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Cerebrovascular reactivity defines the ability of the cerebral vasculature to regulate its resistance in response to both local and
systemic factors to ensure an adequate cerebral blood flow to meet the metabolic demands of the brain. The increasing
adoption of near-infrared spectroscopy (NIRS) for non-invasive monitoring of cerebral oxygenation and perfusion allowed
investigation of the mechanisms underlying cerebrovascular reactivity in the neonatal population, confirming important
associations with pathological conditions including the development of brain injury and adverse neurodevelopmental
outcomes. However, the current literature on neonatal cerebrovascular reactivity is mainly still based on small, observational
studies and is characterised by methodological heterogeneity; this has hindered the routine application of NIRS-based
monitoring of cerebrovascular reactivity to identify infants most at risk of brain injury. This review aims (1) to provide an
updated review on neonatal cerebrovascular reactivity, assessed using NIRS; (2) to identify critical points that need to be
addressed with targeted research; and (3) to propose feasibility trials in order to fill the current knowledge gaps and to possibly
develop a preventive or curative approach for preterm brain injury.

Pediatric Research; https://doi.org/10.1038/s41390-023-02574-6

IMPACT:

● NIRS monitoring has been largely applied in neonatal research to assess cerebrovascular reactivity in response to blood
pressure, PaCO2 and other biochemical or metabolic factors, providing novel insights into the pathophysiological mechanisms
underlying cerebral blood flow regulation. Despite these insights, the current literature shows important pitfalls that would
benefit to be addressed in a series of targeted trials, proposed in the present review, in order to translate the assessment of
cerebrovascular reactivity into routine monitoring in neonatal clinical practice.

INTRODUCTION
The ability of the cerebral vasculature to regulate its resistance in
response to both local and systemic factors is defined as
cerebrovascular reactivity (CR) and is aimed at maintaining
adequate cerebral blood flow (CBF) to meet cerebral metabolic
demand. Neonatal CR was first studied using radioactive tracer
methods and Doppler sonography. The application of non-invasive
and operator-independent near-infrared spectroscopy (NIRS)
technique for cerebral regional tissue oxygen saturation (rStO2)
monitoring in neonatal settings has shed further light on CR in
several physiological and pathological conditions. Nevertheless,
the methodological heterogeneity, along with the observational
nature and the small sample sizes of current reports, hinders a

routine application of CR monitoring for neonatal neuroprotection.
On these premises, we aim to provide an updated review of NIRS-
based evidence on neonatal CR and to identify critical issues and
gaps that should be addressed with targeted trials to implement CR
monitoring in neonatal intensive care.

PHYSIOLOGICAL MECHANISMS OF CEREBROVASCULAR
REACTIVITY
Pressure-flow autoregulation
The modulation of vascular tone in relation to intraluminal pressure
is a leading mechanism of CBF regulation, mediated by the
mechanoreceptor properties of smooth muscle cells lining cerebral
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arteries. In response to increased intraluminal pressure, membrane
depolarisation and calcium-dependent vasoconstriction occur, while
the opposite happens at low intraluminal pressure, resulting in
cerebral vasodilation.1 The classic depiction of cerebral pressure-flow
autoregulation is a sigmoidal curve (Fig. 1), with stable CBF over a
range of cerebral perfusion pressure (CPP), of which a main
determinant in neonates is arterial blood pressure (ABP). When
ABP values fall below the lower limit or rise above the upper limit of
autoregulatory capacity, pressure-passive circulation occurs, with
potential ischaemic or haemorrhagic complications.2 Recent evi-
dence from adults, however, has revised this classical view by
showing a much shorter plateau which still has a gentle slope,
indicating some degree of pressure-passive CBF.3,4 Notably, ‘cerebral
autoregulation’ is often used to refer to ‘cerebrovascular reactivity’.
However, although the pressure-flow autoregulation of CBF is
frequently involved in the interplay between CR mechanisms, the
two terms are not synonymous, and their interchangeable use may
contribute to the heterogeneity seen in current literature.

Biochemical factors
Partial arterial pressure of oxygen (PaO2) and carbon dioxide
(PaCO2) are potent chemo-modulators of cerebral vasculature,
independent of intravascular pressure. While hypoxia and
hypercapnia exert a vasodilatory effect on CBF, hyperoxia and
hypocapnia lead to cerebral vasoconstriction. Vascular reactivity
to PaO2 and PaCO2 is mediated by H+/K+ homoeostasis,
secondary to changes in perivascular pH.5–7 CR to PaO2, PaCO2

and ABP can functionally interact (Fig. 1). For example, if the
vasodilator pathway has been activated during hypercapnia, the
slope of the autoregulatory plateau increases, predisposing to
larger CBF fluctuations even when ABP/CPP are within the normal
range.8

Metabolic factors
Cerebral metabolic demands can influence cerebral perfusion, as
supported by the evidence of CBF changes in relation to glucose
availability. In preterm newborns, hypoglycaemia is associated
with a significant compensatory increase in CBF;9 following the

restoration of normoglycaemia, CBF gradually decreases.10 A
recent systematic review11 has also reported a similar negative
correlation between blood glucose levels and either cerebral rStO2

or haemoglobin concentration,12–14 used as a proxy for CBF, in
term and preterm neonates.

Sympathetic nervous system
The cerebral vasculature has abundant adrenergic receptors and is
under precise autonomic control.15 Sympathetic activation shifts
the autoregulatory plateau towards higher CPP, thereby protect-
ing the brain against hyperperfusion (see Fig. 1).16 The sympa-
thetic system appears to play a greater role in CBF regulation in
the perinatal period than later in life.17 The relative immaturity of
nitric oxide (NO)-induced vasodilatory mechanisms during early
development, the greater sensitivity to exogenous norepinephrine
and the higher sympathetic nerve density in neonatal compared
to adult pial arteries may contribute to this finding.18

Functional activation
The CBF response to neuronal activation is referred to as
neurovascular coupling. This response is mediated by the
neurovascular unit (Fig. 2), which represents an interactive
network of cerebral vessels, vascular cells (pericytes, smooth
muscle and endothelial cells), glia (astrocytes and microglia) and
perivascular neurons. Upon neuronal activation, vasoactive
substances such as prostaglandins, NO and adenosine are
released from both neurons and astrocytes, leading to the
modulation of vascular smooth muscle.19 Studies using functional
NIRS have provided insight into the neurovascular coupling
response in newborns. In the adult brain, the classic ‘positive’
response is characterised by an increase in oxygenated haemo-
globin (O2Hb) and a decrease in deoxygenated haemoglobin
(HHb). In neonates, however, variable cerebral haemodynamic
patterns have been reported in response to neuronal activation,
including a ‘negative’ response with local O2Hb reduction, which
may indicate that the oxygen consumption triggered by neuronal
activity transiently outpaces the concomitant CBF increase.20–24

This variability may be due to developmental changes in the
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capacity of cerebral vasculature to produce functional hyper-
aemia in the low-density capillary bed of the neonatal brain.25,26

NIRS-BASED ASSESSMENT OF CEREBROVASCULAR
REACTIVITY: SURROGATE SIGNALS AND NEONATAL
APPLICATIONS
The assessment of CBF fluctuations in response to physiological
changes or stimuli is fundamental to evaluate the integrity of CR.
This assessment evaluates the relationship between the input
and the output (i.e., CBF) signals,27 and can be classified into
static, which includes quantitative methods performing point
measurements of CBF (e.g.,133Xe clearance), or dynamic.28,29

While in adults, transcranial Doppler sonography (TCD) can
be used for dynamic CR monitoring, the small size of neonatal
vessels hinders an accurate measurement of the vessel diameter,
which is necessary to calculate blood flow within a specific
artery.30 The small vessel size also causes frequent loss of
signal, limiting the application of neonatal TCD to static CBF
assessments.31–33

NIRS exploits the relative transparency of near-infrared light
(700–950 nm) in biological tissue and the oxygen-dependent
absorption of haemoglobin at different wavelengths to measure
rStO2, derived from the changes in concentration of O2Hb and
HHb within the vascular beds (Fig. 3). Fluctuations in cerebral
rStO2 can reflect changes in CBF if other determinants of
cerebral metabolism and oxygen delivery (i.e., arterial oxygen
saturation, haemoglobin concentration, arterial–venous volume
ratio, fractional inspired oxygen, tissue oxygen diffusivity)
remain relatively constant.34 NIRS monitoring can be performed
non-invasively and continuously for relatively prolonged peri-
ods; hence, cerebral rStO2 has been used as a surrogate for
dynamic CBF monitoring, mainly for slow CBF changes. The
changes in total cerebral haemoglobin concentration (ΔtHb) or
tissue haemoglobin index (THI), as a sum of ΔO2Hb and ΔHHb or
directly measured using the isosbestic 805 nm wavelength, have
been described as surrogate measurements of cerebral blood
volume.12,35–37

The interaction between CBF and CPP is mediated by cerebro-
vascular resistance as follows, using an analogy of Ohm’s law:

CBF ¼ CPP
Cerebrovascular resistance

Cerebrovascular resistance is determined by the vascular tone
of the arterial smooth muscle cells. During brain development, the
muscularis layer of the extra-striatal arterioles is initially limited to
the pial vessels and superficial penetrators; consequently, in
preterm infants, cerebral vasoreactivity occurs predominantly in
the superficial and peripheral parenchyma of the brain.38

CPP is dependent on ABP and intracranial pressure. As
intracranial pressure is assumed stable in neonates because of
the open cranial sutures, the slow waves of ABP can presumably
be used as a surrogate for low-frequency CPP changes. With high-
frequency CPP changes and oscillations (>0.20 Hz), the autoregu-
latory processes become less able to stabilise CBF in the face of
changing CPP.39 Therefore, these fast CPP oscillations are passed
along unimpeded into CBF oscillations. In contrast, slower
frequency oscillations (<0.20 Hz, but most effectively <0.05 Hz)
can be counteracted by the cerebral arterioles and are
dampened.40,41 Hence, continuous measurements of slow rhyth-
mic oscillations in ABP and CBF have been used to assess the
integrity of pressure-flow autoregulation36,42–46 and, in different
neonatal cohorts, have also identified individual optimal ABP
(ABPopt) ranges within which autoregulatory mechanisms are
most effective, defined by the lowest values of the related CR
coefficient indicating functional reactivity.47–52 Continuous ABP
monitoring requires an indwelling arterial catheter53 and may not
always be feasible. To date, evidence on the use of non-invasive
continuous monitoring for blood pressure (e.g., beat-to-beat
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finger arterial devices) to assess neonatal pressure-flow auto-
regulation is limited,54,55 and the reliability of non-invasive blood
pressure monitoring against invasive methods needs further
improvements.56,57 Using blood pressure data measured non-
invasively by arm cuffs at 15min after birth, functional pressure-
flow autoregulation was demonstrated in term neonates during
the immediate postnatal transition, but not in preterm infants at
this early phase.58

Being a direct determinant of cardiac output, heart rate (HR) can
be considered a surrogate of systemic blood flow. Since
continuous HR monitoring is non-invasive and universally avail-
able, HR can represent an alternative input signal to assess CR in
response to systemic blood flow changes. A moving correlation
coefficient between cerebral rStO2 and HR (TOHRx) has been
proposed for CR monitoring in preterm infants, with rising values
indicating loss of CR.47,48,59–61 Low or negative TOHRx values have
been used to define ABPopt ranges during the first 24 h after
birth.48 The recent neonatal application of non-invasive bedside
devices for continuous cardiac output monitoring may facilitate
the investigation of CR to systemic blood flow; current data,
however, are limited. Two reports have found no association
between cardiac output and cerebral rStO2 in term infants
immediately after delivery62 or at different sleep positions.63

PaCO2 can also be used as an input to evaluate CBF-CO2

reactivity.8,64 End-tidal (etCO2) or transcutaneous CO2 (tCO2)
monitoring allow continuous, non-invasive estimation of PaCO2.
The relationship between tCO2 and THI in neonates has been
evaluated by Dietz et al.,65 who documented a trend towards
increased CO2 reactivity in healthy term neonates between days 1
and 4, whereas Aly et al.66 found that lower gestational age (GA),
mechanical ventilation and increased PaCO2 were associated with
stronger CO2 reactivity in the first week of life in preterm infants,
with possible implications on the risk of brain injury. EtCO2

fluctuations have also been associated with concomitant changes
in cerebral rStO2 and electroencephalographic brain activity.67

Other studies using punctual PaCO2 from blood gas analysis
yielded variable results: in preterm infants, Kaiser et al. observed a
progressive loss of pressure-flow autoregulation for PaCO2

≥45mmHg during the first week of life,8 whereas Hoffman et al.
failed to demonstrate an overall association between PaCO2 and
pressure-flow autoregulation during the transitional period.68

During the immediate postnatal period (i.e., 15 min after birth),
Wolfsberger et al. observed that the vasodilative effect of PaCO2

on cerebral rStO2 was less pronounced in preterm compared to
term neonates.69

Electroencephalographic techniques have been used to investi-
gate CBF responses to neurophysiological changes. In preterm
neonates, Roche-Labarbe et al. described that spontaneous bursts
of electroencephalographic activity were coupled to a haemody-
namic response characterised by an O2Hb decrease, followed by an
increase and then a return to baseline.70 Tataranno et al.
documented a decreased cerebral rStO2 and increased tissue
oxygen extraction in extremely preterm infants with increasing
intensity of spontaneous brain activity.71 Seizures are paroxysmic
bursts of abnormal electrical brain activity. Available neonatal data
during different types of seizures consistently report a reduction of
cerebral rStO2,

72–74 followed by a variable rStO2 increase.73,74 The
observed rStO2 reduction was associated with an O2Hb decrease
and an HHb increase mimicking a ‘negative functional response’
pattern,73 consistent with the elevated oxygen consumption
associated with seizures which exceeds cerebral oxygen delivery.
Notably, CR assessment is only reliable if considerable variability

in the input signal is present; if there is no variation, dependency
cannot be determined. Some researchers have proposed adding
more weight to epochs with high variability to correct for this
factor.75–77 Furthermore, when compared to outer input signals
such as those derived by electroencephalographic or electro-
cardiographic techniques, some NIRS instruments may have a

lower sampling rate; this may affect the calculation accuracy of
some CR metrics such as those for neurovascular coupling,
especially for long-term monitoring periods.19,25,78

PROPOSED MATHEMATICAL METHODOLOGIES FOR CR
ASSESSMENT
Recent overviews, which also provide specific methodological
details of the studies included, have confirmed the feasibility of
examining CR in the neonatal population.79,80 To date, however,
there is no clinical gold standard methodology for CR assessment;
this is reflected in the numerous mathematical methods used for
these purposes. These methodologies have mostly been applied
to the investigation of pressure-flow autoregulation. Signal
processing techniques for assessing neurovascular coupling have
recently been reviewed by Hendrikx et al.19 and will not be
addressed in this review.
Invasively measured ABP and cerebral rStO2 as surrogates for

CPP and CBF, respectively, are included in different mathematical
models to address pressure-flow autoregulation. The lack of
standardisation on different levels in the quantification of
pressure-flow autoregulation (Table 1) hinders the reproducibility
of studies that have related the analyses with clinical outcomes.
To study cerebral autoregulation, a synchronised capture of the

physiological signals from multiple monitoring systems into a
single aggregated file is required. Several available data capture
platforms compatible with current NIRS monitors have been
recently summarised by Vesoulis et al.81 A major step in pre-
processing of the acquired data is the removal of artefacts;
although this essential component is often performed manually,
ideally a reliable automated approach would speed up this stage,
avoid any biases, and enable real-time analysis. As two key
assumptions for the use of rStO2 as a surrogate for CBF are stable
SpO2 and cerebral metabolic rate (CMRO2), correction for SpO2

and CMRO2 would ideally also be necessary. The total cerebral
haemoglobin concentration has been proposed by Grubb et al. as
a surrogate for CBF independent of the CMRO2.

82

Pressure-flow autoregulation analysis, making use of the
spontaneous oscillations in cerebral oxygenation and ABP, has
been explored both in the time domain and frequency domain by
correlation and coherence analysis, respectively. These approaches
assume that the physiological parameters are considered stationary
signals.

Time-domain methods
The time-based method of Pearson correlation (r) is the most
straightforward approach. The correlation coefficient between
rStO2 and ABP is used as a cut-off value to assess the presence or
absence of pressure-flow autoregulation (the closer to 0, the
higher the autoregulatory capacity); significant positive correlation
is then considered to represent pressure-passive cerebral circula-
tion in that epoch.83–88 A question remains whether the
cerebrovascular transit time (i.e., the time needed for cerebral
rStO2 to fully respond to a CBF change) is considered. In this
regard, the moving correlation coefficient between cerebral rStO2

and ABP, which has been validated in hypotensive piglets and has
been shown to correlate with TCD measurements of pressure-flow
autoregulation in adult patients,44 has been largely used in
neonatal clinical observational studies.85,89–92 The percentage of
epochs with impaired pressure-flow autoregulation (defined as r
above a predefined threshold), the strength of correlation, but
also the amount of r variability during measurement can be
assessed.93 These principles have been applied to other NIRS-
based parameters to study pressure-flow autoregulation. For
example, the moving correlation between THI and ABP has been
used to determine individualised ABPopt.49,50,52,94,95 Similarly, the
Pearson correlation between THI and tCO2 has been used to
investigate CR to CO2 in the neonatal population.65,66
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Frequency-domain methods
Coherence analysis has been applied to explore the relationship
between NIRS measurements and ABP changes in the frequency
domain.96 Notably, according to the Nyquist theorem, the
sampling frequency of the collected data needs to be at least
twice the highest frequency of interest in the signal. Similar to
time-domain methods, a predefined threshold is used to define
impaired pressure-flow autoregulation (the closer to 0, the higher
the autoregulatory capacity). To correct for different epoch
lengths and sample frequencies, Monte-Carlo simulations are
performed to identify significant coherence in the given data
segments;75,97 adaptations to the basic model of coherence are
also made.76,98 Coherence describes the impairment of pressure-
flow autoregulation quantitatively. The degree of dependence
between two variables (e.g., ABP and rStO2) is measured (no units),
and by performing transfer function analysis, the gain and phase
are calculated. The gain estimates the degree of this impairment
by describing the magnitude of change in the output signal (e.g.,
rStO2) in relation to a unity change in the input signal (e.g., ABP) at
a given frequency. However, causality, i.e., what signal induces
changes in the other signal, cannot be established by these
methods. Wong et al.45 first used coherence and gain to assess
rStO2-derived pressure-flow autoregulation in sick infants. This
method was later validated by Hahn et al. in piglets.99 Transfer
function with logarithmic transformation of the gain coefficient to
provide the amplitude of the dampening response is described by
Vesoulis et al.100 The phase describes the time delay between
coherent oscillations of the two signals and can be seen as an
additional factor in pressure-flow autoregulation analyses.
Pressure-flow autoregulation can be studied in different frequency
bands, ranging from ultra-low to high-frequency bands. Low-
frequency bands correspond to slow oscillations in ABP and rStO2.
Slow and prolonged periods of hypotension or hypertension of
higher magnitudes are considered to be more injurious than fast
and transient ABP changes of small magnitudes (‘high-pass filter’
principle of pressure-flow autoregulation).101

Time-frequency methods
Since biological signals tend to be non-linear and non-stationary,
alternative methods based on linear equations, such as wavelet
cross-correlation, have also been described.102 This approach
incorporates a time element to frequency analysis. It makes no
assumption about the stationarity of input signals, providing a
framework for the analysis of non-stationary effects in cerebral
haemodynamics. Another time-frequency method, defined as
bivariate auto-regressive coherence (BiAR-COH), has been pro-
posed by Riera et al.98 The main difference between the BiAR-COH
and standard coherence methods is that the former demands
both temporal and frequency dependence, whereas coherence
only evaluates frequency dependence. This key feature discrimi-
nates changes in the two signals that are closely related in time
from those that are not time-related and, therefore, have no
mutual dependence. The same authors introduced the partial
directed coherence (PDC) method to address the condition of
directionality,76 so that the system is forced to consider only those
events in which changes in CPP induce changes in CBF. Therefore,
this approach not only analyses pressure-flow autoregulation, but
also infers causality.76

IMPAIRED CEREBROVASCULAR REACTIVITY AND NEONATAL
OUTCOMES
Impaired CR is a marker of disease severity and adverse outcome,
both in term85,103–110 and preterm infants.60,76,83,84,91,98,111–113 The
patient populations most often studied are neonates with
hypoxic-ischaemic encephalopathy (HIE) and preterm infants
during the postnatal transition, which will be discussed hereafter;
specific study details on these populations are available in other

reviews.80,114,115 Insights on other neonatal conditions are also
available in recent targeted reviews.2,116

There is longstanding evidence of the association between
perinatal hypoxia-ischaemia and altered CR, resulting in hypoxia-
ischaemia-reperfusion injury.117–119 Cerebral hypoxia-ischaemia
induces compensatory overproduction of NO,120 leading to persis-
tent cerebral vasodilation that may disrupt the vessels’ autoregula-
tory capacities (the so-called vasoparalysis).115 Upon reperfusion, the
disrupted CR results in a significant increase in CBFwith no change in
CMRO2.

121 In animal models of hypoxia-ischaemia, this cerebral
hyperaemia has been associated with histopathological evidence of
brain damage.106,115 Consistent evidence of post-asphyxial cerebral
hyperaemia has been obtained from human neonates with HIE using
NIRS.103,115,122,123 This CBF increase positively correlates with the
severity of the ischaemic hit, and is accompanied by an impaired CR
to acute ABP and CO2 changes.119 The burden of cerebral
hyperaemia and of CR impairment was greater in infants who later
developed brain injury on MRI or showed poorer neurodevelop-
mental outcomes.85,103–108,110,124 Using wavelet coherence between
NIRS and electroencephalographic signals, Das et al.109 recently
showed that HIE infants with MRI brain abnormalities had poorer
neurovascular coupling during the first 24 h compared to those with
normal neuroimaging. Notably, the cerebral rStO2- electroencepha-
lographic coherence during this early period was superior to the
Sarnat score in predicting abnormal brain MRI.
Given the altered CR following perinatal asphyxia, defining

ABPopt ranges of pressure-flow autoregulation is particularly
important. Prolonged ABP deviations below ABPopt during the
hypothermic treatment have been associated with increased MRI
abnormalities in both the deep grey matter51,52 and white
matter.50 Infants with more prolonged deviations below ABPopt
also had greater motor and cognitive impairments at
21–32 months.49 Based on this evidence, monitoring pressure-
flow autoregulation to establish and target ABPopt ranges with a
tailored haemodynamic management (e.g., adjusting pharmaco-
logical cardiovascular support) is potentially an adjunctive
neuroprotective strategy in neonatal HIE.
In the preterm population, the cardiovascular changes occurring

during the first 72 h after birth, which define the so-called
transitional period, are often associated with a significant haemo-
dynamic instability together with CBF fluctuations that may cause
disruption of the germinal matrix endothelium, increased intravas-
cular pressure and125 result in intraventricular haemorrhage
(IVH).126 Accordingly, specific NIRS patterns of cerebral haemody-
namics have been reported in infants developing this complication,
characterised by reduced cerebral rStO2 during the first
24 h60,91,127,128 followed by a transient increase,60,127 which suggest
the hypoperfusion-hyperaemia alternance.
Numerous NIRS studies have shown impaired CR in preterm

infants developing IVH.60,61,76,83,84,91,98,111,112,129 Severe IVH devel-
opment has been associated with a significantly higher time
burden of a pressure-passive circulation on day 2, which was also
the median age at IVH detection.84 An independent association
between high-magnitude cerebral pressure-flow passivity in the
low-frequency range and IVH development has also been
found.112 With regard to ABPopt, infants with greater deviations
below or above ABPopt ranges had higher IVH rates compared to
those whose ABP laid close to optimal ranges during the
transition.47,48 Significantly higher TOHRx values were also
reported in infants who developed IVH compared to those who
did not.60,61 In contrast, one study observed lower amplitudes of
cross-correlation, semblance and gain between cerebral rStO2 and
HR, measured by wavelet analysis, in a small number of preterm
infants developing IVH/pulmonary haemorrhage compared to
those who did not, possibly reflecting the extreme haemodynamic
instability associated with haemorrhages.130

The link between CR indices and systemic blood flow, as well as
their relationship to IVH has also been reported. Low superior vena
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cava (SVC) flow has been pathophysiologically linked to intracra-
nial bleeding in preterm neonates.125,131 Low SVC flow infants also
had higher BiAR-COH and PDC, indicating impaired pressure-flow
autoregulation, and were more prone to developing severe
IVH.76,98 A negative correlation between COx and left ventricular
output at 24 h of life in a cohort of neonates that developed IVH
has also been reported.91 These findings align with the report of
lower left ventricular output and cerebral rStO2 within the first day
of life in infants who later developed IVH,127 and may reflect CR
impairment associated with fluctuations of systemic blood flow
before or around the time of bleeding. The association between
other factors influencing CR, such as PaCO2 and IVH,132 warrants
further targeted investigations.

DOPAMINE AND IMPAIRED PRESSURE-FLOW
AUTOREGULATION: CAUSALITY OR ASSOCIATION?
Circulatory failure and the need for cardiovascular support using
inotropic/vasopressor medications have been associated with
impaired cerebral pressure-flow autoregulation. Due to its alpha-,
beta-adrenergic and dopaminergic activity, dopamine has long
been used as a vasopressor-inotrope to support circulation and
maintain adequate perfusion of critical organs, such as the brain.133

Dopamine’s impact on cerebral pressure-flow autoregulation,
secondary to its effects on vascular tone or inotropism, remains
inconclusive. Several NIRS studies reported that, in hypotensive
preterm infants treated with dopamine, both CBF and ABP increase
together,134–137 indicating that cerebral pressure-passive circulation
or a small positive slope of the autoregulatory plateau92,134 may
persist over a range of ABP. Moreover, time periods with impaired
pressure-flow autoregulation in hypotensive infants were reported
to increase with dopamine treatment in a dose-dependent
fashion.138–140 However, the methodology and design of these
studies could not address whether dopamine directly impaired the
autoregulatory capacity or was merely an indicator of illness. In

contrast, when dopamine effects were investigated in newborn
piglets with induced hypotension, an improvement of cerebral
pressure-flow autoregulation at low ABP, proportional to dopamine
dose, was observed.141 Recent data from the HIP trial, where
hypotensive preterm neonates were randomly assigned to either
dopamine or placebo infusion,142 reported a significantly impaired
pressure-flow autoregulatory capacity in hypotensive compared to
normotensive infants, but not in relation to dopamine treatment.111

This, however, was not an adequately powered study; therefore, no
firm conclusions can be drawn. Although currently available
evidence suggests that autoregulatory capacity may be impaired
by hypotension and its underlying causes rather than by dopamine
treatment, larger targeted studies are needed to validate these
findings and to define the complex relationship existing between
these factors. In addition, data on the impact of other inotropic and
vasoactive medications on pressure-flow autoregulation in preterm
infants remain very limited and scarce.

DISCUSSION
Current evidence on neonatal CR is based on many observational
studies which, over the years, have pointed towards physiological
associations between altered CR and an increased risk of brain
injury. To move forward towards a preventive and therapeutic
approach in neonatal CR research, multiple aspects need to be
considered.
First, most of the available neonatal literature is derived from

single-centred studies, based on small and heterogeneous cohorts
which are under-powered and potentially involve biases and
confounders (e.g., different types of brain injury, lack of PaCO2

data, use of different monitoring windows etc.), hindering
comparison between studies to quantify the independent impact
of CR impairment.
Second, an agreement on the multiple methods proposed for

CR estimation is needed. The heterogeneity in the monitoring

Table 2. Proposal for a series of feasibility trials aimed at addressing the currently open questions on neonatal cerebrovascular reactivity (CR).

1. Which surrogate marker for CPP is most valid and feasible to use in neonates?

• Animal research into the most promising surrogate marker for CPP (e.g., mean, systolic, diastolic ABP and heart rate) may need to be performed to
support the experts’ consensus.
• To assess and compare the relations between NIRS measurements and the different surrogates of CPP, including mean, systolic, diastolic ABP and
heart rate, and possibly using transcranial Doppler sonography in a subset of infants to simultaneously assess CBF velocity as an alternative
measure of CPP for comparison.
• The ultimate choice for the optimal surrogate marker may differ between preterm and term infants and in relation to different clinical conditions
with different haemodynamic impacts (i.e., sepsis, hypoxic-ischaemic encephalopathy, congenital heart disease).

2. Which mathematical approach relating cerebral rStO2 to the CPP surrogate marker is most sensitive and most robust to detect impaired CR and
predict neurological outcome?

• To study reproducibility, predictive capability and inter-method comparisons between two or more different methods in both term and preterm
infants’ databases using both short-term (e.g., ischaemic or haemorrhagic) cerebral injury and long-term neurodevelopment associated with
impaired CR as an outcome.

3. How should clinical care be guided by the assessment of CR?

• To develop a clinical intervention guideline based on current literature, similar to the SafeBoosC trial. This may entail keeping ABP (or another
measure for CPP) between certain individual levels as determined by the bedside CR assessment, while at the same time ensuring PaCO2 and
other influencing parameters within the normal range.
• A randomised trial entailing an intervention group with bedside real-time CR assessment using dedicated software tools (e.g., ICM+®), combined
with a clinical intervention guideline vs. a control group with blinded CR assessment; evaluating short-term cerebral injury and later
neurodevelopment will assess the efficacy of CR monitoring in improving neurological outcomes of at-risk neonates.
• The use of artificial intelligence on large datasets may contribute to define in hindsight the most valid approach for outcome prediction.

4. How can we improve the accuracy of the CBF surrogate marker in CR studies?

•More sophisticated time-and-frequency domain systems, measuring not only rStO2 but also absolute concentrations of O2Hb and HHb, have been
validated in piglet models166 and have been explored in neonatal research settings.122,167–171

• To improve precision, reproducibility and signal-to-noise ratio of NIRS measurements.
• To improve probe design and user-friendliness especially for extremely preterm and/or critically ill infants.

ABP arterial blood pressure, CBF cerebral blood flow, CPP cerebral perfusion pressure, CR cerebrovascular reactivity, HHb deoxygenated haemoglobin, NIRS
near-infrared spectroscopy, O2Hb oxygenated haemoglobin.

S. Martini et al.

7

Pediatric Research



devices, recording methods, pre-processing steps and mathema-
tical models applied for CR assessment hampers the identification
of possible gold standard methodology that shows the best
sensitivity and specificity for outcome prediction. The compre-
hensive integration of different multimodality monitoring signals,
as well as the adoption of the Findable, Accessible, Interoperable,
and Reusable approach143 for an open database with high-
resolution data on cerebral rStO2, ABP, HR and standardised
outcomes would facilitate the comparison and evaluation of their
performances in predicting outcome.
Third, if an acceptable and reliable methodology for CR

assessment is agreed upon, continuous real-time monitoring of
CR may allow a personalised approach to neonatal intensive care,
aimed at optimising CR and reducing neonatal brain injury.
Continuous CR assessment combining rStO2, ABP and tCO2

monitoring should ideally be measured in at-risk neonates.
However, such a comprehensive and multi-modal monitoring
may be technically challenging (e.g., skin frailty, signal noise,
availability of intra-arterial catheter), especially in extremely
preterm neonates. In this regard, the validation of CR measure-
ments using less invasive parameters (e.g., HR) as input signals for
outcome prediction would facilitate CR monitoring and applica-
tion in neonatal settings. Further improvements in the design of
NIRS probes to suit the fragile skin of extremely preterm infants
may also support long-term CR monitoring.
Some of the above aspects have been tackled by adult

neurointensive care research groups, especially following traumatic
brain injury (TBI), sepsis and stroke.144–146 In this setting, a Delphi
consensus stating that CR status is uniquely dependent on an
individual patient at any specific time, excluding the use of universal
and absolute thresholds for CPP, was formalised, and a research
agenda was proposed to establish and validate CR assessment
methods against outcome, together with prospective safety,
feasibility and efficacy studies to investigate the application of CR-
guided clinical management.147 Of note, a study in adults with TBI,
investigating the feasibility of automated assessment of optimal CPP
based on individualised CR monitoring, is currently recruiting.148–150

A consensus approach similar to the abovementioned one may
help to establish a future research agenda including collaborative
clinical NIRS-based trials, targeted to address the current questions
on neonatal CR listed in Table 2. These feasibility trials may
represent the first step towards a randomised controlled trial
based on continuous real-time CR monitoring, using dedicated
software and aimed to assess whether a proposed treatment
strategy (i.e., actively maintaining ABP within an optimal CR range)
may improve neurological and neurodevelopmental outcomes.
The goals are to identify infants with CR impairment predictive of
brain injury, followed by interventional trials to prevent or correct
the CR impairment for neonatal neuroprotection. Indeed, the
SafeBoosC trials have pioneered the multi-centred approach in
assessing the benefit of clinical interventions to optimise cerebral
rStO2 in preterm neonates.151–155 In this regard, the formation of
an international, multicentre working group to coordinate clinical
trials and collated data management would support achieving
these research targets.
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