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A perfect storm: fetal inflammation and the developing
immune system
Dajana Sabic1 and Joyce M Koenig1

Histologic chorioamnionitis is an inflammatory disorder of the placenta that commonly precedes preterm delivery. Preterm birth
related to chorioamnionitis and fetal inflammation has been associated with a risk for serious inflammatory complications in
infancy. In addition, preterm infants exposed to chorioamnionitis may be more susceptible to infection in the neonatal intensive
care unit and possibly later in life. A significant body of work has established an association between chorioamnionitis and
inflammatory processes. However, the potential consequences of this inflammation on postnatal immunity are less understood. In
this review, we will discuss current knowledge regarding the effects of fetal exposure to inflammation on postnatal immune
responses.
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INTRODUCTION
The diagnosis of suspected clinical chorioamnionitis is based on
non-specific symptoms, such as maternal fever, leukocytosis,
abdominal or uterine tenderness, or fetal tachycardia.1 However,
the “gold standard” for confirmation of this diagnosis rests on
placental evidence of acute histological chorioamnionitis (HCA),
represented by the infiltration of inflammatory neutrophils in
maternal or fetal placental tissues.2 A more updated but still
controversial definition of chorioamnionitis, also referred to as
intrauterine inflammation, infection, or both (“Triple I”), incorporates
both clinical and histologic criteria.3 While clinical chorioamnionitis
is commonly accompanied by HCA,4 the reverse situation may not
be true. In fact, most cases of HCA occur without clinical symptoms
in the mother or fetus and thus present “silently.”5,6 Despite the lack
of clinical expression, however, asymptomatic placental inflamma-
tion is not innocuous even in the absence of infection.7 A diagnosis
of HCA often precedes the delivery of extremely preterm infants5

and, like clinical chorioamnionitis, is associated with early-onset
infection.8 Conversely, HCA was correlated with a decreased risk of
late-onset neonatal infection with coagulase-negative staphylo-
cocci.9 HCA has also been closely linked to the pathogenesis of
serious postnatal inflammatory disorders, including bronchopul-
monary dysplasia, brain injury, retinopathy of prematurity, and
necrotizing enterocolitis.10–13 Preterm infants born to mothers with
clinically suspected chorioamnionitis are identified as being at
higher risk for infection and are typically screened.14 In contrast, in
the absence of maternal symptoms, the possibility that a preterm
infant has been exposed to HCA and a consideration of its inherent
inflammatory and infectious risks may not be addressed in a timely
fashion or even at all. This is particularly true given that a diagnosis
of HCA rests on microscopic examination of the delivered placenta,
and resulting information may not be available for days to weeks
after birth.
A variety of approaches to identify gestations affected by HCA

have been studied. The expression patterns of biological markers

in amniotic fluid and cord blood, such as interleukin-6 and C-
reactive protein, have been assessed for their predictive value in
HCA; however, sensitivity and specificity of these markers have not
been consistent.15–17 Clinical prediction rules for HCA and funisitis
have also been developed in order to identify newborns exposed
to antenatal inflammation.18 The targeted clinical variables
included the absence of pre-eclampsia, normal intrauterine
growth, maternal or fetal evidence of clinical chorioamnionitis,
prolonged premature rupture of membranes (PPROM), and
vaginal delivery. Although these methods have shown clinical
promise, to date none have been uniformly successful in
identifying gestations with HCA.
The inflammatory complications associated with HCA have

been well described.13,19–24 Less appreciated is that affected
preterm infants also may be at risk for immune consequences in
addition to or in combination with the adverse effects of HCA-
mediated inflammation.25,26 Increasing evidence supports the
concept that the ensuing neonatal immune dysfunction reflects
the effects of inflammation on immune programming during
critical developmental “windows.”26 The goals of the present
review article are to summarize the following: (1) The effects of
inflammation during pregnancy on the reconfiguration of
neonatal inflammatory and immune responses; and (2) The
implications of intrauterine inflammatory exposure for immunity
in the neonatal period and beyond. Understanding how in utero
inflammation programs the postnatal immune response may
reveal novel approaches to reduce inflammatory injury and the
risk for infection in preterm infants.

EFFECTS OF ANTENATAL INFLAMMATION ON NEONATAL
IMMUNITY
Inflammation and immunity
Inflammatory exposure during intrauterine life is a pathologic
force that can drive alterations of postnatal innate and adaptive
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immunity (Fig. 1). A growing body of data implicates myriad
environmental exposures during pregnancy, many associated with
inflammation, on subsequent immunity (reviewed in ref. 25).
Recent evidence of a stereotypic developmental pattern of
converging immune responses in preterm and term infants in
the first 3 months of life, but divergent responses in infants with
inflammatory exposure, additionally credits the role of intrauterine
exposure at critical developmental windows in shaping
immunity.26

Studies in humans and in animal models have begun to define
how inflammatory exposure can shape immune function in
fetuses and in the newborn period; these are summarized in
several recent reviews.27,28 Acute HCA associated with fetal
inflammation is a risk factor for numerous adverse neonatal
outcomes.13,19–24 Inflammatory injury related to HCA has been
observed in both extremely preterm infants as well as in late
preterm infants delivered after PPROM.29 However, HCA at the
earliest gestations may more heavily influence neonatal immune
responses, such as increased T helper type 17 (Th17) frequen-
cies.30 This enhanced effect in very preterm newborns likely
reflects the age-dependent “waves” of immune cell populations
with inflammatory or regulatory function that are generated in the
developing fetus.31

Immune priming and HCA
In utero “priming” or activation of the fetal immune system at
critical developmental time points can lead to chronic inflamma-
tory disorders as well as increased vulnerability to infection after
birth.25 Maternal infections with chronic inflammation, such as
human immunodeficiency virus (HIV) or malaria, during pregnancy
were associated with fetal inflammation and alterations in infant B
cell responses.32 Infants born to mothers with allergic disease had
lower frequencies of T regulatory (Treg) cells, which in turn were
impaired in their capacity to suppress effector T cells, particularly
Th2 cells.33 This latter finding may be of particular relevance to
exposed infants and future risk for asthma given its close
association with Th2 polarization.34 Furthermore, even the low-
grade systemic inflammation associated with maternal obesity
was shown to induce placental and fetal inflammation.35

Emerging evidence also points to a critical role of activated fetal
cells in driving intrauterine responses during chorioamnionitis.
Gomez-Lopez et al. utilized DNA fingerprinting to show that
predominance of inflammatory fetal neutrophils in the amniotic
fluid of gestations with chorioamnionitis was highly associated
with the delivery of extremely preterm neonates.36 Increased
neonatal T cell activation has also been associated with
preterm delivery.37 Frascoli et al. observed that activation of the
fetal adaptive immune system suppressed maternal–fetal toler-
ance in the context of preterm labor.38 In that study, fetal blood
showed early maturation of dendritic cells and enhanced maternal
microchimerism in preterm relative to term gestations. In addition,
preterm (but not term) fetal T cells were alloreactive to
maternal antigens, and maternal antigen-specific stimulation
induced the proliferation of fetal Th1-type cells. Furthermore,
the cytokines (interferon-γ (IFNγ) or tumor necrosis factor-α)
released by proliferating T cells directly increased myometrial
contractility in an in vitro assay, suggesting a directive role of
activated fetal T cells in preterm labor. Although naive T cells
typically predominate in fetuses, high frequencies of memory
(CD4+CD45+RO+RA−) T cells have been observed in association
with preterm labor.37 This finding may be important given
differing gene expression patterns and function in naive vs.
memory T cells.39

The inflammatory processes induced by HCA also contribute to
fetal immune activation. In a recent transcriptomic study, preterm
infants exposed to HCA exhibited gene expression signatures
indicative of immune priming.40 The most frequently upregulated
genes in these neonates were associated with activation of innate

and adaptive immune pathways. Notably, the microRNA, MiR-155,
was shown to be a top upstream regulator. MiR-155 is a master
modulator of inflammatory and immune responses, and its
elevated expression in immune cells has been associated with
chronic inflammatory states, including atopic dermatitis, multiple
sclerosis, and rheumatoid arthritis (reviewed in ref. 41). Pertinently,
iR-155, which is also expressed in activated CD4+ T cells, can
promote pathogenic Th17-biased responses.42

Evidence of immune priming was also observed in a murine
model of lipopolysaccharide (LPS)-induced antenatal inflamma-
tion followed by a postnatal “second hit” immune challenge.43 In
pups exposed to antenatal inflammation, infection with Sendai
virus (the murine counterpart to the respiratory syncytial virus
(RSV) that causes bronchiolitis in human infants) triggered strong
inflammatory responses not only in the lungs, the primary site of
infection, but also in distal organs, such as the liver. This
exaggerated correlation was not witnessed in infected control
pups without antenatal LPS exposure. In addition, an inductive
effect of maternal inflammation on lung CD4 T helper cell
populations with a pro-inflammatory Th1 and Th17 phenotypes
was most pronounced in exposed weanling pups relative to
neonates. These findings suggested that the processes initiated in
utero not only persisted but also were possibly amplified beyond
the neonatal period. Interestingly, a similar enhancement of lung
Th17 cells was observed following secondary RSV challenge in
adult mice that had survived severe sepsis.44
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Fig. 1 Potential effects of HCA on neonatal inflammatory and
immune responses. Studies in humans and in animal models have
linked HCA, a neutrophil (PMN)-driven placental disorder associated
with increased Th17 responses, and exaggerated inflammatory
responses of both innate and adaptive immune cells. Neutrophil
(PMN) production and activation may be increased, along with the
release of inflammatory cytokines and chemokines that promote
PMN infiltration and injury to major organs. Experimental fetal
inflammation can induce functional maturation and activation of
monocytes (Mono) and macrophages (Macs) that can also heighten
inflammatory responses. Fetal inflammation enhances the genera-
tion of inflammatory Th17 cells and IL-17+ Treg cells; while IL-17 is
important to host protection, high levels can induce organ injury,
particularly in the brain. Exaggerated inflammatory responses may
lead to suppression of protective immune responses, which increase
risk for infection. Neonatal infection in the context of HCA exposure
has also been shown to increase risk for organ injury and has been
linked to bronchopulmonary dysplasia
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Inflammatory innate immune responses in HCA
A number of studies have shown that experimentally induced
antenatal inflammation leads to exaggerated inflammatory
immune responses in exposed offspring. In ex vivo studies of
preterm fetal sheep, experimental chorioamnionitis promoted the
functional maturation of lung monocytes and hastened their
capacity to produce inflammatory cytokines in response to
stimulation.45 Preterm piglets born after several doses of intra-
amniotic LPS had increased systemic and organ-specific (gut and
lung) inflammatory responses at birth.46 In a murine model of
antenatal inflammation, neonatal and weanling offspring of LPS-
treated dams showed increased basal innate immune responses in
the lungs and livers that were amplified following a “second hit”
viral infection.43

The fetal inflammatory responses induced by HCA have also
been shown to persist in newborn infants as systemic inflamma-
tion, much of it driven by neutrophils. As part of the ELGAN study,
Chen et al. showed that the elevated levels of key neutrophil-
associated inflammatory proteins (including myeloperoxidase,
interleukin (IL)-1β, IL-8, intercellular adhesion molecule-3 and
matrix metalloproteinase-9) in the cord blood of preterm infants
born with funisitis (inflammation of cord blood vessels consistent
with the fetal inflammatory response syndrome (FIRS)) remained
high on postnatal day 7.24 Autopsies of human fetuses and
newborn infants who died after severe chorioamnionitis also
showed amplified neutrophil production (myelopoiesis) in hema-
topoietic organs.47,48 These observations are consistent with the
excessive neutrophil responses associated with this perinatal
condition36,49–51 as well as the neutrophil-driven inflammatory
responses in neonatal lungs and other organs.52,53 Similar
observations of neutrophil-driven inflammation have been
observed in animal models. Antenatal inflammation was shown
to promote neutrophil recruitment and the infiltration of organs,
such as the lungs and brain.43,54,55 High expression levels of
inflammatory cytokines, including IL-1β, IL-6, IL-8, and IL-17, in the
blood, thymi, lungs, and/or intestinal tracts of fetal sheep,
macaques, and piglets animals following experimental chorioam-
nionitis have been reported.46,56–58 In addition, altered DNA
methylation profiles have been observed in placentas with HCA,
reflecting activation of innate immunity and neutrophil
increases.59

Antenatal fetal exposure has also been shown to induce
inflammatory responses in the liver. In sheep studies of liver
homeostasis and metabolism after LPS-induced chorioamnionitis,
Vlassaks et al. found increased hepatic T lymphocytes and
apoptotic hepatocytes in term newborns and increased liver
triglycerides and cholesterol levels at 7 weeks of life, indicating
long-lasting postnatal effects on lipid metabolism.60 Endotoxin-
induced chorioamnionitis also caused hepatic damage associated
with disturbed lipid and glucose metabolism, reduced antioxidant
capacity, and elevated liver enzymes.61 The adverse hepatic
effects of fetal inflammation may have specific relevance to
neonatal immunity, given the increasingly appreciated role of the
liver in directing immune function.62

Inflammatory adaptive immune responses after HCA
T helper cell subsets belong to the adaptive arm of the immune
system and can promote or suppress inflammatory responses. In
addition to the effects of fetal inflammation on innate immunity,
recent studies have identified the robust involvement of pro-
inflammatory T helper cell lymphocyte subsets, such as Th17 cells,
in fetuses or preterm infants with antenatal inflammation. Th17
cells characteristically function to protect the host against
extracellular pathogens.63–65 However, under certain inflammatory
conditions, Th17 cells may become pathogenic and promote
tissue injury.66 Th17 cells release the canonical cytokine, IL-17,
which is also produced by other immune cells such as γδ T cells
and pro-inflammatory Treg cells.67 IL-17 plays a critical role in

processes involved in FIRS associated with HCA.58 The developing
brain is particularly sensitive to inflammatory injury, and exposure
to IL-17 at critical “windows” of immune development can induce
microglial activation and white matter injury (reviewed in ref. 68).
Furthermore, in addition to directly inducing tissue injury, Th17
cells can amplify inflammatory responses through cross-talk with
neutrophils.69

While Th17 cells play an important biological role in normal
pregnancy,70 increased frequencies of pathogenic Th17 cells have
been observed in placentas of women with recurrent miscar-
riages71 and in gestations affected by chorioamnionitis.72 Higher
circulating Th17 frequencies in mothers or in the cord blood of
babies of preterm gestations with HCA have also been
reported.30,73 The exact mechanism(s) that promote Th17
responses in the context of HCA remain enigmatic. However,
the expression levels of several cytokines that are critical to the
propagation of Th17 cells from naive CD4 cells, including IL-1β
and IL-6,74 are also increased in the amniotic fluid in HCA.75,76 The
finding that inflammatory neutrophils promote in vitro propaga-
tion of Th17 cells77 suggests their contribution to an intrauterine
cytokine milieu that also modulates Th17 responses in HCA, as
observed in the context of chronic inflammatory conditions, such
as rheumatoid arthritis.78

In a recent human study, cord blood from preterm and term
infants with HCA had increased frequencies of Th17 cells relative
to unaffected controls.30 Th17 cells were highest in the cord blood
of extremely preterm infants, who also exhibited increased T cells
with an effector memory phenotype associated with Th17-type
responses.79 In addition, the elevated circulating Th17 frequencies
observed at birth in preterm neonates exposed to chorioamnio-
nitis persisted in the first month of life.73 Increased Th17-type
responses have been observed in the cord blood of human infants
following both acute and chronic HCA72 and in animal models in
the context of antenatal inflammation. Fetal macaques exposed to
LPS-induced chorioamnionitis had increased splenic IL-17+ and
IL-22+ Th17 cells,58 while weanling murine pups exposed to LPS
exhibited increased lung Th17 responses.43

Treg cells constitute a T helper cell subset that typically
functions to suppress activated cells and inflammatory responses,
including those mediated by Th17 cells.80,81 Chorioamnionitis has
been variably associated with decreased Treg cell frequencies or
reduced Treg-suppressor function.82 Fetal rhesus monkeys and
sheep exposed to experimental chorioamnionitis had an increased
ratio of IL-17-producing cells to Treg cells in lymphoid organs.83

Exposure was also associated with decreased frequencies of
circulating Treg cells in extremely preterm human neonates and in
fetal macaques.30,58 However, the majority of Treg cells in these
two studies also co-expressed the canonical Th17 transcription
factor, RORγt, and/or IL-17, consistent with a pro-inflammatory
rather than a regulatory phenotype.84,85 Pertinently, IL-17+ Treg
cells can serve as a major source of IL-17 during inflammation.84

The enhanced Th17-type responses observed in conjunction
with antenatal inflammation have been linked to inflammatory
injury in the lungs or brain. Elevated frequencies of IL-17-
producing cells in fetal rhesus monkeys with chorioamnionitis
were associated with lung inflammation in neonates.83 When LPS-
induced antenatal inflammation was combined with neonatal
hypoxic–ischemic brain injury in a rat pup model, Th17-like
lymphocytes migrated to the brain to direct neuroinflammatory
responses.86 Th17 cells appear to be the major cell group
mediating this inflammatory IL-17 effect; while γδ t cells also
produce IL-17,87 experimental HCA did not measurably alter this
lymphocyte population in exposed lambs.88

Other lymphocyte subsets may have the capacity to contribute
to neonatal inflammatory responses in HCA that are not mediated
by IL-17. A higher proportion of Th1 cells were determined in the
umbilical cord blood of human neonates with clinical evidence of
perinatal infection.89 A recently described subset of lymphocytes
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unique to cord blood produces IL-8/C-X-C chemokine motif ligand
8 and can activate neutrophils and γδ t cells,90 although whether
and how HCA influences these lymphocytes is not clear.

Immune suppression and HCA
In contrast to the hyper-inflammatory responses associated with
HCA exposure, protective immune responses may be suppressed.
Immune-suppressive mechanisms in chorioamnionitis may be
selectively quantitative. Human fetuses and neonates exposed to
chorioamnionitis have been shown to exhibit both thymic
involution and depletion of splenic T cells.91,92 Studies in fetal
sheep affected by chorioamnionitis found reductions in CD8+ but
not in CD4+ T cells in thymic cell populations.93

Intrauterine inflammatory exposure may also lead to qualitative
alterations in neonatal innate or adaptive immune function. A
relationship between an inflammatory antenatal environment and
immune suppression is suggested by the enhanced HIV positivity
observed in human infants born to HIV-affected mothers in the
context of chorioamnionitis,94 possibly due to activated fetal
lymphocytes.95 A recent study also showed suppressed transcrip-
tional responses to Staphyloccoccus epidermidis in ex vivo mono-
cytes from preterm human neonates with chorioamnionitis.96

Studies in animal models are supportive of this premise: Repetitive
intrauterine LPS exposure in sheep induced “immune paralysis” of
ex vivo fetal and neonatal monocytes following stimulation with
LPS or other Toll-like receptor ligands.45,97 Similarly, chronic, but
not acute, intra-amniotic infection with Ureaplasma parvum
resulted in suppressed “second hit” LPS-induced cytokine
responses in the fetal lung.98,99 This evidence further supports
the idea that prenatal exposure to HCA-mediated inflammation,
particularly if long-standing, can alter postnatal immune response
patterns. Pertinently, septic human neonates have been observed
to exhibit early hyper-inflammatory responses followed by
suppressed immune responses,100 a pattern reminiscent of that
observed in infants exposed to HCA. Similarly, Azizia et al. found a

correlation between prematurity, neonatal sepsis, and reduced
monocyte major histocompatibility complex class II expression
associated with immune paralysis in HCA-exposed gestations, with
an increased risk for sepsis and organ dysfunction.101

Potential mechanisms of immune suppression in HCA
The immune system in preterm infants is developmentally
restricted in its capacity to protect the host against infection.102

The added burden of intrauterine inflammatory exposure during
sensitive developmental “windows” to already impaired immune
function also remain incompletely understood but may involve
developmentally regulated epigenetic processes.103 In studies of
short-term antenatal LPS exposure in preterm sheep, the role of
timing rather than the specific inflammatory trigger was found to
have a greater impact on abnormal neurological findings in the
fetal brain.104 However, the mechanisms involved in the
inflammation-induced immune suppression of infants exposed
to HCA, like the immune dysfunction associated with neonatal
sepsis,100 remain incompletely understood.105

A variety of quantitative and qualitative alterations of immune
function that are biologically prevalent in preterm infants can
contribute to processes that suppress immunity31,106 (Fig. 2). The
characteristic limitations of neutrophil production and storage
that are typical in preterm infants can lead to rapid depletion and
severe neutropenia during periods of increased utilization, such as
sepsis.107 In addition, neonatal neutrophils and monocytes exhibit
intrinsic dysfunction, including hyporesponsiveness to stimulation
and impaired antimicrobial capacity108,109 that may be addition-
ally affected by inflammation-induced immune paralysis. HCA can
induce excessive fetal neutrophil production (granulopoiesis),
suggesting a fetal capacity to overcome or circumvent develop-
mental restrictions under inflammatory conditions.110 However,
the functionality of these newly minted neutrophils may also be
impaired. Inflammation can lead to hypofunctional T cells through
a process that downregulates the T cell receptor zeta-chain,111

Myeloid
‘immune paralysis’

T cells

IL-17 MDSCs

Fetal
inflammation

S100
(A8, A9)

CD71+
erythroid cells

Neonatal
protective
immunity

Fig. 2 Potential mechanisms of suppressed protective immunity in neonates exposed to fetal inflammation associated with HCA.
Experimental HCA has been associated with “immune paralysis” as suggested by decreased LPS responsiveness in fetal sheep monocytes.
HCA has been variably associated with quantitative and qualitative defects in T cells. Conversely, increases in Th17 and inflammatory Treg cells
promote IL-17 release. While IL-17 provides immune-protective function, it can also promote the generation of myeloid-derived suppressor
cells (MDSCs), which adversely affect protective immunity. The increased expression of S100 proteins, particularly S100A8 and S100A9, may
promote host protection; however, high levels can increase MDSC generation. Recent evidence also indicates an immunosuppressive role of
CD71+ erythroid cells, which could potentially be increased with HCA
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although whether this functions as a suppressive mechanism in
the context of HCA is unknown. Conversely, while neonatal
immune cells are also at a developmental disadvantage in terms
of generating protective cytokines, such as IFNγ, neonatal Th1 cell
frequencies may be increased following HCA exposure.112

Cells with regulatory function may serve to further suppress
immune function in newborns exposed to HCA (Fig. 2). Granulo-
cytic myeloid-derived suppressor cells (Gr-MDSCs), an immature
neutrophil subset with high frequencies in neonates, suppress T
cell function.113,114 This action may occur through the reduction of
L-arginine levels,115 which are biologically low in preterm
infants.116 Pertinently, increased expression of arginase 1 and
subsequent depletion of L-arginine were observed in exposed
offspring in a rat model of LPS-induced chorioamnionitis.117

MDSCs are also important negative regulators of inflammatory
responses.118,119 Elevated circulating frequencies of Gr-MDSCs
have been reported in extremely preterm infants in association
with clinical inflammation, though not specifically HCA.120

Importantly, these MDSCs persisted for several months beyond
the immediate neonatal period, suggesting an immunosuppres-
sive role in later infancy. Neonatal inflammatory neutrophils and
monocytes also release the alarmins, S100A8 and S100A9, which
may suppress hyper-inflammatory responses through the expan-
sion of MDSCs.121,122 Pertinently, increased S100 protein expres-
sion levels in amniotic fluid have been observed in gestations with
HCA.123

Lymphocytes with intrinsic suppressive function can also inhibit
immune responses in preterm infants. Treg cells are critical to the
suppression of T cell responses to self and maternal antigens that
is necessary for maternal–fetal tolerance.124,125 Although Treg cells
in preterm infants with HCA may exhibit a pro-inflammatory
(Th17-like) phenotype,30 conversely their release of IL-17 could
attract MDSCs to mediate immune suppression.126 Regulatory B
cells, another type of immune cell, can modulate neonatal
inflammatory responses127 and promote Th2 skewing in neonatal
mice through suppressive actions on dendritic cells.128

Recent evidence also points to a role of a unique subset of CD71+
erythroid cells in modulating myeloid and T cell responses.129

Pertinently, these regulatory erythroid cells are found in high
numbers in preterm but not in term neonates. CD71+ cells were
shown to suppress protective immune responses to pertussis
infection in neonatal mice, in part through actions mediated by
arginase and the expression of programmed death ligand-1.130

Steroid-associated effects on immune responses in HCA
While current treatment guidelines for chorioamnionitis are
institutionally varied, antenatal steroids (such as betamethasone)
are commonly administered for preterm labor. A recent meta-
analysis showed that steroid administration in the setting of HCA
was associated with reduced mortality and incidence of respira-
tory distress, patent ductus arteriosus, intraventricular hemorrhage
(IVH), and severe IVH; in the setting of clinical chorioamnionitis,
steroid administration reduced severe IVH and periventricular
leukomalacia.13 Although several studies suggest that antenatal
steroids can dampen the inflammatory cascade, their effects on
fetal inflammation are not well defined. Evidence of anti-
inflammatory effects of steroid administration includes the
inhibition of intrauterine transforming growth factor-β signaling
associated with fetal lung inflammation and the partial prevention
of the structural lung changes induced by LPS exposure.131,132

The antenatal timing of steroid administration may also
influence inflammatory responses. Kuypers et al. showed that,
while steroid administration prior to intrauterine LPS exposure
reduced the adverse effects of inflammation on the brain in fetal
sheep, conversely steroids aggravated inflammatory changes in
the brain and thymus in the context of pre-existing
inflammation.56,133 These observations suggest that, in the
presence of chorioamnionitis, steroids could potentially amplify

fetal injury in an organ-specific manner. In studies of fetal sheep
exposed to intra-amniotic endotoxin and subsequently treated
with steroids, inflammatory responses in ex vivo monocytes were
initially suppressed but were followed by a later activation,
possibly the result of steroid-induced functional maturation.134

SUMMARY
HCA is a common disorder that is tightly linked to preterm delivery
and dysregulated immune function. Inroads are being made toward
better defining the immune effects of antenatal inflammatory
exposure on the fetus and newborn, which includes a pattern of
hyper-inflammation combined with immune suppression. However,
much remains to be learned regarding the underlying mechanisms
so that potential therapeutic targets can be identified.
Perinatal inflammation has clear implications for human health.

Mounting evidence points to a negative impact of early inflamma-
tory exposure of any origin on the developing immune
program.135,136 Chorioamnionitis has been identified as a contribut-
ing factor in childhood asthma,137,138 possibly through a mechanism
involving Th2 skewing.139 However, much remains to be learned in
this regard. Numerous factors aside from microbial exposure have
been shown to induce systemic maternal inflammation and/or
chorioamnionitis, including nutritional and psychosocial factors
(reviewed in ref. 135). Of great concern are the observations linking
perinatal inflammation from various causes with immune dysfunc-
tion and abnormal stress responses, not only in the immediate
postnatal period but also possibly throughout life or even into the
next generation.140 Thus the importance of advancing knowledge of
perinatal inflammation and its causes cannot be overstated.
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