhibit the
function of effector cells killing abnormal cells. Targeting NET
function may reprogram the impaired immune surveillance in the
TME, thereby hindering tumor initiation and progression.

Tumor proliferation. Elevated levels of plasma biomarkers of NETs
such as cfDNA, NE and citH3, have been observed in various
cancers, including but not limited to pancreatic cancer,512,568–570

gastric cancer,89,571,572 and breast cancer.42,83 In most reports,
NETs have been linked to a protumorigenic role in both
experimental murine models and patients with cancers. NETs
have been shown to induce endothelial-to-mesenchymal transi-
tion (EMT) in several type of cancers.86,573,574 In an experimental
melanoma model, NETs accumulated in the TME and promoted
cancer growth,575 a phenomenon also observed in HCC develop-
ment.126,480 In a murine model of orthotropic pancreatic
adenocarcinoma, NETs activated pancreatic stellate cells, promot-
ing tumor proliferation, while inhibiting NETs reduced stromal
activation and tumor growth.576 In vitro experiments have further
confirmed that NETs promote tumor cell proliferation. Another
mechanism through which NETs promote tumor growth is their
pro-antigenic effects,577 possibly mediated by NETs-induced
activation of endothelial cells via TLR-4/NF-kb signaling or
upregulation of proangiogenic factors such as vascular endothelial

Fig. 6 NETs in modulating cancer biology. NET components play a direct role in shaping the biology of cancer. NETs are implicated in tumor
cell immunosuppression, proliferation, metastasis, and cancer-associated thrombosis. In tumor proliferation, NETs directly promote tumor
growth, angionenesis, and ECM remodeling. In cancer immune surveillance, NETs may contribute to the suppressive TME by: 1. Directly
affecting the killing function of NK cells and cytotoxic T cells. 2. Forming a shield to protect tumor cells from effector cells. 3. Promoting Treg
activity to inhibit the function of effector cells targeting abnormal cells. For cancer metastasis, NETs capture CTCs through integrin β1,
CEACAM 1, TLRs, and CCDC25. NETs also promote EMT and contribute to endothelial damage and increasing vascular permeability. Moreover,
NETs can awaken dormant cancer cells at distant sites. NETs also contribute to cancer-associated thrombosis. These mechanisms are
associated with the immunothrombosis function of NETs, wherein they trap platelets, red blood cells, and extracellular vesicles containing
tissue factor activity, leading to vessel occlusion and promoting cancer-associated thrombosis. This figure was created by Adobe Illustrator
Artwork 16.0 (Adobe Systems, USA)

Neutrophil extracellular traps in homeostasis and disease
Wang et al.

16

Signal Transduction and Targeted Therapy           (2024) 9:235 



growth factor.577–579 Whereas most evidence supports the tumor-
promoting role of NETs, several studies have also demonstrated
their protective role in tumors.552 Co-culture of melanoma cells
with NETs resulted in decreased melanoma cell migration and
viability.580 Additionally, experimental evidence suggests that
NETs inhibit the proliferation of colon carcinoma cells.581 These
controversial findings may reflect the dual role of NETs in the TME,
which may vary depending on the disease stage.

Tumor metastasis. Several studies involving patients with various
cancer types offer additional evidence supporting the involve-
ment of NETs in promoting metastasis. Recent investigations have
shown a correlation between NET levels and metastasis in HCC
and breast cancer.36,94 The highest levels of NETs were found in
metastatic lesions from patients with triple-negative breast cancer,
a subtype characterized by aggressive tumor progression and
high risk of metastatic spread.582 In a mice model with lung and
colon cancer, tumour-induced NETs contribute to cancer cell
adhesion to liver sinusoids.583 IL-8/CXCL8 mediates a positive loop
connecting NET formation and colorectal cancer liver metasta-
sis.584 NETs have also been identified as promoting factors in the
metastasis of other cancer types, including but not limited to
ovarian cancer,551 pancreatic dual adenocarcinoma (PDAC),90

cholangiocarcinoma,585 esophagogastric cancer,89,583 and also
non-solid cancers such as diffuse large B cell lymphoma.586

Enhanced metastasis has been suppressed by treatments that
inhibit NETs, such as PAD4 knockout or DNase I or NE inhibitor
therapy.
Mechanistically, NETs have been implicated in promoting

metastasis through several mechanisms: 1) Capturing CTCs. NETs
with their web-like structure and adhesive properties, can ensnare
CTCs, facilitating their spread in circulation and favoring the
metastatic process.66,587,588 Integrin β1589 and CEACAM590 have
been identified as crucial for this interaction. Additionally, the DNA
component of NETs in the liver exhibits chemotactic properties for
CTCs, interacting with the coiled-coil domain containing protein
25, a transmembrane protein expressed on CTCs.36 2) Promoting
EMT. NETs induce EMT, as evidenced in both murine model and
patients.86,97,573,574 This ability to induce EMT in both normal and
neoplastic epithelial cells suggests that NETs may contribute early
in the process of neoplastic transformation.31 3) Causing
endothelial damage and increasing vascular permeability. Circu-
lating NETs rapidly disrupt endothelial cells contacts, leading to
endothelial damage and vascular leakage.591 NET-associated
proteases, including NE, MPO, and MMPs, compromise junction
integrity and promote vascular permeability.592,593 4) Creating a
premetastatic niche for cancer cells. NETs create an immune-
suppressive niche for CTCs, particularly in the development of liver
metastasis.84,584 NETs can also contribute to the premetastatic
niche in lungs in mice with breast cancer.594 5) Enhancing cancer
cells’ metastatic abilities via NETs. The primary tumor can induce
NET formation, with metastatic cancer cells showing an enhanced
capacity to induce NETs compared to poorly metastatic tumor
cells.566 Tumor-induced NETs increase breast cancer cell motility
and promoted lung metastasis.566 Tumor-derived cathepsin C
promotes metastasis through NET-dependent mechanisms.83

It is worth noting that NETs have been implicated in post-
operative infection-related metastasis and occurrence. In 2016, we
first proposed an enhanced metastatic role of NETs induced by
surgical stress using a mouse model of hepatic I/R injury,595 which
prevented metastasis by NET inhibition with DNase I or PAD4
inhibitors. Recently, we further demonstrated that I/R injury in the
liver and the subsequent NET formation promote the formation of
colon cancer metastasis in the lung.84 In this study, NETs were
shown to have a higher propensity to bind CTCs aggregated with
platelets. Additional evidence provided by a study confirmed that
cecal ligation and puncture in mice contributed to NET formation,
enhanced trapping of CTCs, and increased formation of liver

metastasis.66 These findings suggest that infection-induced NETs
enhance the trapping of tumor cells. LPS-induced NET formation
was also shown to promote tumor metastases in a mouse model of
CRC.596 Although surgical removal of the tumor may be curative
clinically, inhibiting NETs as a preventive measure for postoperative
infection and subsequent recurrence may provide clinical insights.

Tumor-associated thrombosis. The prothrombotic nature of NETs
has been implicated in cancer-associated thrombosis,109 as
evidenced by clinical data76,597 and mouse studies.64,512,554 NET
complexes or components have been detected in coronary,
cerebral and pulmonary thrombi in patients with various cancer
types.40,598 Elevated circulating NET markers predict a higher risk
of VTE in patient with cancer.76 Moreover, circulating NET markers
are elevated in HCC-associated portal vein thrombosis599 and
cancer-related stroke.509 These mechanisms are related to the
immunothrombosis function of NETs, which trap platelets, red
blood cells, and extracellular vesicles with tissue factor activity,
occluding vessels and promoting cancer-associated thrombosis.
Specifically, 1) cancer-induced platelet activation and NET release
contribute to the hypercoagulable state in cancer;600,601 2) tumor-
derived pro-coagulant micro particles promote DVT by carrying
tissue factor and adhering to thrombus-associated NETs;602 3)
NETs released from cancer patients increase levels of thrombin-ant
thrombin complexes and enhance the ability of control plasma to
generate fibrin.41 Administration of DNase I reduced thrombus
size in mice bearing human tumors.512,603

Tumor prognosis. While the clinical significance of circulating NET
molecules as cancer biomarkers remains a debate, recent
evidence suggests a direct correlation between the high levels
of NET markers and poor clinical outcomes in patients with
cancer.40–42 Elevated level of H3Cit has been identified as an
independent prognostic factor for short-term survival in cancer
patients.604 In patients with colorectal cancer, elevated pre-
operative circulating levels of cfDNA have been linked to
persistent disease one year after resection.605 Additionally, in
patients with metastatic colorectal cancer undergoing curative
liver resection, high levels of circulating NET markers are
associated with a high risk of recurrence and worse prog-
nosis.595,596 Similarly, in patients with breast cancer, cfDNA
correlated with tumor size, nodal involvement, and clinical
stage.606 Serum NET levels can predict the occurrence of liver
metastasis in patients with early-stage breast cancer.36 High NET
density is correlated with lower recurrence-free survival in patients
with cervical cancer,607 suggesting that combining NET density
with the TNM staging system could improve prognostic accuracy.
NETs are also reported as a novel biomarker to predict recurrence
and overall survival,608 and they correlate with the degree of liver
dysfunction in patients with HCC. In human large B cell
lymphomas, intratumoral and circulating NETs correlate with
worse overall survival and progression-free survival.586 Plasma NET
markers have been documented to correlate with poor prognosis
in head and neck cancer,609,610 gastric cancer,611,612 rectal
cancer,613 renal cancer,614 and pancreatic cancer.570 Moreover,
cancer cells from a primary tumor can enter a dormant state and
remain clinically undetectable for extended periods (Fig. 6). NETs
have been shown to awaken dormant cancer cells at distant
sites,615 suggesting that therapies targeting the prevention of
dormant cell awakening by NETs could potentially extend the
survival of cancer patients.

NET-TARGETING THERAPIES
Targeting NET formation
Multiple pathways have been identified in the formation of NETs,
and have been exploited in attempts to inhibit formation in order
to abrogate negative downstream effects. A majority of the work
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in inhibition of NET formation has been done in the pre-clinical
setting, with peptidyl arginine deaminase (PAD) being the most
common target of interest (Table 1). The PAD family of enzymes
catalyze the citrullination of histone proteins, a key component of
NET formation.616 Multiple prior studies have demonstrated the
correlation between NET reduction and PAD inhibition, and
genetic knock outs of PAD have demonstrated similar phenotypic
endpoints as prohibiting NET formation. Cl-amidine has been a
recently explored PAD inhibitor, used in a variety of inflammatory
disease models, including lupus, diabetes, and endometri-
tis.458,617,618 Shen et al. demonstrated the utility of inhibiting
PAD4-mediated NET formation with Cl-amidine as a means of
preventing diabetes development.458 In their study, Cl-amidine
was administered orally at a dose of 5μg/g, resulting in a delay in
onset, decreased disease incidence, and decreased type 1
diabetes-associated antibodies, which was simultaneously asso-
ciated with a reduction in serum NET markers. Furthermore, these
findings translated phenotypically, with inhibited pancreatic
inflammation and increased regulatory T cell presence within
pancreatic lymph nodes. Separately, Knight et al. demonstrated Cl-
amidine could confer protective effects against specific lupus
phenotypes.617 In their model, MRL/lpr mice, which are more
prone to accelerated lupus phenotypes, were treated with
subcutaneous injections of either 10 mg/kg/day of Cl-amidine,
1 mg/kg/day of BB-Cl-amidine, a more bioavailable form of Cl-
amidine. PAD inhibition with these agents resulted in reduced
proteinuria and immune complex deposition, as well as down-
regulation of type I interferon production in a murine model
otherwise prone to developing severe disease.
NET formation can also be targeted through blocking histone

citrullination directly. Agents such as thrombomodulin have been
studied in this role and applied to a broad range of disease,
including sepsis-mediated injury, coagulopathy, and cancer.97,619

Helms et al. explored the use of recombinant human thrombo-
modulin in rat models of shock-induced coagulopathy, and found
that administration of rhThrombomodulin not only decreased
histone-induced NETosis, but attenuated the coagulopathy control
rats experienced.620 In a model of endotoxin-mediated renal
injury, Harada et al. established that intraperitoneal administration
of 6 mg/kg of rTM following LPS-induced septic injury decreased
citrullinated histone H3 levels in the serum and renal medulla,619

suggesting rTM could suppress NET production. Although this
study did not connect these immunohistologic and serologic
findings with a phenotypic benefit, other groups have demon-
strated the phenotypic benefits of rTM. Kajioka et al. studied this
in the context of pancreatic cancer,97 finding that thrombomo-
dulin degraded HMGB1 with consequential inhibition of NET
induction, leading to prevention of surgically-induced pancreatic
metastases to liver.
In addition to these novel agents, there has been a wave of

repurposing commercially available drugs to target NET formation.
Hydroxyethyl starch, which no longer has utility as a colloid agent,
was administered at a dose of 20 mg/kg by tail vein injection in a
group of mice undergoing cecal ligation and puncture as a sepsis
model by Rossaint et al. This model was found to reduce NET
formation and reduce platelet-neutrophil aggregates and transmi-
gration of neutrophils under inflammatory conditions.621 Zinc
chelators have additionally been found to modulate NET
formation through multiple studies from Kuzmicka et al.622,623

These in vivo and in vitro studies have demonstrated that low
levels of zinc either through decreased dietary ingestion or
through direct chelation led to increased NET release and
enhanced neutrophil degradation, and that supplementation of
zinc can inhibit histone citrullination and subsequent NET release.
While research with these agents is still in its infancy, certain

drugs have already been associated with clinically relevant
outcomes. Disulfiram, for example, has been found to reduce
NET expression through gasdermin D inhibition, and alleviated

severe inflammatory injury in acute pancreatitis.624 Ling et al.
demonstrated in a murine model of severe acute pancreatitis
induced by caerulein and LPS that treatment with either 50 mg/kg
or 100 mg/kg of disulfiram led to inhibition of gasdermin D and
resultant decrease in in-vivo NET formation, in turn alleviating
inflammatory injury.624

Targeting NET structure
Aside from prohibiting NET formation altogether, multiple
preclinical studies have examined how to degrade or diminish
the functionality of already formed NETs (Table 1). DNase has been
the longest-studied agent, targeting the extracellular DNA
component of NETs. Exogenous DNase administration has been
utilized in a variety of disease states, and has consistently
demonstrated reductions in measurable biomarkers, as well as
associated with outcome improvements, including reversal of
coagulopathies and thrombotic burdens, decreased cancer
growth and metastasis, and suppression of pro-inflammatory
cytokine production.
While extracellular DNA is often the target for NET degradation,

there is an increasing amount of research focusing on targeting
NET-associated proteins, which contribute to its functional
properties. A 2020 study from Rayes et al. explored CEACAM1, a
NET-associated molecule, as a therapeutic target to prevent the
metastatic progression of colon adenocarcinoma. Using a murine
model, they were able to identify that blocking CEACAM1 or
knocking it out led to a decrease in cancer cell adhesion,
migration, and metastasis.590 In 2023, Zhang et al. examined the
effects of epigallocatechin-3-gallate (EGCG), a naturally occurring
neutrophil elastase inhibitor. Through co-culturing neutrophils
from peripheral blood samples from human subjects and co-
culturing them with SW480 colon cancer cells and inducing NETs,
treatment with varying concentrations of EGCG led to suppressed
NET formation, decreased expression of STAT3 and CXCL8 in colon
cancer cell-derived neutrophils, and impaired cancer cell migra-
tion and invasion.88

Other groups have attempted to induce endogenous endonu-
clease function as opposed to delivering an exogenous agent.
Ondracek et al. found that endurance training led to an increase in
endogenous DNase activity and a decrease in cfDNA levels,
theorizing this could result in improved cardiovascular out-
comes.625 Furthermore, some groups have opted to use agents
that target downstream functions, as opposed to direct structural
targeting. For example, Chen et al. examined exenatide, a
glycemic control agent that had been demonstrated to down-
regulate ROS in prior studies, and found that as a byproduct, NET
reduction was observed.626 After subcutaneous inoculation of
MC38 colon cancer cells, 24 nmol/kg/day of exenatide, twice
weekly 250 μg doses of anti PD-1 or a combination of therapy was
administered. Exenatide treatment led to decreased infiltration of
NETs in tumor, and decreased peripheral MPO-DNA. In vitro
studies demonstrated exenatide alone decreased NET formation
and release. However, combining exenatide with anti-PD-1
therapy was superior at restricting tumor growth to either agent
alone, and confirmed this was related to NET interaction by
demonstrating that NET degradation with 5 mg/kg DNase
weakened the efficacy of the combination therapy. Generally,
these preclinical studies show consensus that NET degradation or
functional NET inhibition is achievable through multiple mechan-
isms, and results in favorable outcomes.

Clinical trials
In the realm of human clinical trials, substantial work has been
done with observational methodology, specifically post-hoc
analysis of other randomized trials (Table 2). The 2022 study from
Schaid et al. utilized post-hoc analysis of the COMBAT randomized
control trial to evaluate proteomic markers of NETs in injured
trauma patients. They found that more severely injured patients
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Table 1. Pre-clinical studies targeting NET formation and structure

Intervention Species Target/Disease of Interest Results Reference

Pre-clinical Studies Targeting NET Formation

Hydroxyethyl starch 130/0.4 Mouse Platelet-neutrophil aggregate Reduced aggregates
Reduced NET formation

Rossaint et al.621

Secretory leukocyte protease
inhibitor

Mouse Neutrophil elastase Reduced NET formation Zabieglo et al.634

Gallic acid Human LPS-induced apoptosis Reduced NET formation
Reduced free radical formation
Decreased apoptosis

Haute et al.635

Prostaglandin E2 Mouse Cyclic AMP NET formation inhibited Shishikura et al.636

Activated protein C Human Mac-1
EPCR
PAR3

Leukocyte binding
Inhibited NETosis

Healy et al.637

rhThrombomodulin Rat Shock Induced Coagulopathy Reduced NETosis
Attenuated coagulopathy

Helms et al.620

Azithromycin/Chloramphenicol Human Reduced NET formation
Azithromycin – dose dependent effect
on neutrophil respiratory burst

Bystrzycka et al.638

Cl-amidine Mouse Peptidyl arginine deiminase
(PAD)
Lupus

Reduced NET formation
Renal protection

Knight et al.616

Cl-amidine on polydioxanone Rat PAD4 Dose-dependent inhibition of NETosis Fetz et al.639

Cl-amidine Mouse PAD
Diabetes

Reduced serum PAD4 and MPO-DNA
Inhibited pancreatic inflammation
Decreased IA2A

Shen et al.458

Cl-amidine Rat PAD4
Endometritis

Reduced CitH3 and HMGB1 Shen et al.618

rhThrombomodulin Rat Histone-induced NET formation Inhibition of NET formation Shrestha et al.640

Thrombomodulin Human HMGB1 Inhibited NET formation
Reduced pancreatic metastasis to liver

Kajioka et al.97

rhThrombomodulin Mouse Endotoxin induced acute kidney
injury

Reduced serum H3 and CitH3
Abolished CitH3 expression in renal
medulla

Harada et al.619

MitoQ Mouse Mitochondrial oxidative stress
Lupus

Reduced NET formation
Reduced kidney immune complex
deposition
Reduced serum IFN-I

Fortner et al.641

BMS-P5 Mouse PAD4
Multiple Myeloma

Abrogated NET formation
Slowed disease progression

Li et al.642

Kaempferol Mouse NADPH/ROS pathway
Breast Cancer

Decreased citH3 expression
Decreased primary breast tumor
growth and lung metastasis

Zeng et al.643

Chloroquine Mouse, Correlative
Human serum

PAD4
Pancreatic cancer

Exclusive PAD4 inhibition
Reduced serum CitH3 (dose dependent)

Ivey et al.644

Low dose Vitamin D Rat Bronchopulmonary dysplasia NET inhibition
Increased survival
Attenuated developmental retardation
Improved alveolarization Arrest in
hyperoxia induced BPD

Chen et al.645

Etanercept Mouse TNF-alpha Absent NET formation
TNF-induced IL-6 inhibition
Reduced TNF
Decreased neutrophil recruiting
chemokines

Sudo et al.646

RNase A Mouse Muscle Ischemia Reduced leukocyte infiltration
Reduced MPO/CitH3
Reduced M1 polarization

Lasch et al.579

Zinc Human and mouse H3 Citrullination Inhibited NET release Kuzmicka et al.622

GSK484 Mouse PAD4
Renal I/R

Reduced lung injury
Reduced NET formation
Reduced inflammatory factor secretion

Du et al.647

Thioredoxin-albumin fusion
protein (HSA_Trx)

Mouse Oxidative stress
Pollution induced lung injury

Reduced dsDNA, citH3, neutrophil
elastase in bronchoalveolar fluid

Tanaka et al.648
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Table 1. continued

Intervention Species Target/Disease of Interest Results Reference

Iron/Zinc chelators Human - TPEN/IDA - inhibit NET release
DFO – stimulates NET release
DTPA – no NET effect

Kuzmicka et al.623

Anakinra Human IL-1 Receptor Dose and time dependent inhibition of
NET and cfDNA

Wadehn et al.649

Curosurf, Alveofact Human - Dose-dependent inhibition on NET
formation
Lower NE, NPO, and cDNA

Schulz et al.650

Antithrombin + GSK484 Mouse PAD4 Reduced postoperative adhesion
formation.
Prevention of tPA-inhibitor- 1 and IL-6
expression.

Sudo et al.651

TcpC Mouse PAD4 NETosis inhibited Ou et al.652

Fostamatinib Human SYK
COVID-19

Prevents COVID-19 induced NETosis Strich et al.653

Chikusetsusaponin V (CKV) Mouse Caspase-1
HMGB-1
Liver injury

Pretreatment interfered with NET
formation
Interfered Caspase-1 and HMGB-1
release in APAP damaged hepatocytes

Liu et al.654

Tetramethylpyrazine Rat Ischemic injury Reduces NET formation
Alleviates hepatic I/R injury

Liu et al.655

PDE4 inhibitor Mouse Cystic fibrosis lung disease Reduced cfDNA in BALF
Reduced citrullination of airway H3

Totani et al.656

Ibuprofen + GS-561937 Bovine RSV Reduced NETs in lung tissue (day 3) Mutua et al.657

Senkyunolide I Mouse Sepsis-induced lung injury Reduced lung injury by BALF
Decreased lung and plasma NETs

Zha et al.658

Disulfiram Mouse Gasdermin D
Sepsis-induced organ failure

Reduced circulating NETs
Reduced CKMB, BUN, AST
Reduced gross histopathological
changes

Silva et al.323

Disulfiram Mouse GSDMD
Severe acute pancreatitis

Alleviated pancreatic inflammatory
injury. Reduced NET expression

Ling et al.624

Reparixin Mouse CXCR1/2 Sepsis Reduced NET formation
Reduced multi-organ injury
Reduced mortality

Alsabani et al.659

Manganese Mouse S. Aureus Infection Decreased mitochondrial superoxide
Decreased suicidal NETosis

Monteith et al.660

Itaconate (4-OI) Mouse LPS-induced NET release Reduced formation by 4-OI and
downstream HIF-1a inhibitor

Burczyk et al.661

Salvianolic Acid A Mouse LPS-induced lung injury Ameliorated lung injury
Reduced NETosis

Liu et al.662

Nanoflower – ZD-E-1 Mouse PAD4
Lung cancer

Self assemblign carrier free drug
inhibtiing PAD4 and NET formatino,
improving TIME

Zhu et al.663

Taurine Mouse S. Uberis Mastitis Inhibited NADPH oxidase
Reduced NET production

Li et al.664

Ivermectin Mouse GSDMD
Melanoma metastasis

Suppressed GSDMD oligomerization
Reduced NET formation, Reduced
ecDNA

Zhang et al.665

Liraglutide Mouse Lung and liver cancer with
checkpoint inhibition

Decreased circulating MPO, NE, dsDNA.
Downregulated ROS species in TME
Enhanced PD-1 activity

Chen et al.666

(+)-Borneol Human Oxidative stress Pre-treatment inhibited PMA induced
NETosis
Inhibited ROS burst
Abrogated effects of TLR2 inhibition

Chen et al.667

IL-37 Mouse Acute viral myocarditis Improved cardiac function
Inhibits inflammatory cell infiltration
Inhibits NET formation

Li et al.668
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Table 1. continued

Intervention Species Target/Disease of Interest Results Reference

Dihydrotanshinone I (DHT) Mouse TIMP1 expression
Breast cancer

Blocked lung metastasis
Reversed NET formation
Ameliorated NET-induced metastasis
Inhibited neutrophil infiltration into
lung
Reduced CitH3 expression in lung

Zhao et al.669

JBI-589 Mouse PAD4
Rheumatoid arthritis

Decreased MPO, CitH4
Decreased clinical markers of RA

Gajendran et al.670

Taxifolin Mouse Nrf2
Lupus/APLA

Reduced in vivo NETosis
Attenuated autoantibody formation
Attenuated inflammatory cytokine
production

Rysenga et al.671

Irisin Mouse Integrin AlphaVbeta5
Acute pancreatitis

Reduced NET formation in pancreatic
necrotic tissue

Han et al.672

Aspirin/Ticagrelor (DAPT) Mouse Platelet
Intrahepatic
cholangiocarcinoma

Reduced micrometastasis Reduced NET
induction

Yoshimoto et al.585

Rosavin Mouse Sepsis induced lung injury Reduced BAL inflammatory mediators
Decreased NET formation
Decreased NET/MPO activity

Gao et al.673

Cyclosporine A Mouse Ulcerative colitis Decreased NET formation
Decreased cellular ROS

Xu et al.440

Resveratrol Mouse SIRT1
Breast cancer metastasis to lung

Suppressed NET formation
Reduced serum NE and MPO-DNA
Increased CD8 infiltration to lungs

Yu et al.674

Thymopentin Mouse Crohn’s disease Ameliorated weight loss
Reduced disease activity index (DAI)
Increased TNF-a, IL-1b, IL-6.
Decreased MPO, NE, CitH3, dsDNA
Tissue CitH3 correlated with DAI and
TNF-a

Cao et al.441

Pre-clinical Studies Targeting NET Structure

Epigallocatechin-3-gallate Mouse Neutrophil Elastase
Severe acute pancreatitis

Reduced pancreatic tissue damage
Reduced systemic inflammatory
response

Li et al.88

DNase1 Mouse Wound healing Improved scar appearance
Improved collagen deposition
Reduced fibrin concentration
Reduced wound closure time
Reduced NET presence

Heuer et al.675

DNase1 Mouse Endometritis Reduced MPO activity
Reduced pro-inflammatory cytokine
production
Reduced CitH3 levels

Hao et al.676

DNase1 Mouse Endometritis Reduced MPO activity
Reduced pro-inflammatory cytokine
production
Reduced CitH3 levels

Hao et al.676

rhDNase Mouse Breast cancer associated
thrombosis

Prevented thrombus formation
Long term treatment reduced OS
Attenuated mortality

Varady et al.603

RhDNase-I Mouse ARDS NETs reduced lung tissue
Attenuated platelet-NET aggregate
Reduced platelet activation
Normalized clotting time

Jarrahi et al.677

DNase1 Mouse Liver I/R injury Protected hepatocytes and reduced
inflammation

Huang et al.375

DNase1 Rat Intestinal I/R injury Reduced intestinal neutrophil
infiltration
Reduced histone and MPO complexes
histone MPO complexes

Boettcher et al.678
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Table 1. continued

Intervention Species Target/Disease of Interest Results Reference

DNase1 Rat Intracerebral hemorrhage Reduced ICH-induced NETs
Improved tPA induced hematoma
fibrinolysis
Relieved cerebral edema
Reduced cell death
Improved functional outcome

Tan et al.679

DNase I Mouse Diabetic keratopathy Reduced NETs on corneal epithelium.
Reactivated epithelial regeneration
signaling pathways
Attenuated ROS accumulation
Restored impaired corneal sensitivity in
diabetic mice

Zhang et al.680

DNase Rat CSF block in early pneumococcal
meningitis

Restored glymphatic transport
Reduced brain weight

Pavan et al.681

DNase 1 Mouse Thrombotic Stroke tPA
Resistance

Promotes NET lysis but not tPA lysis
Promotes ex-vivo platelet thrombi
Recanalized occluding vessels

Pena-Martinez
et al.682

DNase1 Mouse Neurogenic pulmonary edema
after SAH

Decreased lung water, neutrophilic
infiltration, and inflammation.
Reduced NETs and proinflammatory
macrophage transition

Wu et al.683

DNase Human Trauma thrombin generation Shorter lag time, shorter time to peak
thrombin generation
Decreased cfDNA
Decreased citH3

Goswami et al.684

DNase1 Mouse COVID induced multiorgan
injury

Decreased detectable levels of NETs
Reduced lung, heart, and kidney
injuries

Veras et al.685

DNase1 Rat IGA vasculitis Reduction in serum cfDNA and MPO-
DNA
Decreased NET in renal, gastric, and
duodenal tissues
Lower renal MPO and CitH3 expression

Chen et al.686

DNase1 Mouse MASH-HCC Decreased tumor growth Van der Windt
et al.480

DNase 1 + AuPB/mPDA shell Mouse Colorectal cancer Abolished metastatic seeding Chen et al.588

DNase + PD-1 Mouse Colorectal cancer Improved CD8 infiltration
Reversal of anti-PD-1 resistance

Zhang et al.687

AAV-DNase I Mouse Colorectal cance Recruited CD8+ T cells to CRC liver
metastasis
Reduced the growth of liver metastasis

Xia et al.92

DNase1 + sivelestat Rat I/R injury Reduced NET’s
Attenuated muscle fibrosis
Improved motor function
DNase performance superior topically,
sivelestat performance superior when
IV

Wang et al.688

Statins Mouse DVT and Post thrombotic
syndrome

Reduced stasis venous thrombus
burden
Reduced platelet aggregation and clot
stability
Reduced PAI-1, TF, MPO, NETs

Kessinger et al.689

RhADAMTS13 Mouse Skin allograft Absent NETs
Lessened inflammation

Wong et al.690

CEACAM1 -blockade Mouse Metastatic colon cancer Decrease in cell adhesion, migration,
metastasis

Rayes et al.590

Exenatide Mouse Colon cancer cells Restricted tumor growth when
combined with anti PD-1
Reduced ROS production
Reduced in vitro NETs

Chen et al.626

Physical activity Human Outcome after CV events Decrease in cfDNA
Increase in endogenous DNase activity

Ondracek et al.625

Hochuekkito Mouse UVB radiation Suppressed inflammation,
Inhibited ROS and H2O2 generation
Reduced CitH3 and PAD4

Inaba et al.691
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Table 2. Human clinical trials—observational and anti-NET interventional

Disease Primary Outcome Clinical significance Reference

Human Observational Trials

VTE in Cancer VTE prediction in cancer
patients

Elevated CitH3 associated with 13% RR increase of VTE.
Elevated cfDNA associated with higher risk of VTE
during first 3-6 months

Mauracher et al.76

VTE VTE incidence
D-dimer correlated risk model

Higher CitH3 and NE associated with VTE.
Adding to D-dimer based risk model did not improve
AUC

Smith et al.692

Pulmonary Embolism CitH3 High endogenous thrombin potential, elevated CitH3,
prolonged clot lysis time associated with 8x risk of PE-
related death
Enhanced NET formation associated with higher early
mortality risk

Zabczyk et al.693

STEMI with PCI Cardiac endpoints CitH3 independent predictor of endpoint (MI, stroke,
stent thrombosis, cardiovascular related death) [HR 3.74,
p= 0.042]

Ferre-Vallverdu et al.694

Cardiac arrest Predictive value for 28-day
all-cause mortality

Serum cfDNA, citH3, MPO, NE higher in all arrest
patients, and significantly higher in nonsurvivor group.
cfDNA, CitH3, nucelosomes on first day after ROSC
independent predictors of primary outcome

Li et al.628

Retinal vein occlusion Biomarker and disease
incidence

Plasma cfDNA, MPO-DNA, citH3 increased in RVO cases.
Associated with thrombus formation

Wan et al.695

ACS/acute ischemic stroke ACS/AIS Risk dsDNA concentrations higher in ACS/AIS
ACS risk – TnI, dsDNA concentration
AIS – dsDNA concentration

Lim et al.508

Acute Liver Failure Transplant-specific survival cfDNA 7.1× higher in ALF
MPO-DNA 2.5× higher in ALF
cfDNA higher in severe disease
MPO-DNA 30% higher in ALF patients who died or
required urgent transplant
Positive tissue NETs in 12/18 patient specimens

Meijenfeldt et al.334

AMI 1-year MACE Platelet + soluble p-selecting + all NET markers
strongest predictor of 1-year MACE [OR 1.94, 95%CI
1.16-3.25]

Hally et al.696

Ulcerative Colitis Disease prognosis prediction PAD4 expression associated with increasing
histopathologic grade (p= 0.001), anatomical disease
extent (p= 0.038), lack of therapeutic response
(p= 0.046), subjection to radical surgery (p= 0.046)

El Hafez et al.697

Antiphospholipid syndrome Association with thrombosis Higher levels of circulating MPO-DNA and PAD4
expression. Higher expression in patients with recurrent
thrombosis than incident or control (43.8% higher MPO-
DNA, 2x higher RNA expression)

Mazetto et al.698

Diabetic Foot Ulcer (DFU) Amputation probability Serum NET levels higher in DFU group.
NET amputation probability [HR 0.19, p < 0.01]

Ibrahim et al.699

DFU Impaired wound healing NET specific markers higher in DFU patients than in
without.
Tissue elastase increased in wounds with infections and
delayed healing.
Significantly lower healing rates and higher amputation
rates in highest quartile of CitH3

Yang et al.651

Lupus Nephritis Complete remission
Progression to renal
impairment at 24 months

Higher NET remnants in SLE
Higher NET levels with active lupus nephritis compared
to SLE without nephritis (Elastase p= 0.03, HMGB1-DNA
p= 002)
Higher NET remants in proliferative nephritis (Elastase
p < 0.0001, HMGB1-DNA p= 0.0003)
Higher NETs with reduced odds of complete remission
[Elastase OR 2.34, p= 0.0007, HMGB1 OR 2.61, p= 0.006
Higher NETs with increased risk of progression to severe
renal impairment (Elastase OR 2.84 p= 0.006, HMGB1
OR 2.04, p= 0.02)

Whittall-Garcia et al.700

COVID-19 Biomarker for
prognostication

NET markers elevated in COVID-19
Associated with respiratory support requirement and
short-term mortality
Correlated with WBC, inflammatory cytokines, CRP, and
markers of coagulation/fibrinolysis
Contribute to immunothrombosis

Ng et al.701
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Table 2. continued

Disease Primary Outcome Clinical significance Reference

Streptococcal Bacteremia Cardiovascular morbidity and
mortality

Higher MPO-DNA in bacteremic
Higher MPO-DNA in abscess prone Strep groups
(p= 0.02)
Combined WBC counts + MPO-DNA to predict all cause
30d mortality with commensal strep BSI—lowest
among patients with neither high MPO-DNA nor
abnormal WBC (p= 0.058)
This group has favorable composite outcome of MACE
and all-cause mortality (p= 0.026)

Kuo et al.702

COVID-19 Association with MIS-C and
CLL (Chilblain-like lesions)

Decreased NET degradation
No NET elevation with asymptomatic infection
Decreased NET levels with Omicron infection compared
to other strains

Carmona-Rivera et al.703

Pleural Effusion Diagnosis and
prognostication

Highest NET marker concentration with parapneumonic
effusion
CitH3 (R= 0.66) and eDNA (R= 0.73) correlated with
LDH (p < 0.001)

Twaddell et al.704

Deep surgical site infection NET index predicting DSSI
occurrence after laparotomy

Higher NET formation index (NFI) in DSSI group
(p < 0.01)
NFI positively correlated with APACHE II (R= 0.269,
p < 0.01) and SOFA score (R= 0.258, p= 0.013)
Higher risk of DSSI with NFI score
NFI AUC 0.912 compared to CRP (0.748) and PCT (0.731)

Duan et al.705

Locally Advanced Rectal
Cancer

Prognosis and predictive
response to Neoadjuvant
Therapy (RFS, CR, NCR)

High tissue NET density predicted poor post-operative
survival
NETs independent prognostic factor for RFS
Low NET-density LARC had increased CD8 infiltration
High NET density associated with EMT.
High NET density associated with reduced likelihood of
complete/near complete response

Zhong et al.635

Colon Adenocarcinoma Predicting Response to
Immunotherapy

NET risk score upregulated in patient samples
Levels correlated with tumor clinicopathological and
immune traits
MPO linked to malignancy and poor clinical outcome.

Feng et al.706

Breast Cancer Survival prognosis, treatment
response

NET-related lncRNA risk scores
Low risk groups had improved OS
High risk groups enriched in immune-related functions
and higher TMB
Response to chemo/immunotherapy related with
expression of NET related lncRNA (p < 0.001)

Jiang et al.707

High-grade serous ovarian
cancer (HGSOC)

Biomarker role in disease
diagnosis and management

Higher concentration of cfDNA, citH3, and calprotectin
in plasma and peritoneal fluid.
Neoadjuvant treatment reduced NET biomarkers in
plasma, less so in peritoneal fluid

Tomas-Perez et al.708

Gastric Cancer Prediction for immune cell
infiltration

Low NET score linked to higher MSI-H, mutation load,
immune activity.
CSC index and chemotherapeutic treatment sensitivity
connected to NET score.

Li et al.709

Gastric Cancer OS Prediction and TME
Identification

OS longer in low-risk group (p= 0.005)
Differences in immune infiltration across groups.
NE DNA independent factor affecting OS prognosis
(P= 0.006)

Qu et al.612

Glioblastoma Multiforme 1-3 year OS prediction NET signature to form risk groups
High risk group more sensitive to treatment
biclutamide, gefitinib, dasatinib
Low risk group poor response to immunotherapy

Sun et al.710

Pancreatic neuroendocrine
tumor

Prediction of post-operative
recurrence

Positive expression of tumor NETs with worse RFS
(p < 0.05)
Independent prognostic factor for RFS (p < 0.05)

Xu et al.107

Non-small cell lung cancer OS prediction 12-NETs lncRNA signature to develop risk score
High risk group with significantly shorter OS (p < 0.0001)
Risk score is independent predictive factor of OS
[HR > 1, p < 0.001]
NSCLC cell lines have higher levels of three adverse
prognostic NET related lncRNA than normal lung cells

Fang et al.711
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Table 2. continued

Disease Primary Outcome Clinical significance Reference

Head and Neck Squamous
Cell Carcinoma

Prediction of 3 and 5 year
clinical outcomes and
immunotherapy response

6 NET-related genes to construct high vs low risk model
Higher OS in low risk (p < 0.001)
Higher TMB in high-risk model (p= 0.017)
TMB positively correlated with risk score (R= 0.11,
p= 0.019)
Immune therapy more beneficial for low-risk patients
(p < 0.001)
Response to anticancer drugs closely correlated with
expression of NET related genes (p < 0.001)

Chen et al.610

Gastric Adenocarcinoma Diagnostic and prognostic
predictive value

NET markers had better diagnostic value than CEA,
CA19-9
High level of NETs correlated with lymph node
metastases
Blood NET markers inversely correlated with short-term
efficacy of first-line treatment
Negative HER2 status associated with higher baseline
NETs and worse PFS

Zhang et al.611

Breast Cancer Association with clinical
stages

Higher levels of NE-DNA complexes in regional and
distant stages compared to local disease
NETs increase in proportion to disease stage

Rivera-Franco et al.712

Head and Neck squamous
cell carcinoma

NET-related gene signature
prognostic score

Seven NET-related genes to create score signature
Score highly correlated with clinicopathologic and
immune traits
NIFK upregulated in HNSCC pateint samples
NIFK required for HNSCC cell proliferation and
metastasis

Li et al.713

Pancreatectomy Surgically induced NET
formation

CfDNA and CitH3 elevated after pancreatic resection
Increased NET-inducing cytokines post-op
Reduced NETs with robotic approach
Increased NETs in with pancreatic leak

Ivey et al.714

Generalized malignancy Peripheral blood biomarker in
diagnosis and disease
progression

CitH3 and cfDNA distinguishes healthy control and
tumor
CitH3/cfDNA increased with clinical stage
Correlation between cfDNA and systemic inflammation
related parameters in tumor patients
Did not predict VTE in short-term

Wang et al.715

Clear cell renal cell carcinoma NET pathway association with
clinicopathologic features,
prognosis, prediction of
therapeutic benefit

NET clusters A – metabolic pathways, better survival
outcome
Cluster C – immune pathways, higher immune score,
poorer prognosis
Higher NET scores associated with immune cell
infiltration, targeted drug response, immunotherapy
benefits

Teng et al.716

Clear cell renal cell carcinoma Validation of molecular
subtype and survival
prognosis

Six NET-related gene signature
Good performance in predicting OS of ccRCC
Signature significantly correlated with pTMN, immune
infiltration, TMB, microsatellite instability, drug sensitivity

Quan et al.717

Breast Cancer Prediction/prognosis and
immunotherapy response

Risk signature model
High risk score associated with poor immunotherapy
response and adverse clinical outcomes

Zhao et al.718

AIS/AMI NET composition and
association with clinical
outcome

NETs present in all patients with AIS, and 20.8% patients
with AMI.
Abundance of NET in thrombi associated with poor
outcome score in AIS, and reduced EF in AMI

Novotny et al.719

Esophageal Cancer OS Leukocytosis associated with decreased OS and DFS.
Leukocytosis resulted in higher intratumoral NET
infiltration (p < 0.001)
Higher levels of NET infiltration associated with worse
OS and DFS (p < 0.001)

Zhang et al.720

Coronary Artery Disease Adverse clinical outcomes
(unstable angina, stroke, MI,
death)

NET markers weakly intercorrelated (R= 0.103,
p < 0.001)
Highest quartiles of dsDNA had weakly but significantly
elevated hypercoagulability markers (p < 0.001)
Higher dsDNA in groups experiencing clinical endpoint
(p 0.019)
Upper 3 quartiles of NETS had OR 2.01 for endpoint
(p 0.019)

Langseth et al.362
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had elevated markers of Serpin B1 (a NETosis marker), and that
elevation of serpinB correlated to higher levels of nonsurvival,
fewer ICU-free days, and fewer ventilator-free days, supporting
NETosis as a potential mediator of post-injury organ dysfunction.
Additionally, Qiao et al. performed a post-hoc analysis of plasma
biomarkers in patients from the CITRIS-ALI trial, examining the
effects of high-dose IV vitamin C on surrogates of NET formation,
cfDNA and syndecan1 in patients with sepsis-induced ARDS. The
treatment arm displayed greater cfDNA reduction, and increased

syndecan1 levels, suggesting amelioration of NETosis. Further-
more, an exploratory open-label randomized phase-2 sub-study of
the PANAMO trial in 2022 examined the role of vilobelimab
treatment and its effects on biomarkers of inflammation and
coagulation. The PANAMO study evaluated whether vilibelimab,
an anti-C5a antibody, improved survival in critically ill COVID
patients. NET markers were measured over multiple time points,
and it was found that the treatment arm had decreased rates of
NET biomarkers, and suppressed IL8 secretion.

Table 2. continued

Disease Primary Outcome Clinical significance Reference

Community-Acquired
Pneumonia

Primary – time to clinical
stability
Secondary length of stay,
mortality

Serum NETs associated with 3.8× increased OR of 30-day
mortality Elevated serum NETs associated with higher
risk for clinical instability, prolonged length of stay and
30-day mortality

Ebrahimi et al.721

Appendicitis Prediction of incidence and
outcome

CfDNA (AUC 0.87) and CtiH3 (AUC 0.88) demonstrated
excellent predictive power for appendicitis
CitH3 able to distinguish noncomplicated from
complicated appendicitis and predict patient outcomes,
compared to WBC and CRP

Boettcher et al.627

Primar hepatic malignancy RFS and OS High pre-surgery serum NET associated with shorter
RFS/OS
RFS: HCC - HR 2.9, CC – HR 3.22
High CitH3 level also predicted shorter RFS/OS

Kaltenmeier et al.608

Pancreatic Ductal
Adenocarcinoma

PFS, Disease-specific survival Positive NET expression exhibited poorer PFS and DSS
NET formation is independent prognostic predictor of
DSS
PDAC with negative NET staining more likely to benefit
from ACT

Chen et al.722

Surgery NET formation between mild
and severe surgical trauma

Decreased NETosis after severe surgical trauma
Suggesting inducibility of NETs after surgical trauma
may be compromised

Huang et al.723

Age NET production and activity Greater NET production in elderly (>65) than adult
(20-50) adults.
NETs produced in elderly reduced bactericidal capacity.
Higher NET size in elderly (size of extruded DNA
threads)

Sabbatini et al.724

Exercise (HIIT) NET production Baseline induction of NETosis greater in older men
(p < 0.05)
HIIT reduced induction of NETosis in older men

Vidal-Seguel et al.725

Human Interventional Trials

COVID-19 ARDS Dornase alfa/MPO-DNA
complex

Reduced BALF MPO DNA
Improved PF ratio
Improved static lung compliance
In short term

Holliday et al.340

COVID-19 RhDNase-1 with
nanoparticulate

Reduced cfDNA Lee et al.630

COVID-19 RhDNase Decreased NETs in sputum
Associated wtih recovery and improved oxygenation

Fisher et al.726

Pancreatic cancer Lidocaine/Circulating NETs No improvement is OS or DFS Zhang et al.633

Pre-diabetes Metformin/Net components
elastase, proteinase-3,
histones, dsDNA

Reduced NET components (elastase, proteinase-3,
histones, dsDNA).
Better than with other glycemic agents

Menegazzo et al.727

Breast cancer IV lidocaine/MPO, CitH3,
VEGF

Decreased post-op expression of NETosis Galos et al.632

ARF after Trauma Inhaled Dornase Alfa Enrolling Incidence of moderate to severe ARDS in
ventilated trauma patients in ICU

NCT03368092

ACS after PCI Colchicine Suppresses NET formation by storing cytoskeletal
dynamics

Vaidya et al.728

Breast Cancer Tamoxifen/Serum NETs, drug
resistance, cancer metastasis,
comorbidities

Currently enrolling NCT05056857

Lung cancer Perioperative lidocaine/
dexmedetomidine

Reduced serum MPO
Reduced MMP-3

Ren et al.729
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Observational work is not limited to post-hoc analysis of
existing studies. Multiple studies have utilized serum NET
biomarkers to form prognostication and prediction models for
outcomes across a variety of pathologic states. Boettcher et al
utilized cfDNA and CitH3 levels as predictive markers for
appendicitis in adult populations, which demonstrated superior
performance compared to standard-of-care white blood cell count
and c-reactive protein levels.627 Li et al. examined serum NET
markers after cardiac arrest, identifying that cfDNA and CitH3 were
independent predictors of 28-day all-cause mortality.628 Yang
et al. found that higher serum NET-specific markers, particularly
CitH3, were predictive for wound healing impairment in diabetic
foot ulcers and future amputation.629

Currently, available interventional trials are limited, and the
majority use DNase analogs as the intervention of interest.
Dornase alpha, an agent known to directly degrade the
extracellular DNA in NETs, was tested in a 2021 nonrandomized
trial of patients with ARDS secondary to COVID-19. Inhaled
administration led to reduced bronchoalveolar lavage fluid MPO-
DNA complexes, improved PF ratio, and improved static lung
compliance, suggesting that degradation of NETs can be
beneficial in this population. However, results were not sustained
at 14 days, suggesting the benefit may be short-lived.340

Additionally, existing agents have been studied after modifica-
tions with attempts to improve drug delivery and subsequent
outcomes. In 2020, a recombinant DNase1 coated with a polymer
nanoparticulate was administered in COVID-19 patients to explore
whether this would improve delivery and mediate neutrophil-
mediated activity. Findings suggested that this nanoparticulate
coating led to reduced cfDNA levels and neutrophil activation, and
may be used as a therapeutic modification.630

Interventional trials have also taken advantage of other existing
and commercially available agents, repurposing them to target
NETs. A 2018 single-arm phase 2a proof of concept study
examined the effect of the combinatorial rituximab and belimu-
mab, an antibody that leads to sustained inhibition of B cell
activation, to address whether autoantibodies were related to
excessive NET formation. The combination therapy administered
resulted in reduced NETs in patients with systemic lupus
erythematosus. It had been previously demonstrated that SLE
impairs NET degradation, and those NETs propagate the
inflammatory response through immune complex deposition.631

Another agent explored in interventional trials is intravenous
lidocaine, particularly in the setting of improving disease-specific
outcomes after oncologic surgery. In 2020, intraoperative IV
lidocaine use was explored in breast cancer surgery and
associated with decreased expression of NET markers post-
operatively. While this study did not directly evaluate outcomes,
the study authors set a future goal of evaluating if utilizing IV
lidocaine in curative intent surgery may reduce recurrence.632

Shortly thereafter, a multicenter randomized controlled trial in
2022 evaluated intravenous intraoperative lidocaine during
pancreatectomy for malignancy. Lidocaine in this setting transi-
ently lowered circulating NETs, however there was no difference in
intra-tumoral NETs, and did not improve overall or disease-free
survival.633

CONCLUSION AND OUTSTANDING QUESTIONS
In recent years, the growing understanding of NETs as pivotal
players in both physiological defense mechanisms and patholo-
gical processes underscores their significance in human health
and disease. NETs act as a double-edged sword, offering
fundamental antimicrobial defense while also contributing to
tissue damage and inflammation in various diseases. The intricate
interplay between NETs and the immune system, coagulation
pathways, and tissue remodeling processes emphasizes their
multifaceted functions. However, it is worth noting that their

immune-regulatory characteristics remain largely unknown, which
could be beneficial in immune defense. Several factors, including
the microenvironment of the disease sites and various stimuli,
determine whether NETs are beneficial or detrimental in certain
conditions.
The investigation into the molecular, cellular, and biophysical

mechanisms governing NET formation in physiological or
pathological processes is at an early stage. Various extracellular
and intracellular microbes stimulate neutrophils to initiate NETs
through suicidal and vital NETosis. Current research predomi-
nantly focuses on determining the factors that induce NET
formation, yet show limited elucidation of their underlying
cellular mechanisms. It remains uncertain whether NET forma-
tion varies between physiological and pathological conditions,
such as during immunomodulatory or antimicrobial progress,
autoimmune disorders, or cancer. Additionally, there is insuffi-
cient understanding of potential variations in NET components
across different contexts. The functional role of NETs depends
on variations in their composition and structure. Given that
NETosis follows a defined sequence of events, understanding
molecules inhibiting NET formation will enhance our compre-
hension of the fundamental mechanisms underlying NET
formation and identify new targets for modulating NETs in
diseases.
The spectrum of diseases associated with NETs is gradually

broadening, encompassing inflammatory disorders, thrombosis,
and cancer. In autoimmune diseases, NETs, serving as potential
sources of autoantigens and immune-cell activators, could
significantly contribute to autoimmunity development and the
break of immune tolerance. Further investigations to identify auto
antigenic components in NETs structure are crucial for designing
new therapies for autoimmune disease therapies. The immuno-
modulatory properties of NETs might be necessary for enabling an
appropriate inflammatory response or for limiting inflammation
and maintaining homeostasis, which necessitates further investi-
gations. Moreover, understanding their impact on other immune
cells involved in both adaptive and innate immune responses will
be pivotal for future research.
Despite numerous studies identifying NETs as having tumor-

promoting effects, some studies have demonstrated tumor-
inhibiting effects, especially in early-stage cancer or metastasis.
Generally, elevated NET levels are associated with poor outcomes
in various cancers, suggesting their potential clinical utility as
biomarkers. A deeper comprehension of the interplay among
NETs, cancer cells, and immune responses in the TME can enhance
our understanding of cancer immunotherapy resistance. More-
over, the role of NETs in immune surveillance has not been
sufficiently evaluated. It is likely that NETs in blood vessels versus
tissues have different consequences, indicating diverse roles for
NETs depending on their location.
Existing clinical and basic research highlights the importance

of developing novel therapeutics targeting both the process of
NET formation and the NET structures. Future research should
focus on designing interventions tailored to the specific
characteristics and stages of different diseases. For instance,
in the early stages of infectious diseases, it is crucial to enhance
the function of NETs to eradicate pathogens. Conversely, for
sterile inflammation and most advanced-stage cancers, inhibit-
ing the formation of NETs is more advantageous. When
considering NET inhibition, it is more promising to focus on
regulating NET formation rather than eliminating already
formed NETs. This objective can be achieved by identifying
and targeting the factors implicated in the pathways initiating
NET formation. Given the presence of NETs in multiple organs of
the human body, they hold potential as significant modulators
of both health and disease states. The dynamic regulation of
NET levels in the body to sustain homeostasis presents an
exciting research avenue. Although researchers have already
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integrated NETs into various clinical trials, the primary remain-
ing objective in the field is to translate NET-targeted therapies
into clinical practice.
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