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The discovery of small molecules that target the extracellular domain of prostate-specific membrane antigen (PSMA) has led to
advancements in diagnostic imaging and the development of precision radiopharmaceutical therapies. In this review, we present
the available existing data and highlight the key ongoing clinical evaluations of PSMA-based imaging in the management of
primary, biochemically recurrent, and metastatic prostate cancer. We also discuss clinical studies that explore the use of PSMA-
based radiopharmaceutical therapy (RPT) in metastatic prostate cancer and forthcoming trials that investigate PSMA RPT in earlier
disease states. Multidisciplinary collaboration in clinical trial design and therapeutic administration is critical to the continued
progress of this evolving radiotheranostics field.
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PSMA AND PROSTATE CANCER
Prostate cancer (PCa) is the second most common cancer in men
worldwide, and the fifth leading cause of death from cancer [1].
Prostate-specific membrane antigen (PSMA) is a type II transmem-
brane glutamate carboxypeptidase located on the prostate
secretory-acinar epithelium, and is the most prostate-specific cell
surface antigen yet identified [2–6]. PSMA was cloned as the target
of the 7E11-C5 antibody [3], which was previously shown to bind
the surface of prostate epithelial cells and the serum of prostate
cancer patients [2]. PSMA has a relatively restricted normal
expression, including salivary and lacrimal glands, proximal renal
tubules, liver, etc. [7]. The majority of adenocarcinomas of the
prostate demonstrate PSMA expression in the primary and
metastatic lesions, and the level of PSMA expression is approxi-
mately 1000-fold higher than that of normal prostate tissue [8].
PSMA expression by immunohistochemistry has been correlated
with de-differentiated, metastatic, or castrate-resistant disease
[9, 10]. Since internalization occurs after binding of small-molecule
ligands to PSMA, these molecules are ideal candidates for radio-
ligand therapy [11].

PSMA PET IMAGING
Due to the low specificity and sensitivity of FDG positron emission
tomography (PET) in prostate cancer [12], functional imaging of
prostate malignancies has been explored using a variety of
radiotracers targeting PSMA [13]. 7E11-C5 labeled with 111In
(ProstaScint®) became the first Food and Drug Administration
(FDA) approved SPECT imaging tracer in prostate cancer [14].
However, because 7E11-C5 only recognizes the intracellular

portion of PSMA, it mainly identifies dead cells. Liu et al. [15]
isolated the first monoclonal antibody to the extracellular domain
of PSMA, the binding of which led to receptor dimerization and
endocytosis. This led to the development of a humanized version
of the antibody, J591, which demonstrated potential for molecular
imaging in castrate-resistant prostate cancer [16]. Multiple small
molecule ligands that bind to the extracellular domain of PSMA
have also been developed, with shorter biological half-lives and
improved tumor-to-background ratio. These include 68Ga-PSMA-
11, 18F-DCFPyL, and 68Ga-PSMA-617. 68Ga-PSMA-11 (Locametz®)
PET and 18F-DCFPyL (Pylarify®) PET gained FDA approval in 2020
and 2021, respectively. Other FDA approved PCa-specific PET
tracers include carbon 11 (C-11) choline, which relies on aberrant
choline metabolism in PCa, and 18F-fluorocyclobutane-1-
carboxylic acid fluciclovine (Axumin®), which is an analog of
L-leucine that is preferentially taken up by PCa and gliomas. In a
network analysis comparing the diagnostic performance of
radiotracers in recurrence PCa, small molecule inhibitors (PSMA-
11, PSMA-1007, DCFPyL) were superior to choline-based tracers,
however, there was no evidence that any one PSMA radiotracer
had improved diagnostic characteristics compared with another
[17]. As such, the appropriate use criteria for PSMA PET imaging
refers to all PSMA PET tracers as interchangeable [12].
In a prospective trial comparing 68Ga-PSMA-11 PET to

18F-fluciclovine in patients with biochemical recurrence (BCR) and
prostate specific antigen (PSA) ≤ 2 ng/mL, PSMA PET had a better
detection rate at all regions with the exception of the prostate bed,
where the two imaging modalities were similar in performance [18].
In head-to-head comparison of 68Ga-PSMA-11 PET with multi-
parametric magnetic resonance imaging MRI (mpMRI) in patients
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with intermediate- and high-risk disease, the overall cancer
detection rate was 85% with PSMA PET vs. 83% with mpMRI [19].
Despite high detection rates, there are non-trivial rates of false

negative and false positive. Up to 10% of prostate cancers do not
express PSMA, including many neuroendocrine or dedifferentiated
castrate-resistant prostate cancers (CRPC) [20]. False negatives also
include the aforementioned PET detection limit of nodes ≤ 5mm
in size that may have microscopic burden of disease. Commonly
seen false positives may be related to normal biodistribution of
PSMA in the sympathetic ganglia. Brain tumors that have
demonstrated PSMA uptake include meningioma, neurofibroma,
and glioma [21, 22]. Pulmonary sarcoidosis and granulomatosis
have also demonstrated mild uptake [23]. Ganglia are a common
pitfall as they can mimic lymph nodes, however, the intensity of
uptake, the shape, and the exact location along the sympathetic
trunk may help distinguish them from nodal metastases [24].
PSMA uptake in benign bone lesions can be challenging due to
propensity of prostate cancer to metastasize to the bone. PSMA
uptake has been described in healing bone fractures [25],
degenerative changes in Paget’s disease [26], and fibro-osseous
lesions including hemangiomas and fibrous dysplasia [27].
Several reporting criteria exist in an effort to standardize PSMA

PET interpretation: PSMA-RADS criteria [28], EANM criteria [29], and
PROMISE criteria [30]. These are based on the amount of radiotracer
uptake, on how typically radiotracer is distributed within the site,
and on the presence of an anatomic correlate. External validation of
the three proposed criteria have demonstrated good inter-reader,
intra-reader, and inter-criteria reproducibility, with the lung nodules
being the most frequent cause of disagreement [31]. This was
incorporated into molecular imaging (MI)-RADS [32], which reports
a PSMA expression score based on PSMA uptake relative to blood,
liver, and parotid gland, which then informs a 5-point confidence
score. Standardized imaging interpretation and reporting guidelines
will facilitate data comparison between studies and improve
reproducibility within clinical trials.

PSMA PET IN INITIAL DIAGNOSIS AND STAGING
PRIMARY was the first prospective phase II trial that evaluated
PSMA PET in the diagnosis of PCa in men with elevated PSA and/
or abnormal physical exam. The addition of PSMA PET to MRI
improved sensitivity (97% vs. 83%, p < 0.001) and negative
predictive value (91% vs. 72%, p < 0.001) compared to MRI-
guided biopsy alone [33]. The advantage of PSMA PET is most
compelling in the setting of negative or equivocal MRI findings,
where a positive or negative PSMA correlated with presence of
absence of PCa in 90% of patients [33]. In a meta-analysis
comparing imaging to histopathology at prostatectomy, the
sensitivity and specificity of 68Ga-PSMA-11 at initial staging were
74% and 96%, respectively [34]. Zhang et al. demonstrated
feasibility of using PSMA PET to guide targeted biopsies to detect
clinically significant disease, with detection rates similar to that of
systematic transrectal ultrasound-guided biopsies [35].
Maximum standardized uptake value (SUVmax) of PSMA PET has

been shown to correlate with aggressive disease. In a review of
over one thousand patients staged with PSMA PET prior to
prostatectomy, with a median PSA of 6 ng/mL, the SUVmax

correlated with grade group, where a SUVmax ≥ 11 improved the
detection of ≥ Gleason grade group 3 (GG3) disease [36]. Higher
PSMA avidity was associated with worse progression free survival
(PFS) and worse BCR-free survival (BRFS) in patients with
intermediate-risk disease (≤GG3) [37, 38]. On Cox regression
analysis, PSMA intensity was associated with BRFS (HR per 5-unit
increase = 1.10, 95% CI 1.01–1.19) by a magnitude that was similar
to PSA (HR per 5-unit increase= 1.10, 95% CI 1.03–1.18), and
independent of biopsy Gleason score [38].
Prospective trials have established the utility of PSMA PET in the

staging of nodal and distant metastases in high-risk patients. In

proPSMA, patients with at least one high-risk feature (PSA ≥ 20 ng/
mL, ≥ GG3, or ≥ cT3) were randomized to upfront 68Ga-PSMA-11
vs. conventional imaging, and PET performed better at detecting
any metastasis (nodal or distance) with a sensitivity of 85%
(compared to 38% by conventional) and specificity of 98%
(compared to 91% by conventional) [39]. In OSPREY, using
histopathology as gold standard, the sensitivity of 18F-DCFPyL in
detection of pelvic nodal metastasis in high-risk patients was
comparable to conventional imaging, approximately 40%, but
with 3-fold higher positive predictive values (PPV: 86.7% vs.
28.3%). Furthermore, sensitivity increased to 60% when lymph
nodes were larger than 5mm in the short-axis, reflecting the
inherent spatial limitations of PET resolution [40].
Nodal staging of intermediate-risk patients was examined in the

SALT and PEPPER, prospective studies that examined the
diagnostic accuracy of 18F-DCFPyL and 68Ga-PSMA-11, respec-
tively. Both trials enrolled patients with negative bone scans who
were able to undergo extended pelvic lymph node dissection.
Both agents demonstrated a similar sensitivity of 40% and a
specificity of over 91% [41, 42]. As expected, the PPV of PSMA PET
increased with increased pre-test probability. In the SALT study of
patients with Memorial Sloan Kettering Cancer Center (MSKCC)
nomogram probability of ≥ 8% risk of lymph-node metastases, the
overall prevalence of lymph node metastasis was 14.5% and PSMA
PET PPV was 54.8% [41]. In PEPPER, which required MSKCC
nomogram probability of ≥ 10% risk of lymph-node metastases
[42], the overall prevalence of nodal metastasis was 37.9% and
PSMA PET PPV was 77%.

PSMA PET IN BIOCHEMICAL RECURRENCE
In the setting of biochemical recurrence (BCR), PSMA PET has a very
high PPV of 99% [34], and remains high at 84% when assessed
strictly by histopathologic validation with substantial inter-reader
reproducibility [43]. The sensitivity of detection was highly
dependent on PSA levels, with a detection rate of 63% at
PSA < 2 ng/mL versus 94% when the PSA was > 2 ng/mL [34]. In a
retrospective review of 200 patients with castrate-resistant disease
judged non-metastatic by conventional imaging (M0 CRPC), with a
median PSA of 5.3 ng/mL, 55% of those patients had PSMA-positive
metastatic disease [44]. Whether earlier detection of metastatic
disease will truly affect the natural history of the patient is unknown,
and there is significant concern regarding the potential effects of
stage migration and lead-time bias on clinical trials [45].
Table 1 lists trials of PSMA imaging agents in the biochemical

recurrent and/or metastatic space include PROPER-ABX
(NCT04239742), SPOTLIGHT (NCT04186845), PROfind
(NCT03490032), and SECuRE (NCT04868604), and in newly
diagnosed disease include LIGHTHOUSE (NCT04186819) and
GuideView (NCT04838626). PRIMARY2 (NCT05154162) and PICture
(NCT04487847) both investigate the potential added value of
PSMA PET to mpMRI in patients with suspected cancer. These
agents vary by the PET tracer and the PSMA-binding ligand. For
instance, 68Ga can be made by an on-site 68Ge/68Ga generator,
while 18F production requires a cyclotron. 18F-PSMA-1007 and 18F-
rhPSMA-7.3 have the advantage of lower urinary excretion, which
can improve the ability to detect lesions in close proximity to the
urinary tract [46, 47]. Radiohybrid (rh) is a class of molecules where
the PSMA ligand is connected to two separate binding sites for
radiometals, where the radioactivity of each binding site is
modulated by radioisotope exchange. The advantage is that a
diagnostic and therapeutic pair of compounds will have similar
biodistribution and pharmacokinetics [48].

MANAGEMENT IMPLICATIONS USING PSMA PET
Given its superior detection rate compared to conventional
imaging, it is not surprising that PSMA PET results in a change
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in definitive radiation therapy (RT) volume. In a retrospective
review from UCLA in intermediate- and high-risk patients without
evidence of nodal or distant metastases by conventional imaging,
with a median PSA of 13.9, 68Ga-PSMA-11 PET identified disease
outside of standard RT fields in 37% of patients [49]. Similarly, in
high- and very high-risk patients, with a median PSA of 16 ng/mL,
RT was altered in 53% of patients [50]. Boost to an avid lymph
node accounted for 24% of changes, followed by metastasis
directed RT to bone metastases and extension of nodal clinical
target volume (CTV) to include PSMA-avid nodes.
The CONDOR trial investigated 18F-DCFPyL in men with

biochemical recurrence after prostatectomy or prior radiation
with negative or equivocal conventional imaging and showed that
almost 64% of patients had a change in intended management
based on 18F-DCFPyL findings [51]. In the salvage setting, about
20–30% of patients will have at least one PSMA PET lesion that is
not covered by traditional salvage RT fields. In a retrospective
review of patients with BCR after prostatectomy and PSA < 2.0 ng/
mL (median PSA of 0.4 ng/mL), 30% of patients were found to
have at least one PSMA PET-avid lesion outside salvage RT fields
[52]. In a single arm prospective trial analyzing diagnostic
sensitivity of 68Ga-PSMA-11 in patients with BCR after prostatect-
omy, over half of which did not have conventional imaging, PET
imaging findings resulted in a change in the intended manage-
ment in 68% of patients [53]. In a post-hoc analysis of this trial in
patients with a PSA < 1.0 ng/mL, almost half (49%) had a 68Ga-
PSMA-11 positive lesion, and 52% of those PSMA PET-avid lesions
were outside the consensus RT volumes [54]. The majority of these

(64%) were extra-pelvic lesions, and the remaining (36%) were
within the pelvis but still outside the consensus volumes [54].
It remains to be determined whether changes in management

resulting from PSMA PET information will translate to oncologic
benefit. Furthermore it is uncertain whether M1 disease defined by
conventional imaging reflects the same disease state and trajectory
as M1 disease on molecular imaging. Table 2 summarizes select
ongoing clinical trials that are investigating whether changes in
management by molecular imaging translate into oncologic
benefit: EMPIRE II (NCT03762759), PSMA SRT (NCT03582774),
PSMA-PETgRT (NCT03525288) [55], NCT04794777, INDICATE
(NCT04423211), and PATRON (NCT04557501).

PSMA PET IN OLIGOMETASTATIC DISEASE
The use of PSMA PET in oligometastatic disease, based on a
pragmatic cut-off of 3–5 lesions, was explored in PSMA MRgRT,
where patients with BCR and M0 disease by conventional imaging
underwent metastasis directed therapy (MDT) to all sites of PSMA-
avid disease without receiving concurrent hormonal therapy. The
median time to PSA progression was 17.7 months and the median
time to starting ADT was not reached [56]. Furthermore, complete
metabolic response on PSMA PET at 4 months post MDT was
prognostic for biochemical control. Similar results were observed
in STOMP, where choline (11C or 18F) PET directed MDT improved
median ADT-free survival to 21 months compared to 13 months
with observation (p= 0.11) [57]. The 5-year ADT free survival was
34% vs. 8% (p= 0.06) and there were no reported CTCAE Gr ≥ 2

Table 1. Select ongoing prospective PSMA PET trials in the diagnosis / staging of PCa.

Trial Study design Population Primary outcome

PRIMARY2
NCT05154162

Phase III
Randomized
PSMA PET/CT (pelvic-only
view) ± TPTPbx
VS
No PET+ TPTPbx

suspected PCa (based on elevated PSA and/or
abnormal DRE), and negative/equivocal mpMRI
(≤ PI-RADS 3)

Presence of significant PCa (≥GG2)
Cost/benefit of the addition of PSMA PET

PICture
NCT04487847

Phase I/II
Single arm
18F-PSMA-1007
plus mpMRI

suspected PCa (based on elevated PSA and/or
abnormal DRE)

Compare mpMRI, 18F-PSMA-1007 PET and
histopathology

LIGHTHOUSE
NCT04186819

Phase III
Single arm
18F-rhPSMA-7.3

newly diagnosed UIR, HR, or VHR PCa, and
planned to undergo RP and PLND

Patient-level sensitivity and specificity of 18F-
rhPSMA-7.3 for detecting LN metastases
compared to histopathology

GuideView
NCT04838626

Phase II/III
Single arm
18F-CTT1057

newly diagnosed HR PCa, and planned to
undergo RP and PLND

Patient-level sensitivity in the primary and LN
disease, and region-level specificity of the LN
disease, compared to histopatholgoy

PROPER-ABX
NCT04239742

Phase II
Single arm
18F-fluciclovine and 18-F-
PSMA-1007

BCR, at PSA of 0.2 ng/mL – 5 ng/mL Comparison of detection efficacy between
the two radiotracers

SPOTLIGHT
NCT04186845

Phase III
Single arm
18F-rhPSMA-7.3

BCR, at PSA > 0.2 ng/mL (after RP) or PSA nadir
+ 2.0 ng/mL (after RT)

PPV of 18F-rhPSMA-7.3, using histopathology
or confirmatory imaging as standard of truth

SECuRE
NCT04868604

Phase I/II
Single arm
64Cu-SAR-bisPSMA

mCRPC, with ≥ 1 metastatic lesion based on
conventional imaging (CT, MR, bone scan)

Safety and tolerability, dosimetry

PROfind
NCT03490032

Phase I/II
Single arm
68Ga-PSMA-R2

Phase I – BCR, at PSA > 0.2 ng/mL (after RP) or
PSA nadir + 2.0 ng/mL (after RT)
Phase II – metastatic disease (both castration
sensitive or castration resistant), with ≥ 1
metastatic lesion based on conventional
imaging (CT, MR, bone scan)

Safety and tolerability, dosimetry

BCR Biochemical recurrence, DRE Digital rectal exam, HR High risk, mpMRI Multiparametric magnetic resonance imaging, LN Lymph node, mCRPC Metastatic
castrate-resistant prostate cancer, RP Radical prostatectomy, RT Radiotherapy, PCa Prostate cancer, PLND Pelvic lymph node dissection, PPV Positive predictive
value, PSA Prostate-specific antigen, PSMA Prostate-specific membrane antigen, TPTPbx Transperineal template prostate biopsy.
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toxicities [58]. In contrast, ORIOLE enrolled participants with
metastatic disease based on conventional imaging, and still
demonstrated decreased from progression at 6 month of 61% vs.
19%, favoring MDT (p= 0.005) [59]. Sixteen of the 36 patients had
baseline PSMA-PET imaging prior to treatment, which were
blinded to the investigative team. Post hoc analysis noted that
total consolidation of PSMA-avid lesions improved PFS (HR 0.26,
p= 0.0055) and decreased the incidence of new metastases at
6 months from 63% with subtotal consolidation to 16% with total
consolidation (p= 0.006) [59]. In the updated pooled analysis of
STOMP and ORIOLE, MDT improved median PFS to 11.9 months
compared with 5.9 months for observation (HR 0.44, p < 0.001)
[60]. Notably, patients with a high-risk mutational signature
(pathogenic somatic mutations in ATM, BRCA1/2, RB1, or TP53)
derived a greater PFS benefit from MDT relative to no MDT (HR
0.05, p < 0.01) compared to those without the high-risk mutations
(HR 0.42, p= 0.01) [60].

PSMA LIGANDS AND RADIOPHARMACEUTICAL
OPPORTUNITIES
Multiple small molecule PSMA-targeted radiopharmaceuticals with
beta or alpha-emitting radionuclides have been developed for
prostate cancer therapy, including the recently FDA-approved
177Lu-PSMA-617 (177Lu vipivotide tetraxetan: Pluvicto®). Lutetium-
177 has a convenient physical half-life of 6.7 days and emits β
particles (maximum energy 497 keV) in the therapeutic range with
a relatively low proportion of γ emission (113 keV at 6% and
208 keV at 11%). Its maximal tissue penetration of < 2mm

significantly reduces bystander dose to adjacent normal tissues.
As a result of these favorable characteristics, 177Lu has emerged as
a promising therapeutic radionuclide for multiple targets. Binding
of the PSMA receptor induces dimerization and internalization of
the complex, effectively trapping the radionuclide within the
prostate cancer cell, where it subsequently induces double-strand
DNA (dsDNA) damage leading to apoptosis (Fig. 1). Notably, other
therapies that target PSMA are also in development, including
radionuclide-conjugated antibodies, antibody-drug conjugates,
T-cell recruiting bispecific agents, and cellular approaches with
PSMA-directed chimeric antigen receptor (CAR)-T cells [61].

CLINICAL DATA SUPPORTING THE USE OF 177LU-PSMA-617
RPT
Metastatic castrate-resistant prostate cancer (mCRPC) remains an
incurable disease. Figure 2 outlines the current landscape of
treatment options, which includes conventional chemotherapy,
such as docetaxel and cabazitaxel, additional androgen receptor
signaling inhibitor (ARSI), such as abiraterone and enzalutamide,
bone-seeking radiopharmaceuticals such as radium-223 dichlor-
ide, and most recently, 177Lu-PSMA-617 radioligand therapy.
The LuPSMA trial was the first prospective phase 2 study to

evaluate 177Lu-PSMA-617 in 30 patients with mCRPC that had
progression on standard treatment, demonstrated PSMA avid
disease on PSMA PET imaging and, notably, and did not harbor
discordant 18F-FDG-avid disease that was not PSMA-positive.
Patients received up to 4 cycles of 177Lu-PSMA-617 at a mean of
7.5 GBq each. The primary endpoint of a ≥ 50% decline in PSA was

Table 2. Select ongoing prospective trials evaluating outcomes of PET/CT guided management.

Trial Phase, status, patient
population

Study design Primary endpoint

EMPIRE II
NCT03762759

II
Recruiting
Post-RP BCR
M0 by CI (99mTc-MDP, 18F-NaF
PET, CT, MRI)

18F-fluciclovine guided treatment
VS
68Ga-PSMA-11 guided treatment

DFS

PSMA SRT
NCT03582774

III
Accrual complete
Post-RP BCR

68Ga-PSMA-11 guided treatment
VS
CI guided treatment

5 y bRFS

PSMA-PETgRT
NCT03525288

II
Accrual complete
HR, BCR, or Oligometastatic

18F-DCFPyL PSMA guided treatment
VS
CI guided treatment

5 y FFS
Secondary endpoint: new lesions detected in 46% (HR)
and 45% (BCR), leading to treatment intensification
(Menard 2020)

PATRON
NCT04557501

III
Recruiting
HR, N1, or post-RP BCR

018F-DCFPyL PSMA guided treatment
VS
CI guided treatment

5 y FFS

NCT04794777 III
Recruiting
Post-RP and pN0 → first
time BCR

PSMA PET (68Ga or 18F-1007)
VS
CI guided treatment

10 y PFS

INDICATE
NCT04423211

III
Recruiting
Post-RP BCR
M0 by CI (99mTc-MDP, pelvic
CT, pelvic MRI)

• Based on 18F-fluciclovine:
No extrapelvic uptake
• ADT+ SRT
VS
• ADT+ SRT
•+ apalutamide

Extrapelvic uptake
• ADT+ SRT+ apalutamide
VS
• ADT+ SRT+ apalutamide + MDT

10 y PFS

ADT Androgen deprivation therapy, BCR Biochemical recurrence, bRFS Biochemical recurrence free survival, CI Conventional imaging, DFS Disease free survival,
FFS Failure free survival, HR High risk, mpMRI Multiparametric magnetic resonance imaging, MDT Metastasis directed therapy, PCa Prostate cancer, PFS
Progression free survival, PSA Prostate-specific antigen, PSMA Prostate-specific membrane antigen, RP Radical prostatectomy, SOC Standard of care, SRT Salvage
radiation therapy, 99 mTch-MDP Technetium 99m-methyl diphosphonate.
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achieved in 57% of patients [62]. Importantly, all patients who
reported pain at baseline noted decrease in pain at all timepoints.
Based on these clinically meaningful improvements, TheraP was
developed to test 177Lu-PSMA-617 against cabazitaxel in a
randomized fashion in patients with mCRPC who had progression
on docetaxel. In this 200-patient trial, PSA response of ≥ 50% was
achieved in 66% vs. 37% (p < 0.001) of patients who received
177Lu-PSMA-617 vs. cabazitaxel, respectively [63]. While the
median PFS was similar between both arms at 5.1 months, the
12-month PFS was 19% vs. 3% (HR 0.63, 95% CI 0.46–0.86),
favoring 177Lu-PSMA-617 [63]. At a median follow-up of 36 months,
the restricted mean survival time was similar between both arms
(19.1 months vs. 19.6 months) [64].
In 2021, the VISION phase III trial testing 177Lu-PSMA-617 was

completed. VISION randomized 831 patients to 177Lu-PSMA-617
(7.4 GBq) plus standard of care (SOC) vs. SOC alone [65]. Of the
1003 patients who underwent 68Ga-PSMA-11 imaging, 87% had at
least one PSMA positive lesion and were eligible for randomiza-
tion. While patients with PSMA non-avid lesions were not eligible
(required SUVmax ≥ liver), FDG PET was not required, which may
explain why response rates were lower in VISION than compared
to LuPSMA and TheraP. This was a pre-treated population, with
virtually all having previously received docetaxel and ∼40%
receiving two prior regimens of ARSI. Nevertheless, the addition of
177Lu-PSMA-617 to SOC demonstrated superior radiographic
progression-free survival (rPFS) of 8.7 months vs. 3.4 months with
SOC alone (HR 0.4, 95% CI 0.29–0.57). Median overall survival (OS)
also favored the 177Lu-PSMA-617 arm at 15.3 months vs.
11.3 months with SOC alone (HR 0.62, 95% CI 0.52–0.74) [65]. Of
note, while rPFS was evaluated in the set of 581 patients enrolled
after corrective measures to reduce drop-out in the SOC arm, the
OS benefit persisted in the entire cohort. Brief pain inventory (BPI-
SF) and patient reported outcomes (EQ-5D, FACT-P) also favored
the 177Lu-PSMA-617 arm. Results from VISION led to the Food and
Drug Administration (FDA) approval of 177Lu-PSMA-617 in March

2022 for the treatment of PSMA-positive mCRPC (by 68Ga-PSMA-
11) having previously been treated with ARSI and taxane-based
chemotherapy [66].
Ongoing phase 2 and 3 trials are evaluating 177Lu-PSMA therapy

in earlier line and earlier stage prostate cancer. This includes
studies in men with chemo-naïve metastatic castrate resistant
prostate cancer (SPLASH NCT04647526; PSMAFore NCT04689828;
ENZA-P NCT04419402, ECLIPSE NCT05204927), metastatic
castration-sensitive prostate cancer (UpFrontPSMA NCT04343885,
PSMAddition NCT04720157), oligometastatic castration-sensitive
prostate cancer (Bullseye NCT04443062; LUNAR NCT05496959),
and locoregionally advanced or high-risk prostate cancer (LuTect-
omy NCT04430192; PROQURE-1 NCT05162573) (Fig. 2). Of note,
177Lu-PSMA-I&T (in ECLIPSE) and 177Lu-PNT2002 (in SPLASH) differ
in formulations, but both contain the same urea-binding motif,
linker and DOTAGA chelator [67].
In high-risk prostate cancer, Globan et al. [68] demonstrated

safety and feasibility of administering up to 3 doses of
neoadjuvant 177Lu-PSMA-I&T at 7.4 GBq per dose, given every
two weeks, followed by surgery 4 weeks after the last dose. There
were no Common Terminology Criteria for Adverse Events
(CTCAE) Gr > 3 events during 177Lu-PSMA treatment and no
intraoperative complications. Positive margins were identified in
53% of patients. In the phase 1 portion of LuTectomy, 10 patients
were received 1 dose of 5 GBq of 177Lu-PSMA-617, proceeded by
surgery 6 weeks later [69]. Preliminary results presented at the
2022 European Association of Urology showed a median absorbed
dose of 48 Gy in the prostate and 50 Gy in the lymph nodes, with
no CTCAE Gr ≥ 1 adverse events or Clavien-Dindo Gr ≥ 3 events.
There were no cases of pathologic complete response or minimal
residual disease in that study.

BIOMARKERS TO PREDICT BENEFIT FROM 177LU-PSMA
Heterogeneity of PSMA receptor activity (i.e. lack of dimerization
and internalization), and varying levels of PSMA expression on
tumor cells may account for the lack of response in some patients.
Furthermore, differences in intrinsic cellular DNA-repair capabil-
ities may also contribute to primary resistance. Therefore,
biomarkers are needed to predict response to 177Lu-PSMA RPT.
From the LuPSMA trial, tumor SUVmean was found to be positively
correlated to whole-body tumor dose determined by single
photon emission computed tomography (SPECT) dosimetry of
177Lu. Patients who achieved at least a 50% decline in PSA at
12 weeks had a median whole-body absorbed tumor dose of
14.1 Gy, compared to a whole-body tumor dose of 9.6 Gy in those
who experienced less than a 50% PSA decline [70]. PSMA PET
surrogate calculations from TheraP showed that a SUVmean ≥ 10
predicted a much greater odds of PSA response in patients who
received 177Lu-PSMA-617 compared to cabazitaxel, with an odds
ratio of 12.19 for SUVmean ≥ 10 vs. 2.22 for SUVmean < 10
(p= 0.039). The PSMA PET SUVmean did not predict for response
to cabzitaxel [71]. Similarly, results from VISION found whole-body
tumor SUVmean was associated with improved PFS (HR 0.86, 95%
CI 0.82–0.91) and OS (HR 0.88, 95% CI 0.84–0.91) on multivariate
analysis [72].
Data from the outcomes of RESIST-PC (study closed early due to

sponsorship transfer) [73] and LuPSMA [62] were combined to
develop a nomogram to predict outcomes after treatment with
177Lu-PSMA-617, which was both internally and externally
validated [74]. Clinical characteristics that were predictive for
both OS and PSA-progression-free survival included time since
diagnosis (years), chemotherapy status (yes or no), tumor SUVmean

(continuous variable), bone metastasis (present or absent), and
liver metastasis (present or absent). The total number of lesions
(< 20 or ≥ 20) was a predictor for OS, while pelvic nodal metastasis
(present or absent) was a predictor for PSA-PFS. With a modest
C-index of 0.71, an optimal cutoff score was used to stratify

177Lu-PSMA

PSMA

Internalization

dsDNA damage

Cell Death

Fig. 1 Mechanism of action of 177Lu-PSMA radioligand therapy.
PSMA-617 and PSMA-I&T are low-molecular weight ligands (in black)
with high binding affinity to PSMA, connected to the radionuclide
by a linker (in red). Once bound, receptor dimerization can lead to
internalization of the receptor-ligand complex. This allows concen-
tration of the radionuclide, 177Lu, within the cell. Ionizing radio-
therapy may produce DNA double-strand breaks in the cell and
neighboring cells (up to ~2mm), ultimately leading to cell death.
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patients into low-risk vs. high-risk, where median OS was
24.9 months vs. 7.9 months (p < 0.0001) and PSA-PFS was
6.6 months vs. 2.5 months (p= 0.022), respectively [74]. While
prospective validation is needed, these nomograms that are
predictive of outcomes after 177Lu-PSMA in patients with mCRPC
serve to guide individual clinical decision making.
The cytotoxic effects of radiation stems from either direct action

(direct breakage of DNA atomic bonds) or indirect action (through
ionization of water and creation of free radicals to induce DNA
damage). The proportion of direct versus indirect effects is related
to the linear energy transfer (LET), where alpha particles (e.g.,
223Ra) have a much higher LET than beta particles (e.g. 177Lu).
Higher LET will create more double-stranded breaks (DSBs), which
are the main lethal event in inducing cell death, and is less
dependent on the cell cycle phase and presence of hypoxia.
Therefore, the type of radiation utilized and the integrity of genes
that mediate the DNA damage response (DDR) pathway will
influence the cytotoxic responsiveness to radiation. Aberrations in
DSB repair mechanisms are increasingly recognized in mCRPC
patients, where the prevalence of DDR germline and somatic
mutations range from 8% to 12% [75, 76] and 20% to 25% [77],
respectively. In a retrospective single-institution review of 28
mCRPC patients who received 223Ra, 80% of patients with HR
mutations experienced a ≥ 30% decline in alkaline phosphatase
(ALP) compared to 39% patients without HR mutations (p= 0.04)
[78]. While there were no differences in PSA response, there was a
trend towards improved median OS in patients who were HR-
deficient (36.9 months vs. 19 months, p= 0.11) [78]. This is
consistent with data suggesting that ALP decline was prognostic
for OS independently of PSA changes in mCRPC patients with
bone metastases who received chemotherapy [79]. Likewise, a
multicenter cohort review noted that the presence of DDR
aberrations in patients receiving 223Ra was associated with a
longer median OS compared to those without mutations
(36.3 months vs. 17 months, p= 0.01) [80]. Preliminary results
from the prospective observational biomarkers study, PROPRA-
DIUM (NCT02925702), also demonstrated improved ALP responses
(> 30% decline in ALP at 12 weeks) in patients with germline HR-
mutations (75% vs. 43%, p= 0.036), with a similar trend towards

improvement in median OS (14.4 months vs. 10.6 months,
p= 0.066) [81]. While there was one case report of extraordinary
PSA response in a mCRPC patient with germline DDR mutations
following 177Lu-PSMA-617 [82], a predefined retrospective review
of 40 patients (42.5% of whom were DDR-deficient) did not
identify any associations between pathogenic DDR aberrations
and responsiveness to PSMA-RPT, regardless of the radionuclide
used (177Lu or 225Ac) [83]. However, since only 7/40 patients
received 225Ac by itself, there was unlikely to be sufficient power
to determine whether patients with damage repair deficiencies
benefited more from an alpha emitter. This “synthetic lethality”
hypothesis that defects in mechanisms of DNA repair would
render a tumor more susceptible to high-LET radiation is
prospectively explored in NCT04489719. An excellent review of
genomic biomarkers utilized in radiotherapy can be found here
[84].

RADIATION DOSIMETRY OF 177LU-PSMA-617
Patient-specific dosimetry is not standardized for 177Lu-PSMA-617.
Patients in VISION received a fixed dose of 7.4 GBq (200 mCi) per
cycle. In TheraP, administered dose per cycle was between
6.0–8.5 GBq, adjusted based on tumor burden, patient’s weight,
and renal function. The dose of 177Lu-PSMA used was informed by
safety data from 177Lu-DOTATATE [85] and applying external
beam radiation therapy (EBRT) absorbed dose constraints on bone
marrow and kidney. While the convenience of a fixed dose has
allowed ease of RPT integration into clinical workflow, patient-
specific dosimetry using SPECT to directly image 177Lu could
inform modification of the injected activity in order to increase the
therapeutic index [86].
Current dosimetric normal organ constraints are primarily based

on toxicity data from EBRT [87, 88]. However, there are critical
differences between EBRT and RPT. First, while EBRT is generally
prescribed as a dose to a point or volume, RPT is usually
prescribed as an activity per injection, body weight, or surface
area. Second, treatment with 177Lu-PSMA is greatly protracted,
with 6 weeks between each dose. This is opposed to daily
treatment with EBRT where there is normally a 24-hour interval in

LOCALIZED DISEASE ADVANCED CASTRATION-RESISTANT

M0

177Lu-PSMA-617

Pembrolizumab

Radium-223

Docetaxel

Sipuleucel-T

Olaparib; rucaparib

ADVANCED CASTRATION-SENSITIVE 

Biochemical 
relapse

(PSA increase)
M1

De novo M1

Docetaxel +/- darolutamide

M0

M1

Apalutamide; darolutamide; enzalutamide

Abiraterone; enzalutamideAbiraterone; apalutamide; enzalutamide

Post-ARSI*

HRR-deficient

MSI-H, dMMR

Symptoma�c bone metastases

Minimal or no symptoms

Local therapy 
or ac�ve 

surveillance
ADT

ADT

Post-docetaxel Cabazitaxel

Post-docetaxelPSMA-posi�vePSMA-posi�ve
UpFrontPSMA

Docetaxel

177Lu-PSMA-617 + Docetaxel

PSMAddi�on
SOC

177Lu-PSMA-617 + SOC

Bullseye
Observa�on (without ADT)

177Lu-PSMA-617 (without ADT)
Oligometasta�c

ENZA-P
enzalutamide

177Lu-PSMA-617 + enzalutamide

SPLASH
ARSI

177Lu-PSMA-I&T

PSMAFore
ARSI**

177Lu-PSMA-617

ECLIPSE
ARSI

177Lu-PSMA-I&T

PR21
Docetaxel

177Lu-PSMA-617

Fig. 2 Current treatment landscape for non-metastatic (M0) and metastatic (M1) prostate cancer. SOC regimens are outlined in gray
boxes, ongoing Phase 2 and 3 trials are highlighted in light-blue boxes and italicized. ECLIPSE uses 7.4GBq of 177Lu-PSMA-I&T, while
SPLASH uses 6.8GBq of 177Lu -PNT2002. ARSI Androgen receptor signaling inhibitors, dMMR Deficient mismatch repair, HRR Homologous
recombination repair, MSI Microsatellite instability, SOC Standard of care. *Progression on previous treatment with one ARSI (abiraterone or
enzalutamide or darolutamide or apalutamide) **an ARSI that has not been previously tried.
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between each treatment. Kidneys have a low α/β ratio (∼2.6) [89],
and as such, are very sensitive to the dose per fraction [90]. Third,
177Lu-PSMA is continuous therapy at a low and exponentially
decreasing dose-rate due to source decay over time. This is in
contrast to the relatively high dose-rate of EBRT. Fourth, 177Lu-
PSMA uptake in areas of disease may be heterogeneous and vary
by metastatic site or patient, and normal tissue uptake and
corresponding dose are also variable. Violet et al. [70] found an
inverse correlation between parotid dose and total volume of
disease, suggesting a “sink effect”, in which the higher the burden
of disease the more 177Lu-PSMA-617 is removed from circulation,
thus resulting in less of the dose reaching normal organs.
There has been very limited acute renal toxicity observed in

TheraP and VISION, as well as in most retrospective studies of
177Lu-PSMA. In VISION, the CTCAE Gr 3–4 renal effects – defined as
any increase in blood creatinine or blood urea, acute kidney injury,
proteinuria, or decreased urine output – were not statistically
different between the two arms, at 3.4% in the 177Lu-PSMA-617
plus SOC vs. 2.9% in the SOC arm [65]. However, late radiation
nephrotoxicity was not yet investigated in these trials, and recent
studies have indeed demonstrated late radiation nephropathy in
patients receiving excess cycles of 177Lu-PSMA [91].
Dosimetry studies using SPECT will be particularly critical in

studies investigating dose escalation, re-treatment with RPTs,
predictive variables for RPT biodistribution such as tumor burden,
and combinations of external beam and RPT. In VISION, 15% of
patients receiving 177Lu-PSMA also received concurrent palliative
EBRT, without noticeable added toxicity [65].

ALPHA EMITTERS
As a calcium analogue, 223Ra directly targets the bone mineral
hydroxyapatite, which is present and incorporated at the highest
rate in areas of increased bone turnover, such as osteoblastic bone
metastases. In contrast, the target of 177Lu-PSMA is the
transmembrane receptor PSMA, which is overexpressed on
prostate cancer cells. Therefore, while 223Ra localizes only to the
bone, 177Lu-PSMA will target any cell with PSMA expression,
including nodal or visceral metastases. 223Ra is an alpha emitter,
and thus has an exquisitely short radiation path length of up to
0.05mm. In contrast, 177Lu is a beta emitter with a path length
> 10 times longer. These properties each have advantages and
disadvantages. A shorter path length can reduce bystander
normal tissue damage but may leave some tumor cells under-
dosed with alpha emitting RPT. Other bone-targeting agents
include β-emitters such as 32P, 153Sm, and 90Sr, which have
historically been used for palliation of pain, but their deeper tissue
penetrance and consequent hematologic toxicities have limited
their utility [92].

223Ra dichloride (Xofigo®) gained FDA approval in 2013 for the
treatment of men with symptomatic mCRPC bone metastases
without known visceral metastases [93] (Table 3). This was based
on the pivotal ALSYMPCA randomized phase III trial demonstrat-
ing an overall survival (OS) benefit (median OS of 11.3 m to 14.9 m,
p < 0.001) [94]. Small institutional studies have shown that with
more than 5 FDA approved lines of therapy in the mCRPC setting,
success from 223Ra after multiple lines of therapy is likely
suboptimal due to the probability of a greater extent of non-
osseous disease and inability to complete all therapy [95].
Furthermore, the phase III ERA 223 trial testing the combination
of 223Ra with abiraterone acetate plus prednisolone noted an
absolute increase of 18% in the incidence of fractures in the
combination therapy arm compared to abiraterone alone (29%
versus 11%, respectively), where 79% of these fractures occurred
at sites without bone metastases (i.e. non-pathologic fractures)
[96]. Post-hoc analysis revealed that fractures were less common
in patients taking bone health agents (BHA). As a result, the
ongoing PEACE III trial (NCT02194842), which randomizes patientsTa
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to enzalutamide with or without 223Ra, mandated the use of
preventative BHA and noted a reduction of fractures to < 4% on
both arms since implementation of BHA [97].
There are key differences in the patient populations between

VISION and ALSYMPCA: 1) virtually all patients had previous
exposure to docetaxel as was mandated by the VISION trial, in
contrast to 57% in ALSYMPCA; 2) visceral metastases (lung and/or
liver) were identified in 24% of patients on VISION using PSMA
PET, while ALSYMPCA required no evidence of visceral metastases
by conventional imaging.
Therefore, based on current evidence, situations that may be

more appropriate for using 223Ra over 177Lu-PSMA-617 include
patients with low or absent PSMA PET SUV expression, discordant
FDG-positive disease on FDG-PET, and/or bone-predominant/only
disease. Conversely, the presence of visceral disease or significant
burden of nodal disease may favor 177Lu-PSMA-617 provided that
these lesions express PSMA avidly. Table 4 provides a comparison
between the two RPTs. A detailed review of 223Ra including
mechanism of action [98] and its use in the treatment of bone
metastases in mCRPC can be found here [99].
Alpha labeled PSMA agents include 213Bi, 225Ac, 211At, and 227Th.

In a meta-analysis of 256 mCRPC patients treated with 225Ac-PSMA
agents, a ≥ 50% decline in serum PSA was achieved in 62.8%
patients, with estimated median PFS and OS of 9.1 months and
12.8 months, respectively [100]. While CTCAE Gr ≥ 3 xerostomia was
limited to 1.2%, Gr 1–2 xerostomia ranged from 36% to 100% and
was a major reason for treatment discontinuation [100]. On-going
phase I/II studies evaluating small molecule PSMA-targeted alpha
therapy include 227Th-PSMA (NCT03724747 [101]), 225Ac-PSMA-617
(NCT04597411), and TATCIST (225Ac-PSMA-I&T, NCT05219500).

CONCLUSIONS
PSMA PET has superior diagnostic accuracy compared to
conventional imaging in both the initial staging of prostate
cancer and in the setting of disease recurrence, with improved
sensitivity at higher PSA values relative to lower PSA. Integration
of PSMA PET imaging into radiation therapy decision-making and
planning may improve biochemical EFS, and consolidation of all
PSMA PET-avid lesions in oligometastatic disease may increase
PFS and reduce the incidence of new metastases. Ongoing clinical
trials will explore whether changes in clinical decision-making will
translate into oncologic benefit. PSMA-targeted therapy with
177Lu-PSMA-617 is effective and well-tolerated in heavily pre-
treated patients with PSMA-expressing mCRPC. PSMA PET SUV is
prognostic for treatment response (SUVmean ≥ 10). Additional
biomarkers are needed to predict therapy response and to enable
better patient selection. The field of RPT in oncology is expanding,
and embracing a multi-disciplinary approach involving radiation
oncology, medical oncology, and nuclear medicine is important in
the comprehensive strategic care of patients with advanced
prostate cancer.
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