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BACKGROUND: Heart rate (HR) patterns can inform on central nervous system dysfunction. We previously used highly comparative
time series analysis (HCTSA) to identify HR patterns predicting mortality among patients in the neonatal intensive care unit (NICU)
and now use this methodology to discover patterns predicting cerebral palsy (CP) in preterm infants.
METHOD: We studied NICU patients <37 weeks’ gestation with archived every-2-s HR data throughout the NICU stay and with or
without later diagnosis of CP (n= 57 CP and 1119 no CP). We performed HCTSA of >2000 HR metrics and identified 24 metrics
analyzed on HR data from two 7-day periods: week 1 and 37 weeks’ postmenstrual age (week 1, week 37). Multivariate modeling
was used to optimize a parsimonious prediction model.
RESULTS: Week 1 HR metrics with maximum AUC for CP prediction reflected low variability, including “RobustSD” (AUC 0.826;
0.772–0.870). At week 37, high values of a novel HR metric, “LongSD3,” the cubed value of the difference in HR values 100 s apart,
were added to week 1 HR metrics for CP prediction. A combined birthweight + early and late HR model had AUC 0.853
(0.805–0.892).
CONCLUSIONS: Using HCTSA, we discovered novel HR metrics and created a parsimonious model for CP prediction in preterm
NICU patients.

Pediatric Research; https://doi.org/10.1038/s41390-023-02853-2

IMPACT:

● We discovered new heart rate characteristics predicting CP in preterm infants.
● Using every-2-s HR from two 7-day periods and highly comparative time series analysis, we found a measure of low variability

HR week 1 after birth and a pattern of recurrent acceleration in HR at term corrected age that predicted CP.
● Combined clinical and early and late HR features had AUC 0.853 for CP prediction.

BACKGROUND AND SIGNIFICANCE
Cerebral palsy is eventually diagnosed in approximately 5% of
preterm infants and can have significant consequences for quality
of life.1,2 Historically diagnosis of CP was delayed until after 1 year
of age but since publication in 2017 of early detection guidelines
the age of CP diagnosis has decreased. This is important since
early targeted therapies during periods of rapid brain develop-
ment can improve long-term functional outcomes.3 More work is
needed to identify preterm infants in the neonatal intensive care
unit (NICU) at high risk of CP to facilitate individualized therapies
before and after discharge home.4

Atypical heart rate (HR) patterns in infants in the NICU can
reflect central nervous system injury and dysfunction and predict
a wide range of adverse outcomes.5–8 Our group has focused on
the discovery of simple HR metrics using time series analysis, and
we previously reported that low variability of HR, particularly in
the first week after birth, is associated with severity of intracranial
hemorrhage, hypoxic-ischemic brain injury, and long-term neuro-
developmental challenges.9,10 More recently, we studied early HR

patterns in NICU patients of all gestational ages with or without
eventual diagnosis of CP, and found that simple HR metrics from
the first week after birth, such as low standard deviation of every-
2-s HR, added to clinical risk factors (lower maternal age, outborn
delivery, lower 5-min Apgar score) for CP prediction.11 Since
gestational age impacts both HR characteristics and risks for CP, in
the current work, we focus on preterm infants and tested both
early (first week) and later (37 weeks postmenstrual age) HR
patterns. We additionally sought to determine whether using
highly comparative time series analysis (HCTSA) methodology that
we previously used to identify HR patterns predicting mortality,
we could discover novel HR patterns providing even better risk
stratification for CP.12–14

HCTSA was first described in 2013 by Fulcher et al. and involves
analyzing time series data using hundreds of algorithms derived
frommultiple interdisciplinary fields.14 The algorithms are deployed
using many sets of parameter values, resulting in thousands of
operations. In medicine, HCTSA has been used primarily for analysis
of electroencephalogram data.13 Our group has used the HCTSA
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approach to discover previously unknown patterns of HR predicting
NICUmortality.12 The long-term objective of our group is to develop
parsimonious models that may eventually be useful in the clinical
setting, and the objective of the work presented here is to use
HCTSA to discover new HR metrics early and later in the NICU stay
for prediction of later diagnosis of CP. We note that in our current
work, we do not use traditional analysis of HR variability, which
requires storage and analysis of electrocardiogram waveforms to
measure inter-heartbeat intervals. Rather, we are using a simplified
approach of analyzing the bedside monitor vital sign data files, with
average HR displayed every 2 s.

METHODS
Design
This is a retrospective cohort study and was approved by the UVA
Institutional Review Board with a waiver of consent.

Patients
We considered for inclusion all patients born at <37 weeks’ gestation
admitted to a level IV NICU at UVA Children’s Hospital from 2009 to 2019
with at least 4 h of archived HR data within the first 7 days after birth and
followed at our center beyond 3 years of age.
High-risk infants cared for in the NICU at our center are followed after

discharge by Neurodevelopmental and Behavioral Pediatrics through at least
2 years of age, and longer if developmental delays are identified. During this
10-year study period, the median age of CP diagnosis for the sample was
16 months (range 4–105 months). The diagnosis of CP was confirmed by an
experienced neurodevelopmental clinician (L.L.), by reviewing the records of
every child with an ICD-9 or ICD-10 code associated with CP.
The no CP group included all infants <37 weeks’ gestational age

admitted to the NICU 2009–2019, with at least 4 h of HR data in the first
week after birth and seen at our institution beyond age 3 with no ICD code
indicating diagnosis of CP. We excluded a small number of late preterm
infants with hypoxic-ischemic encephalopathy treated with therapeutic
hypothermia (1 CP case and 10 no CP) since HR is impacted by low core
temperature.15 We also excluded a small number of infants with later
diagnoses of autism spectrum disorder (10 CP cases and 55 no CP) since, in
our recent work, we discovered aberrant HR patterns during the NICU stay
in those infants.16 As in our recent work, our comparison “no CP” group
includes all eligible preterm NICU patients with data available and known
to not have CP. Thus, we have a large comparison group which increases
our ability to detect smaller differences between the two groups, increases
precision by reducing sampling error, and improves generalizability with a
large and diverse group of infants without CP.11

Clinical variables
Demographic and clinical characteristics and diagnoses during the NICU
stay were obtained from the NICU database (NeoData, Isoprime, Chicago,
IL) and electronic medical records (Epic).
Early clinical variables (known at birth) included maternal age, delivery

mode (vaginal or C-section), outborn status, multiple gestation, gestational
age, birthweight and head circumference, sex, race, and 5-min Apgar
score. Later clinical variables included intraventricular hemorrhage (IVH),
post-hemorrhagic hydrocephalus requiring a ventriculoperitoneal shunt,
seizures, administration of diazepam for hypertonicity, need for gastro-
stomy tube for feeding, and length of NICU stay. Variables that had at least
5 cases in either the no CP or CP groups were included in the modeling.

Heart rate data collection and analysis
As part of the standard of care at our institution, all NICU patients have
bedside monitor vital sign data collected and stored for research with
waiver of consent due to the observational, non-interventional nature of
this work. For the current work, we used HR data displayed on bedside
monitors every 2 s and archived using the BedMaster system (Hillrom™).
HR data were initially analyzed in all 10-min segments in two 7-day

periods. Building on our prior work, we analyzed four mathematical
moments of HR data (mean, SD, skewness, kurtosis). In addition, we
applied nearly 2000 HCTSA operations on HR data from all 1176 infants
included in the current study to identify those with the best ability to
distinguish between CP and no CP infants in univariate analysis. To reduce
the computational burden, we first focused on HR data from the first day

after birth and identified 12 HCTSA metrics with the highest univariate AUC
for CP prediction to move to the next phase of analysis on week-long HR
data. We chose to focus on first-day data since HR patterns soon after birth
better reflect insults occurring in the peripartum period and since we used
the full 24 h period after birth, the impact of interventions that might
transiently impact the HR will be minimized. The 12 HCTSA metrics derived
from this preliminary analysis are listed in Table 1, together with a brief
description. And finally, also building on prior work, we analyzed 20
additional HCTSA algorithms called “medoids.” In our mortality prediction
study, we used unsupervised clustering to identify 20 mutually exclusive
subsets of HCTSA algorithms with relatively high correlation within a
cluster and low correlation outside the cluster that explained the largest
amount of variance (81%) found in the full HCTSA algorithm set. The center
algorithms from each of 20 clusters are termed medoids and represent a
point in the cluster from which the sum of distances to other data points in
the cluster is minimal.
For the current work, we selected 24 HR metrics to move to the second

phase of analysis on week-long data. These are shown in Supplementary
Table 1 and include 4 mathematical moments, 12 HCTSA top CP predictors,
and 8 medoid top CP predictors from univariate first-day analysis. These 24
metrics were applied to HR data from two 7-day periods: the first week
after birth (week 1) and at 37 weeks PMA (week 37). The early time period
was expected to capture autonomic dysfunction associated with perinatal
distress, inflammation, and hypoxia-ischemia, and the later time period at
term corrected age to capture sustained nervous system dysfunction and
cumulative brain insults that may occur during the NICU stay. For infants
discharged from the NICU prior to 37 weeks PMA, we analyzed HR in the
7-day period before discharge.
Every 10-min HR segment was analyzed and the median value for each

of the 24 features was identified for the two 7-day periods, week 1 and
week 37.

Statistical analysis and modeling
Demographic and clinical characteristics, including medical/neurological
comorbidities and HR variables for infants with and without CP, were
compared to evaluate baseline differences using a t-test or nonparametric
Mann–Whitney U test for continuous variables and χ2 or Fisher’s exact test
for categorical variables.
Early and late predictive models were developed for week 1 and week

37 time frames. We tested parsimonious models, including no more than
five variables (one predictor for every 10 CP cases in the sample), to avoid
overfitting.
Optimal multivariable models were selected based on best fit as

measured by the minimum Akaike’s Information Criteria (AIC). Fit is
reported as McFaddens-adjusted r-squared ([1],[2]), which transforms the
AIC to a value between 0 and 1. A stepwise algorithm was used to find the
initial best-fit models of increasing size. Best-fit models were identified that
were locally optimal in that the fit was reduced if any of 3 modifications

Table 1. Heart rate HCTSA variables with highest CP prediction.

Variable name Short description

diff_uudd Up-up-down-down HR sequence

diff_zero No successive HR change

complexity_norm Normalized by minimum possible value

long_SD_3 SD of HR values 100 s apart, cubed

poincare_diag Points in bottom left top right of Poincare plot

diff_zero_length Length of consecutive no HR change

local_range 25 local segments

random_local_SD Bootstrap-based stationarity measure

symb3_eig_SD Symbolic transform 3-level transition matrix

robust_SD Moving threshold algorithm

symb3_diff_acb Symbolic transform 3-level ACB sequence

autocorr_ratio Ratio of autocorrelation function with
trimmed data

The code to compute the HR metrics are featured in Supplementary
Table 1.
HR heart rate, SD standard deviation.
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occurred: (1) any feature not in the model was added; or (2) any feature in
the model was removed; or (3) any feature in the model was replaced with
a feature not in the model.
Ten-fold cross-validated AUC (cvAUC) was used as the primary

performance measure. The ten folds were fixed for all calculations and
stratified to have equivalent numbers of CP cases. Variable importance was
measured as the drop in cvAUC when the variable is removed from the
model. For models of size greater than 4, the final model was selected as
largest model with all variables having importance of at least 0.005. The lift
of the model was calculated as the positive predictive value (PPV) at a
threshold equal to the event rate, divided by the event rate. At this lift
value, the number of positives is equal to the number of CP cases (57), so
the PPV is also equal to the sensitivity. We display the predictive
performance of individual variables and combined models in Fig. 1 and
Supplementary Figs. 1–3 as fold-increased risk of CP compared to the
overall risk of 1 for the entire cohort.

RESULTS
Cohort characteristics
In the years of the study (2009–2019), 3726 infants <37 weeks’
GA were admitted to the UVA NICU. Of these, 1176 met inclusion
criteria described in “Methods.” A diagnosis of CP was made
for 57 (4.8%), and 1119 patients without CP were identified as a
comparison group.

Univariate analysis of clinical variables predicting CP
Demographics and clinical characteristics of the cohorts are
displayed in Table 2. The groups differed significantly with respect

to gestational age, birthweight and head circumference, outborn
status and 5-min Apgar score (all p values <0.05). White race
characterized 75% of infants with CP and 67% of those without CP,
a difference that was not statistically significant (p= 0.195). Fifty-
four percent of infants without CP were male compared to 49% in
the CP group (p= 0.496). IVH was associated with CP diagnosis,
and all three patients who required a ventriculoperitoneal shunt
for post-hemorrhagic hydrocephalus were diagnosed with CP.
Length of NICU stay was longer for the CP group compared to the
no CP group (median 88 days IQR 49–122 versus 25 days IQR
14–54, p < 0.001).

Univariate analysis of HR metrics predicting CP
In the first 24 h after birth, 1061 infants (90%) had HR data and the
median number of h of data was 23 (IQR 16–24) for the initial
HCTSA analysis. For the HCTSA analysis on HR data from the first 7
days after birth, median hours of HR data available was 159 h (IQR
116–167), and for the 7 days at 37 weeks PMA median 155 h (IQR
131–163). Thus, HR data availability was 95 and 98% of the 7-day
periods, respectively.
Univariate risk of CP based on each of the 24 metrics described in

methods was analyzed for week 1 and week 37 HR data. Of note,
the eight medoids identified by unsupervised clustering from our
previously published HCTSA mortality prediction work12 were
outperformed for CP prediction in multivariate analyses described
below by the 12 HCTSA operations identified by deploying the
~2000 HCTSA operations on the first-day HR data. We therefore
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show univariate results only for the mathematical moments
(Supplementary Fig. S1) and the 12 HCTSA top performers for week
1 HR and week 37 HR (Supplementary Figs. S2 and S3, respectively).

Multivariable modeling of early and late clinical and HR data
for CP prediction
The performance of six multivariate models for CP prediction is
shown in Table 3. The early clinical model included three variables
known at birth (birthweight, race, and 5-min Apgar score) and had
cvAUC of 0.784 (0.721, 0.836), with birthweight being the most
predictive variable. A discharge clinical model included NICU
length of stay and had only slightly improved cvAUC of 0.791
(0.721, 0.839).
A model adding HR metrics from the first week after birth to

birthweight led to a cvAUC of 0.827 (0.773, 0.868), with the most
predictive HR metrics being low RobustSD and high LongSD3.
Week 37 HR data had additive value, with the optimum model
combining birthweight, week 1 HR, and week 37 HR metrics
having cvAUC 0.853 (0.805, 0.892).
Figure 1a shows the fold-increased risk of CP of each of the four

optimal model features along with 95% confidence intervals.

Figure 1b shows these curves as a function of the percentile of the
values. The output of the optimum parsimonious multivariate
model is also plotted.
Figure 2a shows 1 h of HR (averaged every 10min) from the first

week after birth for the six infants in the CP cohort with the lowest
values of the HR metric we call “RobustSD.” RobustSD is a measure
of variability of HR calculated using a moving threshold algorithm
and was also identified in our prior work to provide a good
prediction of NICU mortality.12 For week 1 RobustSD, 13 infants had
median values <0.32, with 6 having CP for PPV of 46%. Figure 2b
shows 1 h of 10-min averaged HR from 37 weeks PMA for the six
infants in the CP cohort with the highest value of the HR metric we
call LongSD3. This reflects the long-term variability of HR and is the
cubed value of the difference in HR values 100 s apart. For week 37
LongSD3, 17 infants had a median value >2000, with six infants later
diagnosed with CP, giving a PPV of 35%.
Another HR metric that was retained in the final model is

symb3_diff_acb_w37, which measures the frequency of ACB
patterns when the difference of the HR is quantized to a three-
letter alphabet. A high frequency of this HR pattern predicts low
CP risk.

Table 2. Cohort characteristics.

Demographic and clinical characteristics No CP= 1119 CP= 57 p value

GA, weeks, mean (SD) 31.4 (3.5) 27.7 (3.2) <0.001

Birthweight, kg, mean (SD) 1.7 (0.7) 1.1 (0.4) <0.001

Birth HC, cm, mean (SD) 28.9 (3.7) 25.3 (3.1) <0.001

Multiple gestation, n (%) 307 (27.4) 13 (22.8) 0.542

Sex=Male, n (%) 610 (54.5) 28 (49.1) 0.496

Race/ethnicity, n (%) 0.506

Black 245 (21.9) 9 (15.8) 0.324

Hispanic 53 (4.7) 3 (5.3) 0.729

Other 73 (6.5) 3 (5.3) 0.576

White 748 (66.8) 43 (75.4) 0.195

Maternal age, years, mean (SD) 28.2 (6.2) 28.3 (6.4) 0.862

Birth hospital=inborn, n (%) 1005 (89.8) 46 (80.7) 0.044

Delivery mode=vaginal, n (%) 439 (40.2) 16 (28.1) 0.072

5-min Apgar, median (min, max) 8 (0, 10) 7 (0, 10) <0.001

Intraventricular hemorrhage 116 (10.3) 17 (29.3) <0.001

VP shunt, n (%) 0 (0.0) 3 (5.3) <0.001

Valium for hypertonicity, n (%) 16 (1.5) 6 (10.5) <0.001

Gastrostomy tube, n (%) 19 (1.7) 3 (5.3) 0.086

Length of stay, days, median (IQR) 25 (14–53.75) 88 (48.5–121.75) <0.001

GA gestational age, HC head circumference, SD standard deviation, VP shunt ventriculoperitoneal shunt.
Bold values indicate statistical significance p < 0.05.

Table 3. Performance of multivariate models to predict CP.

Model Size cvAUC Lift Fit Features Lower Upper

Birth 3 0.784 4.343 0.125 BWT, Apgar 5, Caucasian 0.721 0.836

Discharge clinical 4 0.791 5.067 0.141 LOS, BWT, In Hospital, Caucasian 0.721 0.839

Week 1 HR 4 0.826 5.067 0.162 robust_SD_w1, complexity_norm_w1, random_local_SD_w1,
long_SD_3_w1

0.772 0.870

Week 1 HR+Clinical 3 0.827 4.705 0.169 robust_SD_w1, long_SD_3_w1, BWT 0.773 0.868

Week 37 HR 4 0.846 6.153 0.204 robust_SD_w1, long_SD_3_w37, symb3_diff_acb_w37,
long_SD_3_w1

0.800 0.885

Week 37 HR+Clinical 4 0.853 6.515 0.209 symb3_diff_acb_w37, long_SD_3_w37, robust_SD_w1, BWT 0.805 0.892

Discharge HR
+Clinical

4 0.851 6.877 0.215 symb3_diff_acb_w37, robust_SD_w1, long_SD_3_w37, LOS 0.798 0.891

Lift= positive predictive value at event rate/event rate, Fit=McFadden’s adjusted, r-squared= normalized AIC.
Lower and upper ranges of confidence interval ranges for all models.
BWT birthweight, cvAUC cross-validated area under the curve, HR heart rate, LOS length of stay.

L. Letzkus et al.

4

Pediatric Research



DISCUSSION
In this large single-center retrospective study of preterm NICU
patients, we aimed to develop predictive models for eventual
diagnosis of CP using HR data from early (first week after birth)
and late (37 weeks postmenstrual age) in the NICU stay. Using
HCTSA methodology, we identified a measure of low variability of

every-2-s HR (RobustSD) in the first week after birth and a measure
of high variability (LongSD3) at term corrected age (37 weeks’
PMA) that added to clinical variables for CP prediction. Multi-
variate modeling that included week 1 clinical and HR analysis
gave good prediction (AUC 0.827), and adding week 37 HR data
significantly improved prediction (AUC 0.853).
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Low variability of HR is a sign of autonomic nervous system
dysfunction and has been shown by us and others to be
associated with the severity of acute brain injury and risk for
adverse outcomes in neonates.6,9,17–21 The current study builds on
our prior work on CP prediction in which we used simple HR
metrics (the four mathematical moments of mean, standard
deviation, skewness and kurtosis) in a cohort of both preterm and
term NICU patients.11 In that work, we found that low standard
deviation and negative skewness of HR (toward decelerations) in
the first week after birth had AUC for CP prediction. We note that
in both that study and the current work, we are not using
traditional methods of measuring HR variability by analysis of
inter-heartbeat intervals from the electrocardiogram waveform.
Rather, we are using a simplified approach of analyzing the
bedside monitor vital sign data files, with average HR displayed
every-2-s, this method has the disadvantage of not informing on
sympathetic-parasympathetic balance, which requires analysis of
RR intervals from the ECG waveform and is complicated in
neonates with fast and irregular respiratory rates.22,23 An
advantage of our method is that it is more likely to be
generalizable to centers that are unable to analyze ECG wave-
forms but can collect and analyze HR displayed as beats per
minute updated every 2 s on NICU bedside monitors.
In an attempt to discover novel atypical HR patterns reflecting

risk for long-term neuromotor dysfunction, we deployed
thousands of operations on first-day HR data using HCTSA to
hone in on metrics with the greatest ability to distinguish
between infants with and without eventual diagnosis of CP. In
our prior work on 6000 NICU patients, HCTSA was computa-
tionally intensive and we therefore performed clustering analysis
to identify 20 medoid algorithms that accounted for 81% of the
variance in the sample for predicting NICU mortality. In the
current work, we used those medoids but also used HR data
from the first 24 h after birth for the first pass at HCTSA to
identify algorithms that predicted CP. We chose to focus on the
first day after birth for this initial analysis in order to capture
pathologic patterns reflecting acute inflammatory or ischemic
insults in the immediate antepartum and intrapartum periods.
By analyzing both previously identified mortality-predicting
medoid algorithms and newly identified CP-predicting algo-
rithms from first-day HR data, we were able to greatly reduce the
computational burden of HCTSA. Another important considera-
tion is that preterm infants with severe insults and instability, at
the highest risk for CP, have a higher chance of mortality, and
the current work was limited to NICU survivors. It is likely that
model performance would be even greater for predicting a
combined outcome of death or CP.9,12

In contrast to our prior study, which included both preterm and
term infants, we focused the current analyses on preterm infants
since gestational age impacts HR characteristics and CP risk. We
found that birthweight was the top clinical predictor of eventual
diagnosis of CP, and longer length of stay in the NICU was also
associated with CP diagnosis but did not add significantly to the
final model. In our cohort, sex was not a significant predictor of CP
which is in contrast to other studies that have found higher CP risk
among male preterm infants.24–26 We found that clinical variables
had a good prediction of CP, with birthweight retained in the final
model. Adding HR analytics from both early and later in the NICU
stay greatly strengthened predictive performance, with the
optimum model having higher cvAUC, better fit, and higher PPV
at a threshold equal to the event rate. We excluded a small
number of preterm infants undergoing hypothermia therapy for
HIE and in the future could apply the HCTSA approach for late
preterm and term infants undergoing hypothermia therapy since
finding early biomarkers for adverse outcomes in this population
is an important research priority.
We discovered several new HR metrics that reflect HR variability

and have high predictive performance for CP. The first and

strongest is a metric we call “RobustSD,” with a low value
reflecting a paucity of HR accelerations and decelerations (Fig. 2a).
This finding of low variability of HR in week 1 predicting an
adverse neurodevelopmental outcome is not surprising and
is supported by prior work by us and others.6,9,10,18–20,27–29

An unexpected discovery that predicted CP at week 37 was very
high values of a metric we call LongSD3, which reflects long-
term, extremely low-frequency variability. The metric is the
cubed value of the difference between HR values 100 s apart.
Figure 2b shows 1 h of HR at week 37 for the six babies with CP
with the highest values of LongSD3. While the physiology of this
HR pattern cannot be known from this retrospective analysis, we
speculate that infants at high risk for CP may have atypical
autonomic control and abnormal state regulation, leading to
frequent spikes in HR.
A major strength of our study is the availability of continuous

HR data from a large number of NICU patients and our ability to
deploy thousands of time series operations to discover novel HR
patterns predicting long-term neuromotor dysfunction. A limita-
tion of the study is that the monitors used at our site only display
the average HR every 2 s. Other sites use monitors that display HR
every second, which would require some minor modification
of the algorithms before implementation. To overcome this
site variability and concerns about aliasing, models could be
developed directly from the interbeat RR intervals derived from
ECG waveforms. The tradeoff is the significant amount of
additional data processing and management required and this
may not be practical in resource-limited settings. Several other
limitations deserve consideration. First, given the retrospective
nature of this work, we are not able to discern whether the
atypical HR pattern of high LongSD3 represents abnormal state
regulation or response to external stimuli. Second, we only have
standard neuroimaging (head ultrasound) and not MRI, which has
some predictive value for CP. Third, we did not account for all the
clinical variables that may contribute to CP risk either prenatally
(intrauterine inflammation, hypoxia/ischemia, genetics), or post-
natally (hypocapnia, hypoxia/ischemia, sepsis, dexamethasone
exposure).30 And finally, we did not include physical examination
as an assessment for CP risk. Our NICU only recently implemented
routine General Movement Assessment for preterm infants.31

Presence of cramped synchronized general movements has a
good ability to discriminate CP risk, but we do not have general
movement assessment results for the majority of infants included
in this study.32 It is possible that, since the performance of
general movement assessment is not feasible for all infants in
all NICUs, discovering biomarkers such as atypical HR patterns
may identify the highest-risk infants that might benefit from this
specialized assessment. Another potential use of HR pattern
analysis is for risk stratification in clinical trials of neuroprotective
agents.

CONCLUSIONS
Using HCTSA of every-2-s HR data from NICU bedside monitors,
we discovered metrics in preterm NICU patients that reflect
atypical HR variability and add to clinical variables to predict
CP. With further development and external validation in large
multicenter cohorts, HR analysis may serve as a biomarker for CP
prediction, identifying the highest-risk patients for targeted
therapies prior to and after NICU discharge. Earlier therapies
during periods of rapid brain development may, in turn, improve
long-term functional outcomes.

DATA AVAILABILITY
Anonymized HR HCTSA data on UVA NICU patients, with the evidence graph for the
clustering, are openly available in the University of Virginia’s LibraData archive at
https://doi.org/10.18130/V3/VJXODP.
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CODE AVAILABILITY
Python code used to process this data is archived in Zenodo at https://doi.org/
10.5281/zenodo.4321332. This version and any future versions are also available on
GitHub at https://github.com/fairscape/hctsa-py. Our code is licensed under terms of
the MIT license (https://opensource.org/licenses/MIT), and is a reimplementation in
Python of most of Ben Fulcher’s original MATLAB code, available here: https://
github.com/benfulcher/hctsa. Software for clustering analysis and cross-
implementation testing, together with the test data, may be found here: https://
doi.org/10.5281/zenodo.4627625.
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