
BASIC SCIENCE ARTICLE

Uteroplacental insufficiency decreases leptin expression and
impairs lung development in growth-restricted newborn rats
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BACKGROUND: The study aimed to analyze the effect of uteroplacental insufficiency (UPI) on leptin expression and lung
development of intrauterine growth restriction (IUGR) rats.
METHODS: On day 17 of pregnancy, time-dated Sprague-Dawley rats were randomly divided into either an IUGR group or a control
group. Uteroplacental insufficiency surgery (IUGR) and sham surgery (control) were conducted. Offspring rats were spontaneously
delivered on day 22 of pregnancy. On postnatal days 0 and 7, rats’ pups were selected at random from the control and IUGR groups.
Blood was withdrawn from the heart to determine leptin levels. The right lung was obtained for leptin and leptin receptor levels,
immunohistochemistry, proliferating cell nuclear antigen (PCNA), western blot, and metabolomic analyses.
RESULTS: UPI-induced IUGR decreased leptin expression and impaired lung development, causing decreased surface area and
volume in offspring. This results in lower body weight, decreased serum leptin levels, lung leptin and leptin receptor levels, alveolar
space, PCNA, and increased alveolar wall volume fraction in IUGR offspring rats. The IUGR group found significant relationships
between serum leptin, radial alveolar count, von Willebrand Factor, and metabolites.
CONCLUSION: Leptin may contribute to UPI-induced lung development during the postnatal period, suggesting supplementation
as a potential treatment.
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IMPACT:

● The neonatal rats with intrauterine growth restriction (IUGR) caused by uteroplacental insufficiency (UPI) showed decreased
leptin expression and impaired lung development.

● UPI-induced IUGR significantly decreased surface area and volume in lung offspring.
● This is a novel study that investigates leptin expression and lung development in neonatal rats with IUGR caused by UPI.
● If our findings translate to IUGR infants, leptin may contribute to UPI-induced lung development during the postnatal period,

suggesting supplementation as a potential treatment.

INTRODUCTION
Intrauterine growth restriction (IUGR) has a global frequency of
roughly 10% and is linked with a higher likelihood of fetal and
neonatal mortality and morbidity.1,2 Current evidence suggests
that stressful prenatal settings alter the development of lungs and
result in lasting abnormalities in the structure of lungs and
decreased respiratory performance during postnatal life.3–5 Our
and other preclinical investigations have shown that IUGR is
related to decreased lung development during the neonate and
early childhood.6,7 Human investigation has discovered that IUGR
increases the chances of having lower lung function in individuals
during their developmental years, adolescence, and later in
life.8–12 The condition is marked by reduced placental activity

and impaired vital nutrients and oxygen transfer to the develop-
ing fetus.2,4,13 Previous studies have demonstrated that an
impaired placental function may impede the appropriate growth
and development of a fetus, and is closely associated with
bronchopulmonary dysplasia.14,15 A fetus’s growth rate below its
genetically determined potential size per race and sex is
characterized as IUGR.16,17 Research conducted both in vivo and
in vitro has demonstrated that adipose tissue is capable of
synthesizing various amino acids.18 Within adipose tissue, leptin is
mainly synthesized and secreted.19,20 Leptin is a hormone
approximately 16-kDa in size and possesses pro-inflammatory
properties. As an adipokine, it significantly impacts both innate
and adaptive immune responses. Leptin performs essential bodily
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functions such as cellular homeostasis, metabolism, angiogenesis,
and regulating the immune system and inflammatory responses.
Additionally, studies have shown that it can cause airway smooth
muscle cells to produce higher levels of vascular endothelial
growth factors (VEGF), which might be linked to IUGR.21–24

Pathways related to amino acid metabolism, such as the urea
cycle, aspartate metabolism, arginine and proline metabolism, and
glycine and serine metabolism, demonstrate a significant associa-
tion with leptin levels. 25–27 Nonetheless, leptin and its receptors
are present in fat tissue and various organs, such as the lungs.20,28

Leptin levels increase at late gestation and influence postnatal
organ development.29 Administering leptin to pregnant
rats increased the lung weight/body weight ratio and
promoted alveolar type II cell number and maturation, enhancing
surfactant protein expression in rat fetuses.30 In a rat model
of fetal growth restriction, Chen et al. discovered that administer-
ing maternal leptin treatment improved lung maturation and
elevated levels of SP-A expression.31 These lung maturational
effects of leptin were also found in the ovine fetus.32 In rats,
postnatal leptin deficiency persistently impaired lung develop-
ment and decreased surface area and lung volume from 2 to
10 weeks of age.33

These findings suggest that leptin is critical for postnatal lung
remodeling. However, the lung leptin status during the postnatal
period was unknown in intrauterine growth-restricted offspring.
We hypothesized that if leptin has a significant impact on lung
development, UPI would decrease leptin during the postnatal
period, and leptin expression would be correlated with lung
development in growth-restricted rat offspring. This study aimed
to investigate UPI’s effects on lung leptin expression and lung
development in rat offspring.

MATERIALS AND METHODS
Animal model
The animal study conducted at Taipei Medical University was reviewed and
approved by the Laboratory Animal Care Committee. Time-dated pregnant
Sprague-Dawley rats were kept in separate cages and given laboratory
food and water as per their needs. They were exposed to a 12:12-hour
light-dark cycle. On the 17th day of gestation, either bilateral uterine artery
ligation was performed to induce uteroplacental insufficiency (IUGR group)
or sham surgery was done (control group).7 The dams recovered fast from
the uterine artery ligation and sham surgeries and were able to resume
feeding the next day. On gestation day 22, all newborn rats were born
normally. The day of birth for the rats was designated as postnatal day 0.
The newborn pups were gathered and redistributed among the mothers
within 12 hours of birth. To ensure all pups had equal access to breast milk,
the control and IUGR groups’ litters were culled to nine and four pups,
respectively, after the pups were euthanized on postnatal days 0 and 7.
The pulmonary tissues employed in these experiments were obtained from
a previous study to investigate metabolomics, which detected metabolites,
and miobiota investigation, which revealed the radial alveolar count (RAC)
and the von Willebrand Factor (vWF) in IUGR rats.34,35

Rat tissue collection and processing
On the postnatal days 0 and 7, rats were randomly selected for
examination from each group, irrespective of sex. Animals were euthanized
with an overdose of isoflurane inhalation, body weights were recorded and
blood from the heart was withdrawn to check serum leptin levels, and
lungs were harvested for lung leptin and leptin receptor levels, histological
and western blot analysis.

Serum leptin levels
Serum leptin levels were measured using the Bio-Plex 200 analyzer (Bio-
Rad Laboratories, Hercules, CA) in accordance with the manufacturer’s
instructions. In sample diluent, we diluted the serum 1:4. The samples were
measured using a low Photomultiplier Tube setting, as specified in the
assay manual. The Bio-Plex filter plates and manual vacuum manifold were
used for the tests. The Bio-Plex ManagerTM software was used.

Lung morphometry
The volume fraction was calculated by digitizing pictures and selecting five
nonoverlapping fields (four corners and one middle region) from each
section. At a final magnification of 200×, the images were printed and
analyzed. Each animal was observed in 10 different regions at random. The
number of points along the alveolar airways and alveolar walls was
counted by superimposing 49-point clear grids onto enlarged printed
pictures. The volume fraction was equal to Pi/Pt, where Pi was the number
of test points that touched the structure of interest and Pt was the total
number of points that hit the reference space.36

Western blot analysis of leptin and leptin receptor
Lung tissues were homogenized in ice-cold buffer containing 50mM
TrisHCl (pH 7.5), 1 mM egtazic acid, 1 mM ethylenediaminetetraacetic acid,
and a protease inhibitor cocktail (complete minitablets; Roche, Mannheim,
Germany). The samples were sonicated and then centrifuged at 500 g for
20min at 4 °C to remove cellular debris. Proteins (30 μg) were resolved on
12% sodium dodecyl sulfate–polyaylamide gel electrophoresis gels under
reducing conditions. Next, they were electroblotted onto a polyvinylidene
difluoride membrane (ImmobilonP, Millipore, Bedford, MA). Following
blocking with 5% nonfat dry milk, the membranes were incubated with an
anti-leptin antibody (1:500, ab117751, Abcam, Boston, MA), an anti-leptin
receptor antibody (1:750, ab5593, Abcam, Boston), and an anti-β-actin
antibody (1:1000, C4 sc-47778, Santa uz Biotechnology, Santa uz, CA). They
were subsequently incubated with horseradish peroxidase-conjugated
goat antirabbit IgG or anti-mouse IgG (Pierce Biotechnology, Rockford, IL).
The protein bands were detected using the BioSpectrum AC System (UVP,
Upland, CA) and VisionWorks LS Software version 8.6 (UVP, Upland).

Immunohistochemistry of proliferating cell nuclear antigen
Proliferating cell nuclear antigen (PCNA) is expressed in cells from late G1
through S-phase. As a result, antibodies targeted towards this particular
protein should be used as a probe for immunocytochemically marking the
nuclei of proliferating cells.37 By measuring immunostained pulmonary
nuclei, we demonstrated the feasibility and reliability of this approach.
Furthermore, after deparaffinization in xylene and rehydration in an
alcohol series, the 5-μm lung sections were preincubated for 1 hour at
room temperature in 0.1 M PBS containing 10% normal goat serum and
0.3% H2O2 to block endogenous peroxidase activity and nonspecific
antibody binding. The sections were then incubated for 20 hours at 4 °C
with rabbit monoclonal anti-PCNA antibody (1:100, ab92552 Abcam,
Cambridge, MA). The sections were followed for one hour at 37 °C with
biotinylated goat anti-rabbit immunoglobulin G (1:200, Vector Labora-
tories, Burlingame, CA), and then reacted with the reagents from an
Avidin–Biotin Complex kit (Vector Laboratories). The brown reaction
products were visualized after using a diaminobenzidine substrate kit
(Vector Laboratories) according to the manufacturer’s recommendations.
The immunostained sections were viewed and photographed using a
Nikon Eclipse E600 (Nikon, Tokyo, Japan). PCNA-stained vessel density was
calculated in an unbiased manner at 200× magnification, with at least five
random lung regions selected per animal, according to the method
modified by Agard et al.38. The digital images were quantified using the
automatic object counting and measuring process to generate a
percentage of positive vessels.

Statistical analysis
Data are expressed in terms of the mean ± SD. Age groups were compared
using Student’s t-test. Correlations between the serum leptin, the RAC, and
the vWF were analyzed using Pearson’s correlation test. Differences were
considered statistically significant at p < 0.05 and a strong positive linear
relationship at r’s value near 1.39

RESULTS
UPI decreased body weights at birth and on postnatal days
0 and 7
In summary, four sham-operated delivered 39 control pups
and three dams with UPI delivered 26 IUGR rats. The IUGR rats’
mean birth weight (5.89 ± 0.74 g) was significantly lower than
the control rats (6.36 ± 0.55 g; p < 0.01). These findings indicate
that IUGR has been established. We retrieved 12 and 8 pups
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from the sham-operated and UPI-induced dams for examination
on postnatal day 0. On postnatal day 7, we retrieved eight
pups from the sham-operated and eight pups from the UPI-
induced dams, respectively. On both postnatal days 0 and 7,
the IUGR rats had significantly lower body weights than the
control rats (Fig. 1a).

UPI decreased serum leptin levels in growth-restricted
newborn rats
The lungs of the IUGR rats exhibited significantly lower serum
leptin levels on postnatal day 0 (253.65 pg/ml; p < 0.001) and
postnatal day 7 (270.36 pg/ml; p < 0.001) than the control rats on
postnatal days 0 (429.41 pg/ml) and 7 (445.40 pg/ml) (Fig. 1b).

UPI decreased lung leptin and leptin receptor expression in
growth-restricted newborn rats
Representative Western blots and quantitative data determined
using densitometry for lung leptin and leptin receptor are
presented in Fig. 2a, b. The IUGR rats had significantly lower
leptin and leptin receptor levels on postnatal day 0 (p < 0.01) and
7 (p < 0.05) than the control rats, respectively.

UPI altered lung morphometry in growth-restricted
newborn rats
Figure 3a presents the representative lung tissue sections stained
with hematoxylin and eosin on postnatal days 0 and 7. In both
those days, the lungs of rats born to control dams exhibited
normal morphology. The lungs of the IUGR rats exhibited a
significantly higher volume fraction of alveolar airspace on
postnatal day 0 (p < 0.01) and 7 (p < 0.001). The IUGR rats had a
significantly lower volume fraction of the alveolar wall on
postnatal day 0 (p < 0.05) and 7 (p < 0.001) than the control rats
(Fig. 3b).

UPI decreased lung PCNA expression in growth-restricted
newborn rats
Representative immunohistochemical images of PCNA are pre-
sented in Fig. 4a and the results of semiquantitative analysis for
vascular density determined by PCNA-positive vessels. The control
rats exhibited high and similar PCNA immunoreactivity on
postnatal days 0 and 7. The PCNA immunoreactivity and vascular
density of the IUGR rats were significantly lower on postnatal days
0 (p < 0.0001) and 7 (p < 0.001) than the control group (Fig. 4b).
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UPI had high correlations between serum leptin, RAC, vWF,
and metabolites
Strong correlations were found between serum leptin and RAC
(r= 0.876, p= 4.08 × 10–7), and vWF (r= 0.8911, p= 1.3 × 10–7) on
postnatal days 0 (Fig. 5a), serum leptin and RAC (r= 0.617,
p= 0.004) and vWF (r= 0.9324, p= 2.1 × 10–9) on postnatal day 7
(Fig. 5b), which metabolite data from IUGR rats’ metabolomics
analysis, RAC and vWF data from microbiota research, derived
from previous studies [34,35]. Moreover, the correlation coefficient
showed high correlations between RAC and metabolites such as
LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)/0:0),1-Isopropyl-N-((6-methyl-2-
oxo-4-propyl-1,2-dihydropyridin-3-yl)methyl)-6-(2-(4-methylpipe
razin-1yl)pyridin-4-yl)-1H-inazole-4-carboxamide,Cytosine,1H-Imi-
dazole-4-carboxamide,3-Aminopyrazin-2-ol, Imexon (p < 0.05), and
vWF with metabolites such as LysoPC(20:5(5Z,8Z, 11Z,14Z,17Z)/
0:0),1-Isopropyl-N-((6-methyl-2-oxo-4-propyl-1,2-dihydropyridin-
3yl)methyl) -6-(2-(4-methylpipe-razin-1yl)pyridin-4-yl)-1H-inda-
zole-4-carboxamid, S-Methylmethanesulf inothioate (p < 0.05),
Val-Pro-Asp-Pro-Arg, and viloxazine (p < 0.01) on postnatal day 7.

DISCUSSION
The present study was designed to unravel the effects of
uteroplacental insufficiency-induced IUGR on lung leptin expres-
sion and lung morphology using an experimental animal model.
We found that experimental IUGR-induced altered lung develop-
ment during early postnatal development in rats. Our in vivo
model demonstrated that UPI during the saccular stage of lung
development impaired lung and vascular development, as
evidenced by a higher volume fraction of the alveolar airspace
and lower volume fraction of the alveolar wall, and decreased
vascular density. This is consistent with defective alveolarization in
newborn rats exposed to uteroplacental insufficiency during lung
development.7,40 These UPI effects were associated with
decreased serum leptin and decreased lung leptin and leptin
receptor expression, suggesting that the leptin pathway is
involved in UPI-induced impaired lung development during the
postnatal period.
In this study, IUGR was induced by UPI and all sham-operated

and UPI-induced dams were fed standard rat chow through the
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pregnancy and nourished their offspring during the lactation
period. We found that UPI affected body weight in IUGR rats. The
IUGR rats exhibited significantly lower body weights at birth
(p < 0.01) and on postnatal days 7 (p < 0.001) than control rats.
These findings indicate that IUGR has been established.
On postnatal days 0 and 7, these histological abnormalities

were the most and least significant, respectively. These findings
suggest that developmental exposure to uteroplacental
insufficiency has the greatest impact on lung maturation
during the immediate postnatal period. Decreased alveolar surface
area is associated with reduced lung compliance and increased
resistance, while a decreased alveolar wall volume fraction
is associated with disturbed pulmonary diffusion capacity.41

However, alveolar and capillary structure estimations are typically
associated with measurements of gas diffusion.41 Moreover,
PCNA has been investigated as a cell proliferation marker in rat
offspring lung tissue. In the presence of peroxidase enzymes
that evaluate vascular density, PCNA-stained vessels using 3,3’-
diaminobenzidine eate a brown reaction result. Interestingly,
the assessment of PCNA revealed that the control rats had high
and similar PCNA immunoreactivity, the IUGR rats group had a
significant decrease on postnatal days 0 and 7, representing
the proliferation in the lung. In support, PCNA promotes the
proliferation of cells and growth, also known as a
proliferative marker in the lungs.42–44 On the other hand, previous
studies showed PCNA levels were not changed by the effect
of IUGR on apoptosis in neonatal and adult rat lungs,45 and
another clinical finding in humans showed that PCNA in IUGR with
catchup growth group had a significant increase in primary
neonatal myofibroblasts from rat lungs of IUGR, supporting the
increase in proliferation, indicated airway resistance, and reduced
lung compliance.42 Our results were consistent with the latter
concept.
Furthermore, we investigated the correlations between serum

leptin, RAC, and vWF on postnatal days 0 and 7. Previous research

revealed that various cell types in the healthy lung had high
amounts of Ob-Rb,46,47 with particular leptin-binding sites
detected in both bronchial and alveolar epithelial cells,48–50

airway smooth muscle cells, and (infiltrating) inflammatory cells.
Notably, leptin significantly correlates with fibrinogen and von
Willebrand factor.51,52 These studies support our findings whereas
UPI had high correlations between serum leptin with RAC and
vWF on postnatal days 0 and 7. On the other hand, we only
investigated the correlation coefficient between RAC, vWF, and
metabolites on postnatal day 7, whereas lysophosphatidylcholine
(Lyso-PC) showed high correlations with both RAC and vWF. Lyso-
PC, a minor fraction, plays a central role in phosphatidylcholine
(PC) metabolism and substrate generation. Pulmonary surfactants
primarily consist of phospholipids and surfactant proteins, with PC
being the most abundant.53–55 However, Lyso-PC is potentially
toxic, impairing alveolar epithelium barrier functions, causing cell
swelling, membrane loss, and protein leak due to its wedge-
shaped shape. Earlier research stated lyso-PC, a bioactive
proinflammatory lipid, has a substantial impact on inflammatory
disorders. LysoPC activates a wide variety of cell types, including
endothelial cells, smooth muscle cells, monocytes, maophages,
and T-cells. According to a recent study, LysoPC may control
second messenger systems by using cloned orphan G-protein-
coupled receptors, and directly modulates contractile responses in
vascular smooth muscle and prevents relaxations that are
dependent on the endothelium.54,56 As a result, based on our
research, we speculate that lyso-PC is one of many potential
metabolites that can foretell changes in lung development. These
findings support the study of altered metabolites in metabolomic
analysis and impaired lung development in microbiota investiga-
tion in IUGR rats.34,35

The limitation of this study is that it mainly concentrated on the
lungs of IUGR and the control group, which only demonstrates the
knowledge of itself and does not involve the use of other organs
that enable the investigation of certain circumstances in the lungs,
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and the calculation of correlation between variables was only
investigated on postnatal day 7.
In conclusion, leptin may be involved in the mechanism of UPI-

induced impaired lung development during the postnatal period and
suggests that leptin supplementation may be a promising treatment
modality to enhance lung development in IUGR neonates.
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