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BACKGROUND: The site of prostate cancer metastasis is an important predictor of oncologic outcomes, however, the
clinicogenomic characteristics associated with the site are not well-defined. Herein, we characterize the genomic alterations
associated with the metastatic site of prostate cancer.
METHODS: We analyzed clinical and genomic data from prostate cancer patients with metastatic disease and known metastatic
sites from publicly available targeted sequencing data.
RESULTS: Prostate cancer metastasis to the liver versus other sites of metastasis conferred a high hazard for death in patients with
metastatic prostate cancer (HR: 3.96, 95% CI: 2.4–6.5, p < 0.0001). Genomic analysis of metastatic tissues of prostate cancer-specific
genes demonstrated that liver metastases were more enriched with MYC amplification (29.5% vs. 9.8%, FDR= 0.001), PTEN deletion
(42% vs. 20.8%, FDR= 0.005), and PIK3CB amplification (8.2% vs. 0.9, FDR= 0.005) compared to other sites. No point mutations
were significantly associated with liver metastasis compared to other metastatic sites.
CONCLUSION: Liver metastases in prostate cancer are associated with poor survival and aggressive genomic features, including
MYC-amplification, PTEN-deletion, and PIK3CB-amplification. These findings could have prognostic, treatment, and trial
implications.
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INTRODUCTION
Metastatic prostate cancer is a heterogeneous disease with widely
variable clinical outcomes. The site of prostate cancer metastasis is
an important predictor of oncologic outcome and a likely source
of heterogeneity [1]. Liver metastases may be a predictor of
particularly adverse outcomes [1–3]. It also represents a subtype
refractory to hormonal therapy and short-duration response to
chemotherapy [2, 4], and is often associated with neuroendocrine
characteristics [5]. Nevertheless, the genomic characteristics
associated with prostatic liver metastasis are not well-defined.
Here, we hypothesize that there are genomic alterations
associated with prostatic liver metastasis that may explain their
aggressiveness and lack of response to therapy.

METHODS
We analyzed clinical (n= 280) and genomic (n= 608; 241 in common with
clinical data) data from prostate cancer patients with metastatic disease
across different sites (61 liver, 34 lungs, 231 LN, 125 bone, 157 “other sites”).
The objective was to characterize the clinicogenomic features of prostatic
liver metastasis [6, 7]. Genomic profiling and sequencing were conducted
on the metastatic tissue using the MSK-IMPACT Next Generation
Sequencing (NGS) assay (https://www.cbioportal.org/study/ clinicalData?

id=prad_cdk12_mskcc_2020). More details on patients and sample
processing of this cohort have been reported [7]. Genomic data for genes
frequently altered in prostate cancer was obtained [8]. Cox proportional
hazard analyses defined hazard ratios (HRs) and 95% confidence intervals
(CIs) for overall mortality of liver metastases versus other sites of
metastases, across seven different cancers from the MSK-IMPACT cohort.
Survival data were calculated from the time of presenting with metastatic
disease. X2 test was used for assessing associations between genomic
alterations and metastatic sites. The Benjamini–Hochberg method con-
trolled for false discovery rate (FDR).

RESULTS
We characterized the clinical risk of liver metastasis across several
cancers [6]. Metastasis to the liver versus other sites of metastasis
conferred the highest hazard for death in patients with prostate
cancer (HR: 3.96, 95% CI: 2.4–6.5, p < 0.0001), when compared across
cancers (Fig. 1A). We further characterized the impact of site of
metastasis on survival in a cohort of 280 patients with prostate
adenocarcinoma, known metastasis site, and available data on time
from metastasis diagnosis to death (Supplementary Table 1) [6].
With a median survival of 13 months, patients with metastatic

prostate cancer to the liver had worse 2-year overall survival
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Fig. 1 Clinicogenomic characterization of prostate cancer liver metastases. A Hazard ratio for death for liver metastases in prostate
[liver (33) vs. non-liver (247)], bladder [liver (13) vs. non-liver (83)], breast [liver (221) vs. non-liver (614)], colon [liver (292) vs. non-liver (197)],
ovarian [liver (14) vs. non-liver (128)], non-small cell lung carcinoma [liver (83) vs. non-liver (589)], and melanoma [liver (40) vs. non-liver (233)].
B Overall survival (time from metastasis diagnosis to death) in patients with metastatic prostate cancer, by the site of disease. C Fraction of
genome altered across the site of disease in metastatic prostate cancer. D Genomic alteration frequency across sites of metastasis. E Scatter
plot of frequency, difference, and the ratio of genomic alterations in liver and non-liver metastatic sites. Abbreviations: L liver, NL non-liver,
LN lymph node.
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(22%) compared with bone alone (57%), lung alone (54%),
and lymph node (LN) metastases (63%) (p < 0.0001, Fig. 1B).
We found no association between race (White vs. African
American) and the site of prostate cancer metastases (p= 0.52).
Prostate tumors metastasized to the liver were more enriched
with small cell/neuroendocrine carcinoma (SC/NE) (15% for liver,
1% for bone, 0 for lung, and 3% for LN).
On sensitivity analysis, after adjusting for age, liver metastasis

remained significantly associated with a higher hazard for death
when compared with other metastatic sites (HR: 3.2, 95% CI:
1.74–5.9, p= 0.0001). Furthermore, when excluding patients with
SC/NE, patients with metastatic prostate cancer to the liver
continued to have a higher hazard for death compared with other
sites of metastatic disease (HR: 3.85, 95% CI: 2.2–6.7, p < 0.0001).
Information on treatment and other clinical characteristics were
not available for further adjustment.
To define the genomic characteristics of metastatic prostate

cancer to the liver, we analyzed targeted DNA sequencing data
from a larger set of metastatic tissues of 608 unique patients with
metastatic prostate adenocarcinoma and known metastasis site
(61 liver, 34 lungs, 231 LN, 125 bone, 157 “other sites” [abdomen,
adrenal gland, brain, bladder, colon, epidural, pelvis, soft tissue,
and retroperitoneum]) [7]. Of note, there were 241 patients in
common with the 280 patients used for survival analysis; the
remaining samples had no survival data available. None of the
samples used for genomic analyses were neuroendocrine or SC
carcinoma.
Genomic alterations analysis demonstrated that prostatic

liver metastases tissues were associated with a higher fraction
of genomic alterations compared to bone (p < 0.0001), LN
(p < 0.0001), lung (p= 0.0008), and other site metastases (p=
0.009 using Wilcoxon test) (Fig. 1C). In comparing the genomic
alteration frequency of prostate cancer genes across sites of
metastatic disease (Supplementary Table 2), we did not find
any mutation (including mutations in TP53, FOXA1, SPOP, and
AR) to be enriched in liver metastases (FDR > 0.2 for all,
Supplementary Table 3).
When characterizing copy number alterations, we found

prostate tumors metastasized to the liver to be enriched with
AR-amplification (39% for liver vs 31% for bone, 31% for LN, 8.8%
for lung and 28% for other sites group), MYC-amplication (29% for
liver vs. 7.2% for bone, 10.4% for LN, 0 for lung and 13.3%
for other sites group), PTEN-deletion (42.6% for liver vs. 16% for
bone, 21% for LN, 26 for lung and 22% for other sites group, and
PIK3CB-amplification (8.2% for liver vs. 1% for bone, 1.3% for LN, 0
for lung and 0.6% for other sites group) (Fig. 1D). When comparing
liver metastases to all other metastatic sites, only MYC-
amplification (29.5% vs. 9.8%, X2 FDR= 0.001), PTEN-deletion
(42% vs. 20.8%, X2 FDR= 0.005), and PIK3CB-amplification (8.2%
vs. 0.9%, X2 FDR= 0.005) were significantly associated with liver
metastases after FDR correction (Fig. 1E and Supplementary
Table 3). Notably, AR-amplification was not significantly associated
with liver metastasis compared to other sites (39% vs. 30, p=
0.13). Furthermore, 62% of liver metastases had at least one of
these alterations compared with 28% of metastases from all other
sites (X2 p < 0.001).

DISCUSSION AND CONCLUSION
To the best of our knowledge, the present study is the first to
report these genomic associations with prostate cancer liver
metastases and builds on existing literature that has suggested
liver metastases are a poor prognostic feature but lack genomic
profiling of tumor tissues. Our genomic analyses of the actual
metastatic site revealed a unique signature of liver metastasis.
Disease state (CRPC vs. HSPC) could be a confounding variable
of our analyses. But, given that AR-amplification, a surrogate

feature of CRPC, is equally enriched across metastatic sites, the
observed genomic differences are likely driven by its tumor–host
site. These findings could inform genomic risk prognostication,
treatment decisions, and the design of future clinical trials of
combined therapies for metastatic prostate cancer that may be
molecularly distinct.
For example, patients with prostatic liver metastasis could

benefit from selective inhibitors targeting MYC and PI3K pathways
that are more activated in liver metastatic tissues. MYC is
upregulating EZH2 [9], which is associated with prostate cancer
progression [10]. Given this recent revelation, MYC-dependent PC
may be particularly sensitive to treatment with selective EZH2
inhibitors, some of which are in clinical trials to treat other
malignancies [11]. Similarly, amplification of PIK3CB and loss of
PTEN in liver metastasis lead to activation of PI3K/AKT pathways.
Thus, nominating this aggressive subgroup for PI3K inhibitors that
are already used in other solid tumors [12].
Limitations to this study include not having access to certain

clinical factors (Gleason score, disease volume, etc.) or prior
treatment history of the patients included in the analyses,
nevertheless, our survival analyses largely validate existing
literature. Furthermore, liver metastasis is more likely accompa-
nied by other sites of disease that may not have been profiled.
Nevertheless, this study focused on comparing clinicogenomic
characteristics of tissues from liver metastases to tissues from
other metastases and defined liver metastases as an adverse
feature, and therefore other sites of disease would be expected
and would likely have little impact on the conclusions of our
findings. Future work will be needed to determine the impact of
prior treatment history, other clinical factors, and multiple sites of
disease on the clinicogenomics of liver metastases.
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