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BACKGROUND: Hirschsprung disease (HSCR) is a congenital intestinal disease characterised by functional obstruction of the colon.
Herein, we investigated the role and mechanism of the gene GFRA4 in HSCR.
METHODS: GFRA4 expression in the ganglionic and aganglionic segment tissues in patients with HSCR and healthy colon tissues
were detected using qRT-PCR, western blot, and immunohistochemistry. Cell proliferation, cycle distribution, apoptosis, changes in
mitochondrial membrane potential, and differentiation were assessed in mouse enteric neural crest stem cells (ENCSCs) using the
CCK-8 assay, EdU staining, flow cytometry, JC-1 probe, and immunofluorescence, respectively. GSEA analysis was performed to
screen the signaling pathways regulated by GFRA4.
RESULTS: GFRA4 was downregulated in aganglionic segment tissues compared to control and ganglionic segment tissues. GFRA4
overexpression promoted proliferation and differentiation, and inhibited apoptosis in ENCSCs, while GFRA4 down-regulation had
the opposite result. GFRA4 activated the hedgehog pathway. GFRA4 overexpression enhanced the expression of key factors of the
hedgehog pathway, including SMO, SHH, and GLI1. However, GFRA4 down-regulation reduced their expression. An antagonist of
hedgehog pathway, cyclopamine, attenuated the effect of GFRA4 overexpression on proliferation, differentiation, and apoptosis of
ENCSCs.
CONCLUSION: GFRA4 promotes proliferation and differentiation but inhibits apoptosis of ENCSCs via the hedgehog pathway
in HSCR.

Pediatric Research; https://doi.org/10.1038/s41390-024-03158-8

IMPACT:

● This study confirms that GFRA4 improves the proliferation and differentiation of ENCSCs via modulation of the hedgehog
pathway.

● This study for the first time revealed the role and the mechanism of the action of GFRA4 in HSCR, which indicates that GFRA4
may play a role in the pathological development of HSCR.

● Our findings may lay the foundation for further investigation of the mechanisms underlying HSCR development and into
targets of HSCR treatment.

INTRODUCTION
As an alimentary tract disease, Hirschsprung disease (HSCR) is
clinically characterised by intestinal obstruction, abdominal
distension, delayed meconium excretion, and vomiting.1 The
incidence of HSCR has been reported to be approximately 1/5000
in newborn children (male: female = 4:1).2 Research has shown
that the primary cause of HSCR is the failure of proliferation and
migration of enteric neural crest cells (ENCCs) to the distal part of
the colon during embryonic development.3 At present, the most
common therapeutic treatment for HSCR is surgical removal of the
abnormally innervated intestine.4 However, postoperative intest-
inal dysfunction is common.5 Thus, probing the nosogenesis and
identifying potential therapeutic targets for HSCR treatment
remains an urgent unmet need.

Previous studies have indicated that HSCR pathogenesis is
related to the levels of glial cell-derived neurotrophic factor
(GDNF) and rearranged during transfection (RET).6,7 Presently, four
GDNF receptor alpha (GFRA) proteins (GFRA1, GFRA2, GFRA3, and
GFRA4) have been identified to bind GDNF.8 Unlike the other
GFRA family members, GFRA4 is smaller in size and lacks the first
Cys-rich domain.9 Moreover, GFRA4 has been shown to activate
RET to promote neuronal survival and differentiation.10 Interest-
ingly, GFRA4 expression was shown to be downregulated in
glioma primary cells compared with normal brain primary cells.11

Based on these findings, we surmised that GFRA4 may play an
important role in HSCR pathogenesis. However, there has been
little research on the influence and underlying role of GFRA4 on
the pathogenesis of HSCR.
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In the present study, we detected GFRA4 expression in HSCR
tissues and investigated the biological function of GFRA4 in
mouse enteric neural crest stem cells (ENCSCs). Moreover, we
found that GFRA4 affected the biological function of ENCSCs by
regulation of the hedgehog signaling pathway. Our findings may
lay the foundation for further investigation of the mechanisms
underlying HSCR development and into targets of HSCR
treatment.

METHODS
Human specimen collection
In this study, 20 HSCR specimens and 20 normal colon specimens were
collected from patients at our hospital. The resected HSCR tissues include
ganglionic and aganglionic segments which were taken from the most
proximal and most distal margin of the resected pull-through specimen,
respectively. Normal colon tissues collected from imperforate anus patients
after colostomy were used as controls. After surgery, specimens were
stored at −80 °C. Patients and their guardians all signed an informed
consent form to participate. This study was authorised by the Ethics
Committee of Shandong Provincial Hospital Affiliated to Shandong First
Medical University. Ganglionic and aganglionic segment tissues were
identified by histopathological analysis of hematoxylin and eosin (H&E)-
stained slides.

Quantitative real-time polymerase chain reaction (qRT-PCR)
RNA isolater Total RNA Extraction Reagent (Vazyme, China) was utilised to
isolate total RNA from ENCSCs and patient tissue. PrimeScript™ RT Reagent
Kit with gDNA Eraser (Takara, Japan) was used to synthesise complemen-
tary DNA. SYBR Green PCR Mix Kit (Takara) was used to perform qRT-PCR
reactions. The primers were as follows: human GFRA4 (forward: 5′-
GTCACCCCTAACTACGTGGAC-3′, reverse: 5′-CGGTTCCTGGTAAAGAGCCC-
3′), human GAPDH (forward: 5′-TGCAACCGGGAAGGAAATGA -3′, reverse:
5′- GCCCAATACGACCAAATCAGA -3′), and mouse SMO (forward: 5′-
AGCCTTTGCGCTACAACGTG-3′, reverse: 5′-TTCCGGAGGCCGGACCA-3′),
mouse SHH (forward: 5′-GGTGATCCTTGCTTCCTCGC-3′, reverse: 5′-T
TTGTCTTTGCACCTCTGAGTC-3′), mouse GLI1 (forward: 5′- TTGCAGCCAG-
GAGTTCGATT-3′, reverse: 5′- TCCGACAGCCTTCAAACGTG-3′), and mouse
GAPDH (forward: 5′- CAGGAGAGTGTTTCCTCGTCC -3′, reverse: 5′-
GATGGGCTTCCCGTTGATGA -3′). GAPDH was used as an internal control
for normalization. The relative mRNA expression was calculated using the
2−ΔΔCT method.

Immunohistochemical staining
After fixation in 4% paraformaldehyde, specimens were embedded in
paraffin. After dewaxing with xylene and rehydration in graded alcohols, to
retrieve antigens, sections (5-μm thick) were treated with citrate buffer (pH
= 6.0) at 95 °C for 40min. Next, sections were treated with 3% hydrogen
peroxide solution for 10min at room temperature (RT). Subsequently,
sections were incubated with 5% bovine serum albumin solution for 1 h at
RT. The primary polyclonal GFRA4 antibody (1:100; Bioss, China) was
incubated with sections at 4 °C overnight. After washing three times with
phosphate buffer saline (PBS), sections were incubated with the secondary
antibody (1:50; Beyotime Biotechnology, China) for 1 h at RT, after which
they were treated with diaminobenzidine (DAB) solution (Beyotime
Biotechnology) to develop colour before being counterstained in
hematoxylin. Finally, the sections were observed under a light microscope.

Cell culture and treatment
Mouse ENCSCs were purchased from Procell Life Science&Technology Co.,
Ltd. (China). Cells were cultured in serum-free culture medium containing
15% chick embryo extract, 20 ng/mL FGF, 20 ng/mL EGF, 35 ng/mL Retinoic
acid, 1% N2, 2% B27, and 50mM β-mercaptoethanol in poly-D-lysine-
coated and fibronectin-coated wells at 37 °C and 5% CO2 and enriched by
multiple replatings as described previously.12 ENCSCs at passage 3 were
harvested for immunofluorescent staining using anti-Nestin (ab6142,
Abcam).
Shanghai Genechem Co., Ltd. (China) provided the overexpression

plasmid of the GFRA4, empty plasmid (vector), siRNAs [siGFRA4-1 (sense:
5’-GCAAGCUCUUUACAAGGAACC-3’, anti-sense: 5’- UUCCUUGUAAAGAG-
CUUGCGG-3’), siGFRA4-2 (sense: 5’-CGCGUUGUCUGCGCGUCUACG-3’, anti-
sense: 5’-UAGACGCGCAGACAACGCGGG-3’)] and its negative control (siNC;

sense: 5’-UUCUCCGAACGUGUCACGUTT-3’, anti-sense: 5’-ACGUGACAC-
GUUCGGAGAATT-3’). Lipofectamine 2000 reagent (Invitrogen) was used
for transfection following the manufacturer’s instructions. Cells were
treated with 5 μM cyclopamine (Selleck) for 24 h to inhibit the hedgehog
pathway.

Cell Counting Kit-8 (CCK-8) assay
Transfected cells were cultured for 0, 24, 48 h, and 72 h. Subsequently, cells
in each well were treated with 10 μl CCK-8 solution (Beyotime
Biotechnology) for 1 h at 37 °C. Finally, the optical density (OD) at
450 nM was measured using a microplate reader (Bio-Tek).

5-Ethynyl-2’-deoxyuridin (EdU) staining
After the indicated treatment, cells were incubated with EdU (50 μM;
Guangzhou RiboBio Co., Ltd) for 2 h at 37 °C before being fixed in 4%
formaldehyde. Cells were then incubated with 1 × Apollo reaction mixture
for 30min, and then stained with Hoechst 33342 for 30min. Finally, EdU
positive cells were analyzed under a fluorescent microscope (Nikon, Japan).

Flow cytometry analysis
For cell cycle analysis, cells were suspended with 300 μL of ice-cold PBS.
Subsequently, cells were fixed in 70% ethanol for 2 h at 4 °C and treated
with propidium iodide (PI, Beyotime Biotechnology). For cell apoptosis
analysis, cells were resuspended in binding buffer, and then incubated
with Annexin V-FITC (Beyotime Biotechnology) and PI for 15min at RT in
the dark. Finally, a FACScan flow cytometer (Becton Dickinson) was used to
analyze cell cycle distribution and apoptosis.

JC-1 detection of mitochondrial membrane potential
According to the instructions of the mitochondrial membrane potential kit
(Beyotime Biotechnology), transfected cells were incubated with 1ml JC-1
dye buffer for 20min at 37 °C. After centrifugation at 600 g for 3 min, cells
were washed with 1 × JC-1 dye buffer. Ultimately, the red/green
fluorescence intensity was measured under a fluorescent microscope.

Immunofluorescence
Cells were stabilised using 4% paraformaldehyde. After washing with PBS
three times, cells were permeated with 0.3% Triton X-100 (Sigma) for
15min. Subsequently, 5% BSA (Beyotime Biotechnology) was used to block
cells for 1 h at RT. Next, cells were incubated with primary antibodies (anti-
TUJ1 and anti-GFAP; Cell Signaling Technology) overnight at 4 °C, and then
incubated with secondary antibody (Cell Signaling Technology) for 2 h at
RT. DAPI (Beyotime Biotechnology) was used to counterstain cells. Finally,
TUJ1 and GFAP positive cells were observed under a fluorescence
microscope (Nikon Eclipse Ni-U, Japan).

Western blot
Proteins were extracted from tissues or cells using RIPA buffer (Beyotime
Biotechnology). Next, 30 μg proteins were separated using SDS-PAGE
and transferred onto a PVDF membrane. Membranes were blocked with
5% non-fat dried milk. After washing with TBST for three times, the
membrane was incubated with primary antibodies against GFRA4
(Bioss.), Bcl-2, Cleaved Caspase3, TUJ1, GFAP (Cell Signaling Technology),
Bax, SMO, SHH, GLI1, and GAPDH (Proteintech) at 4 °C overnight, and
then incubated with secondary antibodies (Cell Signaling Technology) at
RT for 2 h. Finally, proteins were visualised using an enhanced
chemiluminescence (ECL) Kit (Merck), and ImageJ software was utilized
to quantify protein expression.

Bioinformatic analysis
The signal pathways that could be regulated by GFRA4 were analyzed
using gene set enrichment analysis (GSEA) based on the Wiki Pathways
gene sets dataset. To rank gene sets associated with risk, R package cluster
Profiler was used in GSEA.

Statistical analysis
All data from three independent experiments were presented as the
mean ± standard deviation. GraphPad Prism software was used for
statistical analyses using Student’s t-test or analysis of variance followed
by Turkey’s post-test. P < 0.05 indicated statistical significance.
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RESULTS
Human HSCR specimens show low expression of GFRA4
In this study, the expression of GFRA4 in the ganglionic and
aganglionic segment tissues in patients with HSCR and normal colon
tissues were detected. qRT-PCR data and western blotting results
showed that GFRA4 mRNA and protein level expression was
decreased significantly in aganglionic specimens compared with
control and ganglionic segment tissues (P< 0.01, Fig. 1a, b). Next,
immunohistochemistry staining of GFRA4 was performed, revealing a

low-level expression of GFRA4 in aganglionic specimens as compared
to the control and ganglionic segment tissues (Fig. 1c). H&E staining
of ganglion cells was subsequently used to identify the ganglionic
and aganglionic segment tissues from patients with HSCR.

GFRA4 improves the proliferation of ENCSCs
To further investigate the biological function of GFRA4, functional
gain and loss experiments were performed in ENCSCs. As shown
in Fig. 2a, b, compared with the vector group, GFRA4

Control Ganglionic Aganglionic

GFRA4

GAPDH

c

                  

10x

40x

10x

40x

H
&

E
G

F
R

A
4 100 �m

3

a

2

R
el

at
iv

e 
m

R
N

A
 le

ve
l

o
f 
G
fr
a4

1

0

Contro
l

Gan
glio

nic

Agan
glio

nic

b
1.5

1.0

0.5

0.0

F
o

ld
 c

h
an

g
e 

o
f

G
F

R
A

4 
p

ro
et

in

Contro
l

Gan
glio

nic

Agan
glio

nic

Contro
l

Gan
glio

nic

Agan
glio

nic

Control Ganglionic Aganglionic

20 �m 20 �m

100 �m 100 �m

20 �m

100 �m

20 �m

100 �m

20 �m

100 �m

20 �m
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overexpression increased cell viability (P < 0.01), but GFRA4 low-
expression (siGFRA4-1 and siGFRA4-2) decreased cell viability
compared with the siNC group (P < 0.05). EdU assay further
confirmed that GFRA4 overexpression increased the number of

EdU-positive cells (P < 0.01, Fig. 2c), while GFRA4 low-expression
reduced the number of EdU-positive cells (P < 0.01, Fig. 2d).
Furthermore, GFRA4 overexpression reduced the number of cells
in the G0/G1 phase and increased the number of cells in the S
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phase (P < 0.01, Fig. 2e), but GFRA4 low-expression led to the
opposite results (Fig. 2f).

GFRA4 inhibits mitochondria-dependent apoptosis in ENCSCs
Next, we investigated the effect of GFRA4 on ENCSC apoptosis. As
shown in Fig. 3a, b, GFRA4 overexpression reduced the apoptosis

rate (P < 0.01), but GFRA4 low-expression promoted ENCSC
apoptosis (P < 0.05). Furthermore, GFRA4 overexpression pro-
moted Bcl-2 expression and inhibited the expression of Bax and
cleaved caspase3 (P < 0.05, Fig. 3c), while GFRA4 low-expression
resulted in the opposite results (Fig. 3d). When apoptosis occurs,
JC-1 is released from mitochondria due to mitochondrial
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membrane potential depolarization, leading to a green fluores-
cence. Our results showed that GFRA4 overexpression increased
the red/green fluorescence ratio in ENCSCs (P < 0.01, Fig. 3e), but
GFRA4 low-expression reduced the red/green fluorescence ratio
(P < 0.01, Fig. 3f).

GFRA4 improves the differentiation of ENCSCs
We assessed the change of TUJ1 (a neuronal marker) and GFAP (a
common marker of glial cells) to explore the influence of GFRA4
on ENCSC differentiation. GFRA4 overexpression increased the
TUJ1- and GFAP-positive cells (P < 0.01, Fig. 4a, c), while GFRA4
low-expression reduced the TUJ1- and GFAP-positive cells
(P < 0.01, Fig. 4b, d). Western blotting confirmed the results of
immunofluorescence (Fig. 4e–h).

GFRA4 activates the hedgehog signaling pathway in ENCSCs
GSEA analysis showed that GFRA4 regulate a list of signaling
pathways, including the hedgehog signaling pathway, longevity
regulation pathway, GnRH signaling pathway, etc (Fig. 5a). Herein,
we selected the hedgehog signaling pathway for further
investigation as it ranked first in the enrolment score. Subse-
quently, the change of key factors of hedgehog signaling pathway
was assessed. As shown in Fig. 5b, c, GFRA4 overexpression
promoted the mRNA expression of SMO, SHH and GLI1 (P < 0.01),
but the lower expression of SMO, SHH and GLI1 mRNA was
observed in the si-GFRA4-1 and si-GFRA4-2 groups (P < 0.01).
Importantly, similar results were presented in western blot analysis
(Fig. 5d, e).

GFRA4 improves proliferation and differentiation but inhibits
apoptosis of ENCSCs via activation of the hedgehog signaling
pathway
To clarify the relationship of hedgehog signaling pathway and
GFRA4 in ENCSCs, we treated cells with cyclopamine (an
antagonist of the Hedgehog signaling pathway). EdU staining
results showed that GFRA4 overexpression increased the
number of EdU-positive cells compared with vector group
(P < 0.01, Fig. 6a), while cyclopamine attenuated the promotive
role of GFRA4 overexpression. Meanwhile, compared with GFRA4
overexpression group, cyclopamine increased the number of
cells in the G0/G1 phase and apoptosis, and decreased the
number of cells in S phase (P < 0.05, Fig. 6b, c). Furthermore,
cyclopamine reduced the TUJ1- and GFAP-positive cells
(P < 0.05, Fig. 6d, e).

DISCUSSION
As the most common disorder of the enteric nervous system (ENS)
at birth, HSCR is usually diagnosed by anorectal manometry,
barium enema, and biopsy of the rectum.13 The development of
HSCR has been reported to be regulated by a multitude of genes,
including many coding and non-coding genes.14–16 In the present
study, we investigated the role of GFRA4 expression in HSCR. We
found that GFRA4 was expressed at a lower level in aganglionic
tissues than that in normal and ganglionic colon tissues. These
findings indicate that GFRA4 may play a role in the pathological
development of HSCR.
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Perturbation of ENCC migration, proliferation, differentiation,
survival, or apoptosis has been shown to be involved in the
pathogenesis of HSCR. ENCCs cannot invade, proliferate, or
migrate to the hindgut during the 5th to 12th week of
embryogenesis.17 Although ENCCs can reach the distal intestine,
they cannot proliferate or survive.18,19 Cell apoptosis usually
occurs during development, and it plays a role as a homeostatic
mechanism to maintain the number of cells in tissues.13

Apoptotic cell death is a normal process within early ENS
development and proper apoptosis of neural crest cells has been
shown to be conducive to functional ENS.20,21 In the present
study, GFRA4 overexpression was found to promote cell
proliferation, increased the number of cells in the S phase, and
inhibit cell apoptosis. Additionally, GFRA4 low-expression led to
the opposite results. We previously found that microRNA-483-5p
low-expression promoted cell proliferation and reduced cell
early apoptosis by targeting GFRA4 in 293 T and SH-SY5Y cells.22

Further research showed that overexpression of GFRA4 pro-
moted cell proliferation and cell cycle progression, but inhibited
apoptosis in SH-5YSY cells.23 A decrease of the mitochondrial
membrane potential is considered the earliest event in the
apoptosis cascade.24 A substantial change in the mitochondrial
membrane potential leads to activation of the caspase protease
family, subsequently leading to an apoptosis cascade reaction.25

Our results showed that GFRA4 overexpression inhibited the
damage of mitochondrial membrane potential, enhanced Bcl-2
expression, and reduced Bax and cleaved caspase3 expression.
These results demonstrated that GFRA4 promoted cell prolifera-
tion and inhibited cell apoptosis in HSCR.
Aganglionic bowel is commonly observed in patients with HSCR

and often requires surgical resection.26 In patients with HSCR,
stem cell therapy has been studied as a potential method to
generate ganglia and restore gastrointestinal neuromuscular
function.27 Prior studies have shown that injected neural crest

stem cells migrate to the myenteric plexus of the aganglionic
colon where they produce a glial network in vivo.28,29 Kato
et al.previously reported that GFAP was strongly expressed in the
normal gut and ganglionic segments in six cases of HSCR.30 In the
present study, we detected the markers of differentiated neurons
(TUJ1) and gliocytes (GFAP), and found that GFRA4 overexpression
enhanced TUJ1 and GFAP expression. These data suggested that
GFRA4 promoted the differentiation of ENCSCs into neurons and
glial cells in HSCR.
To further explore the mechanism of GFRA4 in HSCR, we used

GSEA software to analyze the downstream regulatory pathways of
GFRA4, subsequently finding that GFRA4 activated the hedgehog
signaling pathway. The hedgehog signaling pathway participate in
many biological processes, including embryogenesis, proliferation,
and tissue regeneration.31 Lau et al. previously reported that
activation of the hedgehog pathway promoted development of
cultured human pluripotent stem cells into ENCCs.32 Other studies
indicated that the differentiation of ENCCs was regulated by
hedgehog signaling during the development of ENS, and that
aberrant activation of the hedgehog pathway caused an abnormal
ratio of neuron to glia ratio in mice.33,34 In the present study,
GFRA4 overexpression promoted the expression of key factors of
the hedgehog signaling pathway (SMO, SHH, and GLI1), while
knockdown of GFRA4 reduced the expression of SMO, SHH, and
GLI1. Importantly, cyclopamine, an antagonist of the hedgehog
signaling pathway, reversed the role of GFRA4 overexpression on
cell proliferation, apoptosis, and differentiation of ENCSCs. Taken
together, these results indicate that GFRA4 improved proliferation
and differentiation, while reducing the apoptosis of ENCSCs via
the hedgehog signaling pathway.
Overall, the present study showed that GFRA4 was down-

regulated in aganglionic HSCR tissues. Further, GFRA4 promoted
proliferation and differentiation but reduced apoptosis in ENCSCs,
which was related to the hedgehog signaling pathway.
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