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Mitotic cells face the challenging task of ensuring accurate and equal segregation of their duplicated, condensed chromosomes
between the nascent daughter cells. Errors in the process result in chromosome missegregation, a significant consequence of which
is the emergence of aneuploidy—characterized by an imbalance in chromosome number—and the associated phenomenon of
chromosome instability (CIN). Aneuploidy and CIN are common features of cancer, which leverages them to promote genome
heterogeneity and plasticity, thereby facilitating rapid tumor evolution. Recent research has provided insights into how mitotic
errors shape cancer genomes by inducing both numerical and structural chromosomal changes that drive tumor initiation and
progression. In this review, we survey recent findings regarding the mitotic causes and consequences of aneuploidy. We discuss
new findings into the types of chromosome segregation errors that lead to aneuploidy and novel pathways that protect genome
integrity during mitosis. Finally, we describe new developments in our understanding of the immediate consequences of
chromosome mis-segregation on the genome stability of daughter cells.
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INTRODUCTION
Aneuploidy is an abnormal state in which the number of
chromosomes in a cell or organism deviates from a multiple of
the haploid number [1]. First observed over 100 years ago by
the German zoologist Theodor Boveri while studying sea urchin
embryo divisions [2], it has fascinated generations of scientists
since, not least of all because of its association with cancer.
Current studies estimate that aneuploidy is pervasive in solid
tumors [3], including approximately 30% of prostate tumors [4],
60% of non-small cell lung cancers [5], 70% of colorectal tumors
[6], and 60–80% of breast tumors [7]. The degree and spectrum
of aneuploidy varies among cancer types—many display
recurrent specific chromosomal abnormalities, while others
harbor more complex combinations and permutations with no
clear specificity [8–11]. Massive gains and losses of chromo-
somes, which are primarily caused by chromosome segregation
errors during cell division, tend to be deleterious to the cell;
therefore, they are limited in human cancer cell lines and
tumors [12, 13]. Segmental or structural aneuploidy, in which
chromosomal segments are rearranged and often amplified or
deleted can also occur, and are often caused by faulty DNA
replication or repair [14]. A distinct form of structural
aneuploidy called chromothripsis has been more recently
recognized as a downstream consequence of mis-segregated
chromosomes that become isolated in extranuclear structures
known as micronuclei. Chromothripsis is characterized by
extensive genomic rearrangements and an oscillating pattern
of DNA copy numbers, often restricted to one or a few

chromosomes [15]. Whole and segmental chromosomal altera-
tions are not mutually exclusive, and cancer cells can display
both, resulting in composite aneuploidy [16]. Distinguishing
between whole chromosome and segmental aneuploidy is
essential to identifying and understanding their origins.
Aneuploidy is also often associated with chromosomal

instability (CIN), a more complex phenotype characterized by
a higher rate of chromosome gains and losses during cell
division, and hence a greater propensity for karyotypic change.
[2, 17–20] CIN positive cells create progeny with variable
aneuploid karyotypes [2, 17]. Significant evidence now exists
demonstrating that aneuploidy promotes CIN under certain
conditions and vice versa [21–23]. Genomic instability is a long-
established hallmark of cancer, and compound aneuploidy and
CIN are central to the heterogeneity observed within tumors
[24]. These defects drive adaptation that results in tumor
development, progression, and chemotherapeutic resistance
[10, 11].
In this review, we provide an overview of recent develop-

ments in the understanding of the intimate relationship
between mitotic machinery dysfunction and aneuploidy. We
highlight novel insights into the molecular mechanisms that
rectify errors caused by these dysfunctions, focusing our
discussion on animal cells. Additionally, we explore recent
studies detailing the immediate consequences of uncorrected
errors on genomic stability when the mitotic error correction
mechanisms fail and underscore the relevance of these to
cancer.
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THE CENTRAL EVENTS OF MITOSIS
The central events of mitosis are sister chromatid separation
from one another and their segregation to opposite ends of the
dividing cell, and eventually into the nascent daughter cells.
These events occur in a tightly coordinated manner that can be
conceptually divided into distinct stages. The first is prophase
during which chromosomes, rearranged into condensed rod-
like structures, begin to partially lose the cohesion complexes
that hold them together (known as cohesins), and to resolve the
intertwined strands of DNA between the linked sister-
chromatids (known as catenations). In cell types and organisms
that harbor centrosomes, their separation starts during mid to
late prophase. These structure act as spindle poles, providing
hubs for the nucleation and organization of spindle micro-
tubules, an event that continues into the second stage,
prometaphase [25–27]. Spindle formation, attachment of the
dividing sister chromatids to spindle microtubules and their
eventual congression towards the equatorial plane of the
dividing cell are the major events of prometaphase. This is
facilitated by kinetochores, large macromolecular machines
that assemble on each sister chromatid during mitosis and form
not only the major site of interaction between spindle
microtubules and chromatids, but also serve as major signaling
hubs during mitosis [28, 29]. Prometaphase culminates in
chromosome alignment at the spindle equator with each
kinetochore attached to an opposing pole in a bioriented
manner. Metaphase, the third stage, can be defined as the
period of time between sister chromatid alignment and
separation, and is dependent on the attenuation of the Spindle
Assembly Checkpoint (SAC), a major quality control pathway
that slows the release of cells from metaphase into the next
step, anaphase, until all chromosomes are attached and
bioriented [30–32]. The metaphase-anaphase transition is
generally irreversible and marks the beginning of the end for
mitosis. It is characterized by the dissolution of sister chromatid

cohesion, inactivation of the SAC and of cyclin-dependent
kinase 1, the major mitotic kinase. The now separated sister
chromatids begin to move from each other to opposite poles of
the spindle before the poles themselves begin to move apart,
completing chromosome segregation and heralding the physi-
cal division of the cytoplasmic contents (cytokinesis) into
nascent daughter cells.

NEW DEVELOPMENTS IN THE SOURCES AND SOLUTIONS OF
MITOTIC ERRORS
High temporal and high resolution imaging of mitotic cells has
recently indicated that the number of chromosomes at risk of
mis-segregation in non-transformed human cells is considerably
higher than previously thought with one study putting mis-
segregation estimates at 18% in control cells that increases to
44% with nocodazole treatment [33]. Aberrant functioning of
mitotic structures and pathways is a major source of chromo-
some mis-segregation and thus aneuploidy. For example,
centrosome amplification can lead to divisions with multi-
polar spindles which increases the rate of chromosome mis-
segregation [34, 35]; altered kinetochore-spindle dynamics
result in mis-attachments that lead to mis-segregation [36];
sister chromatid cohesion defects can lead to premature
segregation [37], as can aberrant SAC signaling [38]. All of these
are associated with aneuploidy and cancer and have been
expertly reviewed elsewhere [1, 39, 40]. We also refer the reader
to Table 1 and the references within, for a more detailed
description of the drivers of CIN. Below, we describe very recent
studies that shed new light on the sources of chromosome
segregation errors that lead to aneuploidy in cancer, and that
describe new pathways active during cell division that control
the fidelity of the genome through correcting errors in
chromosome copies as well as errors in their safe delivery to
the daughter cells.

Table 1. Causes of aneuploidy and CIN.

CIN-Type Driver Defect Mechanism References

W-CIN Impaired
chromosome
segregation

Sister-chromatid cohesion
defects

Premature sister chromatid segregation 173, 174

Incorrect
centrosome or
centriole numbers

Centrosome over or under
amplification

Incorrect numbers of centrosomes resulting in an aberrant
number of spindle poles and thus unequal divisions
(mono- or multipolar)

175–177

Lack of clustering of
overamplified centrioles

Multipolar spindles that cannot transition to biopolar
spindles

178, 179

Improper timing of centrosome
disengagement

Delayed or accelerated centrosome separation. Monopolar
spindle formation.

67, 180

Microtubule
kinetochore
attachment error.

Accumulation of merotelic
attachments that remain
uncorrected

Loss of dynamic turnover of kinetochore-microtubule
interactions. Hyperstable attachments often observed.

36, 68

SAC defects Weakening of the SAC
(suboptimal activity)

Premature separation of sister chromatids and
chromosome mis-segregation

181–186

SAC hyperactivation Delays the onset of anaphase and prolongs mitosis leading
to cohesion fatigue

187–189

Premature SAC inactivation Premature separation of sister chromatids and
chromosome mis- segregation

190, 191

Whole
genome
duplication

Polyploidy Cytokinesis failure Mitotic slippage, errors in contractile ring function in
cytokinesis.

184,
190, 192

Endoreduplication Reduced centrosome clustering and multipolar divisions 193–195

Cell fusion Increase in ploidy and centrosome numbers 196

Structural-
CIN

Replication stress
and defective
DNA repair.

Abnormal replication licensing,
replication stress, stalled
replication forks

Altered microtubule dynamics, premature centriole
disengagement,

14,
197–199
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Lagging and misaligned chromosomes as sources of
aneuploidy
A hallmark of metazoan mitosis is the formation of a metaphase
plate at the spindle equator, where sister chromatid pairs align
and form connections with microtubules emanating from
opposite spindle poles (termed bioriented or amphitelic
attachment, Fig. 1A). This back-to-back geometry is the only
one to ensure correct segregation of chromatids towards their
respective poles. Other conformations including monotelic/
mono-oriented (where only a single sister-kinetochore is
connected to microtubules emerging from one pole, Fig. 1B),
syntelic (where both sister kinetochores attach to the same pole,
Fig. 1C) both activate the SAC and are corrected before
anaphase onset. In addition to these, lateral attachments (where
a kinetochore is attached to the lateral surface of a microtubule)
are thought to form as an intermediate step before conversion
into end-on attachments between kinetochores and microtu-
bule ends [41]. When these unproductive attachments are
detected, the so-called error correction pathway destabilizes
them. Mechanistically, this pathway requires the activity of the
centromere and kinetochore kinase Aurora B (AURKB), the
catalytic subunit of the chromosomal passenger complex (CPC).
AURKB is a central organizer of centromere structure and
kinetochore function through spatially restricted phosphoryla-
tion of key substrates involved in maintaining the stability of
kinetochore-microtubule attachments. This includes most nota-
bly the NDC80 homolog (NDC80 or HEC1) subunit of the major
microtubule binding interface at the kinetochore, the KNL1-
MIS12-NDC80 network, and the microtubule-depolymerizing
kinesin mitotic centromere-associated kinesin (MCAK) [42, 43].
The unstructured N-terminal tail of HEC1 is overall positively
charged [44] enabling direct interaction with negatively charged
microtubules, thereby stabilizing their polymerizing ends [45].
AURKB phosphorylation reduces the tail’s positive charge,
decreasing its affinity for microtubules, causing release of the
attachment [44, 46–48] as well as stimulating microtubule
depolymerization [45]. AURKB-phosphorylation of MCAK
changes the kinesin’s conformation, reducing its microtubule
affinity and depolymerization activity [49–51]. More recently, it
was shown that AURKB phosphorylated MCAK in its microtubule
binding region resulting in allosteric control and graded
microtubule depolymerase activity [49]. In this manner, AURKB

activity through phosphorylation of MCAK, NDC80 and addi-
tional substrates [52, 53], enables the kinetochore to release and
reattach until the correct orientation is achieved. In line with
this, alterations in AURKB activity have been repeatedly shown
to result in an increase in improper attachments [54, 55].
Particularly detrimental to mitotic fidelity are merotelic attach-

ments, in which a single or both sister-kinetochores bind
microtubules from both spindle poles [56] (Fig. 1D). Although
mostly corrected before anaphase by AURKB-mediated error
correction, merotelic attachments are not efficiently detected by
the SAC and a proportion of merotelic chromosomes remain
stably tethered forming lagging chromosomes that fail to
segregate during anaphase [57, 58]. Estimates suggest that
between 0.1% and 10% of human primary, non-transformed,
and chromosomally stable cancer cells progress into anaphase
with one or few chromosomes lagging behind due to merotelic
attachments [59–62]. Lagging chromosomes are thought to be a
major cause of CIN in non-transformed cells [57, 60, 63] and in a
subset of CIN-positive cancer cell lines [12, 64] as they can
ultimately segregate to the incorrect daughter cell. This failure to
segregate before the nuclear envelope reassembly (NER) can
result in micronuclei (“Micronuclei”) that are prone to chromo-
thripsis (“Chromothripsis”), or may initiate anaphase bridges that
are eventually broken, initiating cycles of chromosome breakage
and fusion known as “breakage fusion bridge” (BFB, “The
chromosome breakage-fusion-bridge cycle”).
How lagging chromosomes form is unclear, but spindle

geometry in early prometaphase [65–67] and hyperstabilization
of kinetochore-microtubule interactions and dampened turn-
over dynamics [36, 68] have both been shown to increase
incidences of merotely. Recently, elegant super resolution
microscopy experiments demonstrated that the vertebrate
centromere and kinetochore forms a bipartite structure resulting
in two subdomains that independently associate with the
spindle microtubules [69]. In amphitelic kinetochores, the
subdomains are oriented in the same direction; however,
merotelic kinetochores have bioriented subdomains, resulting
in lagging chromosomes with highly stretched kinetochores.
Importantly, merotelic attachments resulting from the biorienta-
tion of kinetochore subdomains occurred relatively frequently
during cancer cell mitoses, indicating that they play a significant
role in promoting CIN [69].

Fig. 1 The geometries of kinetochore-microtubule attachments. Error-free chromosome segregation depends on the correct attachment of
the sister kinetochores to microtubules associated with opposite spindle poles in an amphotelic (or bi-oriented) manner (A). Three major
types of incorrect attachments have been observed: (B) Monotelic attachment occurs when only one of the sister-kinetochores is attached
and to spindle microtubules, while the other remains unattached; (C) Syntelic attachments occur when both sister kinetochores attach to
microtubules from a single pole; and (D) Merotelic attachments typically involve a single kinetochore attached to microtubules emerging from
both poles. Figure generated with biorender.
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The proper biorientation and alignment of chromosomes at
metaphase is generally monitored by the SAC; this infers that
under normal physiological states, cells only transition to
anaphase once all chromosomes align and biorient. However,
recent evidence suggests that misaligned chromosomes that
failed to completely align at metaphase before anaphase onset
contribute to segregation errors and aneuploidy more frequently
than previously thought. To explore mitotic and chromosome
segregation defects that contribute to CIN in tumors, Tucker et al
[70]. studied a panel of breast cancers and breast cancer cell lines.
These authors demonstrated that misaligned chromosomes were
the most predominant defects in primary and metastatic breast
cancers (including primary-metastatic matched pairs) and that
their presence correlated with the increase in CIN between
primary and metastatic tumors. These observations were corro-
borated in patient-derived organoids and multiple human cancer
cell lines [70, 71]. In a complementary study, Gomes et al [71].
systematically depleted 125 proteins involved in kinetochore-
microtubule attachment including proteins that regulate attach-
ment stability, attachment turnover and microtubule cross-linking,
and investigated how human cells respond to the resulting
chromosome segregation defects using high-content live-cell
imaging. The authors found that, regardless of the underlying
molecular defect, cells frequently entered anaphase with mis-
aligned chromosomes that often subsequently mis-segregated,
despite apparent satisfaction of the SAC [71]. In addition, these
misaligned chromosomes were found to be a strong predictor of
micronuclei formation. Consistent with the detrimental effects of
widespread chromosome mis-segregation on viability, in both
studies, the loss or gain of single chromosomes was observed at a
significantly higher frequency than more widespread changes in
cancer cell models [70, 71]. This could indicate that in these cells,
SAC activation is not robust enough to prevent the metaphase-
anaphase transition with single (or very few) unattached
kinetochores [72, 73]. Alternatively, these results could reflect
inappropriate silencing and inactivation of the SAC, and it will be
important to distinguish between these two scenarios in the
future. Moreover, although depletion of one of many proteins
involved in maintaining correct kinetochore-microtubule attach-
ment can result in mis-aligned chromosomes in cancer cells, the
underlying defects at the site of attachment, including the
attachment geometry, the conformation of the kinetochore
subdomains, and the presence of merotelic attachments, remain
to be explored.

AURKB-mediated in error correction during anaphase
As noted above, the error correction pathway mediated by AURKB
is a major mechanism of rectifying aberrant (in particular merotelic
and syntelic) attachments between spindle microtubules and
kinetochores in early mitosis [54, 55, 74, 75]. The error correction
activity of AURKB was thought to be limited to prometaphase.
However, discrepancies between the rate of anaphase lagging
chromosomes (approximately 5%) [12, 36, 61, 68] and the rate of
chromosome mis-segregation in non-transformed human cells
(approximately 1%) [76] hinted at the existence of an anaphase-
specific mechanism to limit chromosome mis-segregation
(Fig. 2A).
At the metaphase to anaphase transition, the CPC including

AURKB relocates to the spindle midzone in a manner dependent
on the kinesin protein Mitotic Kinesin-Like Protein 2 (MKLP2) [77],
where it generates a phosphorylation gradient starting at the
midzone that becomes progressively weaker towards the poles
thus providing spatial information for events in anaphase and
cytokinesis [78]. Initial work has suggested that this phospho-
gradient delays chromosome decondensation and NER in
response to incomplete chromosome segregation during ana-
phase [79]. More recently, three independent groups have
collectively demonstrated additional roles for this gradient:

maintenance of anaphase kinetochore structure over distance
and time, and anaphase error correction of merotelic attachments.
In exploring the mechanisms of kinetochore stability in early

anaphase, a critical timepoint in the transport of chromosomes,
Papini and colleagues found that phosphorylation of the
kinetochore substrate DSN1 Component Of MIS12 Kinetochore
Complex (DSN1) was sensitive to its distance from midzone
AURKB [80]. Specifically, midzone AURKB-mediated phosphoryla-
tion of S100/S109 of DSN1 reduced the rate at which DSN1 was
lost from kinetochores as anaphase progressed, suggesting that
the AURKB gradient may prolong kinetochore structure and
microtubule attachment stability, specifically in anaphase. Because
phosphorylation of S100/S109 of DSN1 in prometaphase destabi-
lizes kinetochore-microtubule interactions, the level of AURKB
gradient activity experienced by kinetochores in early anaphase
could be sufficient to maintain DSN1 phosphorylation to stabilize
kinetochores but may be insufficient to globally destabilize
kinetochore-microtubule interactions as observed in pre-
anaphase cells [81, 82].
In a complementary study Orr et al. found that while both CIN-,

non-transformed (RPEI) and CIN+ transformed (U2OS) cells
displayed transient lagging chromosomes during anaphase, a
much smaller proportion of these events resulted in micronuclei
formation in both cellular contexts, again suggesting that most
lagging chromosomes are corrected during anaphase [83]. In
investigating the role of AURKB in this error correction, the authors
found that inhibition of AURKB catalytic activity or its delocaliza-
tion from the central spindle by MKLP2 depletion or chemical
inhibition abolished the formation of a phosphorylation gradient
on both segregating and lagging chromosomes while significantly
increasing the frequency of anaphase cells with lagging chromo-
somes and micronuclei [83]. Building on the role of AURKB in
activating the pleiotropic mitotic kinase polo-like kinase 1 (PLK1)
at kinetochores in early mitosis [84, 85], the authors found that
active PLK1, a regulator of kinetochore-microtubule interactions in
prometaphase [86], was specifically enriched at kinetochores of
lagging chromosomes. This suggests that PLK1 is anaphase target
of AURKB. Interestingly, correction of anaphase lagging chromo-
somes and their subsequent re-integration into the main nuclei
were greatly compromised by partial RNAi-mediated depletion of
additional key kinetochore proteins involved in the formation or
regulation of microtubule attachments suggesting that AURKB
may target additional proteins at anaphase kinetochores in
conjunction with DSN1 and PLK1 to regulate stability of
kinetochore-microtubule interactions. Overall, these two studies
suggest that, although centromeric AURKB promotes microtubule
detachment from kinetochores under low tension to correct errors
in early mitosis, midzone-associated AURKB is required for the
local stabilization of kinetochore-microtubule attachments neces-
sary for efficient mechanical transduction of spindle forces
involved in error correction during anaphase.
High resolution and high temporal imaging enabled the

tracking of chromosomes in anaphase in the aforementioned
studies. However, distinguishing truly lagging chromosomes from
those that are late segregating constitutes a significant challenge
in cell division research, as these classes of dividing chromosomes
will likely have distinct fates. To address this issue, recent work
employing a combination of lattice light-sheet live-cell imaging
and computational analysis of chromosome segregation errors
enabled a quantitative measure of chromosome lag, termed
“laziness” that reflects the behavior of a single kinetochore
throughout anaphase. Using this approach, the stretched pre-
sumably merotelic population of lazy kinetochores were found to
persist in anaphase more frequently than the unstretched
population, with incidences of 50% versus 14%, respectively
[33]. These findings demonstrate how merotely is linked to lazy
behavior and implied the presence of an error correction
mechanism in anaphase capable of resolving such improper
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attachments. Building on the work of Papini et al. and Orr et al.,
Sen et al. observed a significant increase in laziness in cells where
AURKB was inhibited after metaphase [33, 80, 83]. Lazy
kinetochores failed to be corrected, and displayed severe
kinetochore stretch in anaphase indicative of merotelic attach-
ments. Ultimately inhibition of AURKB in anaphase or inhibition of
its localization at the spindle midzone led to a significant increase
in micronuclei formation indicating a direct link between
anaphase error correction by AURKB and micronuclei formation.
Overall, these studies are consistent with the idea that an AURKB
gradient helps sustain kinetochore structure over the time and
distance necessary for normal anaphase chromosome segregation
and regulates kinetochore disassembly as cells enter telophase.
This positional control of kinetochore phosphorylation may also
facilitate kinetochore stability on lagging chromosomes to be
maintained to promote their movement to the poles as they
separate. Future work will be needed understand how these
different characteristics of anaphase kinetochores are regulated
by AURKB.

DNA damage repair during mitosis
DNA double strand breaks (DSBs) are highly deleterious lesions,
and maintaining genome integrity depends on their efficient

repair. The cell uses distinct repair mechanisms at various stages
of the cell cycle to accomplish this. Non-homologous end
joining (NHEJ) is primarily active during G1 and is linked to a
checkpoint at the G1/S transition that delays progression into S
phase in the presence of DNA damage [87–89]. Homologous
recombination (HR), which requires a DNA template, is restricted
to the S and G2 phases of the cell cycle, and is associated with
the G2/M “DNA damage” checkpoint [87–89]. Despite these
checkpoints, cells can still enter mitosis with unresolved DSBs
[90]. DSBs can also arise during mitosis, due to replication stress,
anaphase bridge breakage, or under-replicated DNA regions at
common fragile sites [91–95]. While the major DNA repair
pathways such as HR and NHEJ are generally inactive during
mitosis, some evidence suggests that mitotic cells can stabilize
chromosome breaks until they can be safely repaired in the
following cell cycle. Recent work has suggested that mechan-
istically, this may involve non-canonical functions for the cellular
inhibitor of PP2A (CIP2A)-DNA topoisomerase II binding protein
1 (TOPBP1) complex initially reported to promote the segrega-
tion of acentric or damaged chromosome fragments that arises
from impaired DNA synthesis [96].
In interphase, CIP2A is actively exported from the nucleus

restricting its interaction with nuclear proteins [96, 97]. During

Fig. 2 The consequences and correction of chromosome segregation errors during mitosis. A Schematic overview of recent advances
described in the present review, illustrated in association with the mitotic stages with which they are most associated. Segregation errors
occur at the metaphase-anaphase transition as a result of merotelic attachment, chromosome fragmentation, DNA bridge or a weakened error
correction system. The CIP2A-TOPBP1 complex act as a mitotic glue to cluster acentric chromosome fragments to limit chromosomal loss in
prometaphase. During anaphase, an AURKB gradient will delay nuclear envelope reassembly around lagging chromosome to allow their
reintegration into the main nuclei in anaphase. Non-resolved bridges, free acentric chromosome fragments or lagging chromosomes can
induce micronuclei formation in late anaphase and telophase and leads to CIN, to an arrest of cell cycle or to cell death. B Schematic
representation of mechanisms involved in panel A and discussed in the text: (i) Clustering of chromosome fragments and the role of the
CIP2A-TOPBP1 complex in chromothripsis; (ii) Resolution of mitotic DNA damage by the TOPBP1-POLθ complex; (iii) (4) The role of micronuclei
in propagating DNA damage, aneuploidy and CIN; and (iv) Representation of breakage fusion bridge cycle. Figure generated with biorender.
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mitosis however, nuclear envelope breakdown releases nuclear
proteins, including TOPBP1, allowing CIP2A-TOPBP1 complex
formation and translocation to sites of DNA damage on mitotic
chromosomes (Fig. 2Bi). Mechanistically, TOPBP1 can be recruited
to DNA damage lesions in mitosis through direct interaction with
Mediator of DNA damage checkpoint protein 1 (MDC1) [98]
which, in turn, directly binds γH2AX-containing chromatin
assembled at double-strand breaks [99]. CIP2A binds directly to
TOPBP1 which mediates its recruitment to sites of DNA damage
in mitosis [96, 97, 100]. The CIP2A-TOPBP1 complex at mitotic
DSBs then stabilizes chromosomes by forming a tether between
broken ends effectively preventing exposure of open DNA ends.
The mechanism by which CIP2A–TOPBP1 tethers fragments is yet
to be determined, but it may involve higher-order molecular
interactions mediated by the extensive coiled-coil domain of
CIP2A [96]. In addition, mitotic DNA lesions can recruit TOPBP1
and CIP2A in an MDC1 independent manner as well, and the role
of MDC1 in mitotic tethering of broken DNA fragments remains to
be clarified [98]. Regardless of the exact mechanism, these
observation suggest that the CIP2A-TOPBP1 complex allows for
the repair of DSBs during mitosis (described below) or at
subsequent phases of the cell cycle where DNA damage can be
repaired [96, 97]. In agreement with this, irradiated CIP2A-
deficient mitotic cells displayed increased radiosensitivity, γH2AX
foci—indicating unrepaired DNA damage—, spontaneous micro-
nuclei formation, and DSB repair defects compared to irradiated
wild-type cells. Importantly, these phenotypes were rescued by
the re-expression of CIP2A [97].
The microhomology-mediated end-joining (MMEJ) pathway—

previously considered to be a backup to HR and NHEJ—has
emerged as a critical mechanism for mitotic DSB repair that relies
on the activity of the CIP2A-TOPBP1 complex. Brambati et al.
identified the RAD9 checkpoint clamp component A-HUS1
checkpoint clamp component-RAD1 checkpoint DNA exonuclease
(RAD9A-HUS1-RAD1 or 9-1-1) complex and its interacting partner
RAD9-HUS1-RAD1 interacting nuclear orphan 1 (RHINO) as key
MMEJ factors. RHINO, which also functions in DNA damage
sensing during replication [101], is stabilized during mitosis. The
accumulation of RHINO subsequently facilitated mitotic DNA
repair by binding to DNA polymerase theta (Polθ), a polymerase-
helicase fusion protein that promotes MMEJ. Phosphorylation of
RHINO by Polo-like kinase 1 (PLK1) during mitosis was found to be
essential for its interaction with Polθ. PLK1 also directly
phosphorylated and activated Polθ, which was then recruited to
double-strand breaks (DSBs) to mediate the joining of broken DNA
ends [102] (Fig. 2Bii). The TOPBP1-CIP2A complex plays an
important role in this process; TOPBP1 interacts with and stabilizes
RHINO at DSBs, promoting recruitment of Polθ to CIP2A-TOPBP1
complex-tethered DSBs [103]. In line with these observations, Polθ
forms foci and filament-like structures during mitosis that
colocalize with TOPBP1 foci, and TOPBP1 knockdown suppresses
Polθ foci and filament structures. How TOPBP1 and Polθ interact is
not clear, but one attractive hypothesis is that this may be
occurring through a phospho-regulated interaction between Polθ
and the BRCA1 DNA repair associated C-terminal (BRCT) domains
of TOPBP1. Together, these studies establish MMEJ as a bona fide
DSB repair pathway active during mitosis. Clearly, the resolution of
mitotic DSBs and the tethering of acentric chromosome fragments
are essential for genomic stability. Failure to resolve these breaks
can result in lagging chromosome fragments, missegregation,
micronuclei formation, and chromothripsis events [102, 104] as
discussed below.

THE EARLIEST CONSEQUENCES OF ANEUPLOIDY
The presence of robust mechanisms for monitoring genome
fidelity in mitosis such as the AURKB error correction and MMEJ
pathways described above, represent important defense

mechanisms against cancer. Chromosome damage and imbalance
can lead to cancer by introducing extra copies of oncogenes or
deleting tumor suppressor genes. It can also result in generic
stresses on the cell that are chromosome agnostic, including
proteotoxic, metabolic and oxidative stress due to global increases
in protein production, as summarized in numerous excellent
reviews. [76, 105–108] Over the last decade, mitotic errors have
been shown to drive the genesis of complex chromosomal
aberrations, including the loss, gain, inversion, or translocation of
chromosome fragments [109, 110]. These aberrations are common
in human tumors and promote tumorigenesis by inducing further
DNA damage, mutagenesis, and gene copy number changes
[109]. Here, we describe recent advances in our understanding of
the earliest known consequences of aberrant chromosome
segregation that eventually lead to mutagenesis and the
surveillance mechanisms they trigger.

Micronuclei
Mis-segregating chromosomes (or chromosome fragments) can
be excluded from the nucleus when it reforms in the daughter cell
and is instead packed into a small extranuclear structure called a
micronucleus that persists into interphase. DNA trapped in
micronuclei can become damaged, massively rearranged, and
can exhibit altered epigenetic marks [111]. Accordingly, the
presence of micronuclei is associated with an increased risk of
many cancers and is generally a typical characteristic of many
advanced cancers [112–114]. Micronuclei have drawn exceptional
attention recently because of their causal link to complex genome
arrangements including chromothripsis (Fig. 2Biii).
The nuclear envelopes of micronuclei harbor fragile areas with

large gaps in the nuclear lamina meshwork and fewer nuclear
pores, impairing the recruitment of proteins involved in DNA
transcription, replication, and repair. [104, 115–117] These fragile
membranes are also more prone to rupture, which can trigger
inflammatory signaling [113, 118]. In addition to the nuclear
membrane defects, micronuclear chromosomes themselves lack
important kinetochore assembly factors like centromere proteins
A, C and T, likely due to a general import defect [119]. This results
in kinetochore defects in micronuclear chromatids and to further
mis-segregation in the subsequent mitosis, promoting additional
aneuploidy and CIN [119].
Various scenarios have been put forward to explain how nuclear

envelopes of micronuclei can be damaged during their formation
in anaphase. First, the spindle midzone that forms in anaphase
between the segregated chromosomes contains a high density of
microtubules, which could impair nuclear envelope assembly
around mis-segregated chromosomes in this region [120]. Second,
as indicated above, the spindle midzone exhibits elevated activity
of both AURKB and PLK1. High AURKB activity at the spindle
midzone may sense lagging chromosomes and inhibit nuclear
envelope assembly to allow reincorporation of laggards. In
agreement, inhibition of AURKB suppresses nuclear envelope
defects [79, 121, 122]. Similarly, PLK1 activity may negatively
regulate nuclear pore complex protein reincorporation into
nuclear membranes in anaphase; elevated midzone PLK1 activity
may thus prevent efficient NPC incorporation into the nascent
membranes of lagging chromosomes [121].
Once formed, micronuclei have essentially four different fates:

(1) they can persist as independent cytoplasmic structures
(approximately 70% of micronuclei), (2) they can be reintegrated
to the main nucleus during the next mitosis, (3) they can be
transported to the extracellular environment by extrusion; or (4)
they can be degraded by autophagy or by an apoptosis-like
process [123, 124]. None of these fates are positive: persistence
results in dysregulated gene expression and further genomic
instability; extrusion or degradation results in aneuploidy; and
nuclear reintegration of the damaged and rearranged micro-
nuclear DNA can further exacerbate genomic instability [104, 124].
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Fortunately, as recently shown, non-transformed cells are able to
avoid these consequences as a result of cyclic GMP-AMP synthase
(cGAS)-stimulator of interferon genes (STING) pathway activation.
Micronuclear envelope rupture exposes the DNA directly to the
cytoplasm, activating the cytosolic DNA sensor cGAS. Its activation
triggers a nuclear factor-κB-dependent type I interferon response
called the senescence-associated secretory phenotype (SASP) via
the adaptor protein STING. This activates the innate immune
system, triggering an inflammatory response that induces cellular
senescence and stimulates the clearance of senescent and
cancerous cells [125–128]. Accordingly, cells with complex
karyotypes display increased secretion of SASP-related cytokines
(interleukin (IL)6, IL8, C-C motif chemokine ligand 2) that both
induce senescence and recruit and activate immune cells
[105, 129–131]. In this manner, cells with abnormal karyotypes
signal for their own removal, as a means of cancer
immunosurveillance.

Chromothripsis
Defective DNA replication and repair processes that occur in
micronuclei can also induce chromosome shattering, resulting in
further chromosomal rearrangements and formation of new
derivative chromosomes through chromothripsis. This can involve
the complete rearrangement of loci, translocations and changes in
copy number and loss of tumor suppressor genes as well as the
amplification of oncogenes [116, 117, 132, 133] Damaged
chromosomes in micronuclei can even be pulverized into
acentromeric fragments that lack spindle attachments and that
could become unequally distributed between the daughter cells
during the next division [104, 116, 134]. These fragments could
induce further extensive genomic rearrangements and high gene
copy number variations—characteristics of chromothripsis—
eventually culminating in the presence of cytoplasmic DNA
fragments that could activate the cCGAS-STING pathway.
The causes of chromothripsis are not well understood; however,

one potential explanation for its emergence is the disruption of
micronuclear envelopes. On the one hand, rupture of the
micronuclear envelope could result in exposure of the contents
to cytoplasmic nucleases such as three prime repair exonuclease 1
(TREX1), leading to chromosome fragmentation. TREX1 is known
to degrade cytoplasmic DNA to avoid inappropriate innate
immune activation [135–137]. On the other hand, and somewhat
paradoxically, degradation of exposed DNA from ruptured
micronuclei by TREX1 can decrease cGAS/STING pathway activa-
tion in cancer [138, 139]. Nevertheless, cells lacking TREX1 exhibit
less complex genome rearrangement after induction of chromo-
thripsis [132, 140–144]. Moreover, TREX1 is an endoplasmic
reticulum-associated enzyme and upon micronuclei envelope
rupture, endoplasmic reticulum tubules have been observed
invading the chromatin of ruptured micronuclei suggesting that
this enzyme is at the right time and place to degrade exposed
DNA [117].
Two recent studies proposed a new model to describe the fates

of pulverized chromosomes from micronuclei during the next
mitosis that invokes an additional role for the CIP2A-TOBPI
complex described above. Using different cell lines and
approaches to generate micronucleated cells and chromothripsis,
Lin et al. and Trivedi et al. both observed the clustering of acentric
chromosome fragments in close spatial proximity throughout
mitosis that subsequently and collectively segregated asymme-
trically to one of the daughter cells in a consistent manner
[145, 146]. This clustering was found to be dependent on the
CIP2A-TOPBP1 complex as depletion of either TOPBP1 or CIP2A
resulted in an increased proportion of cells with dispersed
micronuclear chromosomal fragments in mitosis. Importantly, this
was a mitosis-specific function of this complex as degradation of
CIP2A in mitosis was sufficient to disperse micronuclear frag-
ments, although loss of nucleocytoplasmic compartmentalization

in ruptured micronuclei in interphase may already promote
cytoplasmic CIP2A and nuclear TOPBP1 association with DNA
lesions [145]. Absence of fragment tethering in mitotic cells
lacking the CIP2A-TOPBP1 complex after induced micronucleation
and transient CIP2A depletion resulted in an increase in both
deletions and inversions compared to non-depleted counterparts,
as well as activation of the cGAS-STING pathway and apoptosis-
related transcriptional programmes. As a result, daughter cells
deficient in CIP2A were predisposed to cell death during the
subsequent interphase compared to control daughter cells
[145, 146]. Overall, these studies demonstrated that CIP2A-
TOPBP1-regulated tethering in mitosis may be critical for bulk
segregation of most chromosome fragments to one of the
daughter cells, suggesting minimal loss of genomic content in
the remaining daughter cell. This phenomenon was coined
“balanced chromothripsis” and is generally much less deleterious
than the “canonical chromothripsis” described above, which is
characterized by random fragment inheritance. Supporting this
finding, pan cancer tumor genome analyses revealed that CIP2A
and TOPBP1 expression was elevated in cancers with genomic
rearrangements, including those exhibiting chromothripsis. In
contrast, their expression was comparatively lower in cancers
characterized by canonical chromothripsis, where deletions were
more frequently observed.

The chromosome breakage-fusion-bridge cycle
The chromosome breakage-fusion-bridge (BFB) cycle is a mechan-
ism of genome instability that occurs as consequence of
chromosome bridge breakage (Fig. 2Biv). Chromosome bridges
are double-stranded chromatin fibres connecting the segregated
chromosome masses in anaphase and can persist in the daughter
nuclei in telophase and the following interphase if not adequately
resolved. Chromosome bridges can be a consequence of DNA
breakage, merotelic attachments, incomplete DNA replication, or
incorrect resolution of chromosome catenation, and are a defining
characteristic of dicentric chromosomes - chromosomes with two
active centromeres [147]. In the case of dicentric centromeres,
attachment of spindle microtubules to kinetochores on each of
the two centromeres would result in segregation of the dicentrics
towards opposite poles thereby generating chromatin bridges,
breakage of which can lead to fusion of ends during the next
interphase to recreate new dicentrics, engaging cells in recurrent
BFB cycles. The BFB cycle can thus induce structural rearrange-
ments such as telomere deletion and gene inversion, transloca-
tion, duplication, and loss [148, 149]. This cycle has, for example,
been reported to fuel tumorigenesis by amplifying oncogenes
including CDK4, cyclin E1, MDM2, EGFR, MYC, and ERBB2
[150, 151].
In animal cells, blocking cytokinesis after chromosome segrega-

tion prevents dicentric breakage [152], but the mechanisms
involved in chromosome bridge breakage are unclear and a
number of different hypotheses have been explored to explain
this. One study suggested that stretching of chromosome bridges
in the interphase following the aberrant division - now
surrounded by both nuclear and plasma membrane- could result
in frequent nuclear envelope ruptures and would expose the DNA
to cytoplasmic nucleases such TREX1, resulting in DNA damage
that promotes chromothripsis [132]. However, a separate study
indicated that knockout of TREX1 did not delay bridge cleavage,
suggesting the existence of TREX1-independent breakage
mechanisms [153]. Instead, cellular tension across the bridge
was found to be necessary to for bridge breakages and a critical
role for cytoplasmic actomyosin contractile forces in inducing
bridge extension and breakage was proposed. By using single-cell
whole genome sequencing techniques, reciprocal chromosome
segment gain and loss patterns in the daughter cells were
identified after bridge breakage [153]. Not surprisingly, genome
rearrangements were detected near the breakage point, a
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consequence of local chromosome fragmentation and defective
repair and replication of bridged DNA from previous cycles. These
errors could induce a second wave of DNA damage in the mitosis
following a bridge breakage, leading to further micronuclei
formation and chromothripsis. Because micronuclei can harbor
centromeric fragments, the stretching required to break chromo-
some bridges could induce the stripping of centromeric proteins
resulting in compromised centromere and kinetochore functions,
consistent with previous observations of stretching-induced
histone ejection from DNA [132, 154]. Taken together, these
studies reveal that breakage of even a single chromosome bridge
can have severe consequences for genome stability and the
acceleration of karyotype evolution.

A p53-dependent mitotic surveillance mechanism
As previously discussed, mitotic defects that escape detection and
repair result in misaligned and anaphase lagging chromosomes
prone to micronuclei formation and further genomic insults. In
normal, non-transformed cells, the presence of mitotic defects
triggers a tumor protein p53 (TP53/ p53)-dependent reduction in
cell proliferation [1, 12, 105, 155–159]. Striking discoveries over the
last decade has revealed an additional mitotic defect to which the
p53 pathway responds: prolonged mitotic timing, even in the
absence of detectable defects.
P53 protein, known as the “Guardian of the genome”, is a well-

known protein involved in the protection of the cells from cellular
damage by regulating gene expression to control DNA repair, cell
division and cell death. Upon its activation in response to a range
of genomic insults, p53 translocate to the nucleus to bind to the
cyclin dependent kinase inhibitor 1 A (CDKN1A) promoter. This
upregulates the transcription of CDKN1A (known as p21), which
then binds to cyclin E/cyclin-dependent kinase (CDK)2 and cyclin
D/CDK4 to arrest the cell cycle in G1 [160, 161].
Initial studies linking M phase and the p53 activation in the

following cell cycle found that a prolonged prometaphase arrest
longer than 90minutes in non-transformed RPE1 cells induced a
cell cycle arrest in the next G1, even in healthy, error-free cell
divisions. Depletion of p53 allowed cells to proliferate, regardless
of mitotic delay [162]. Building on these findings, Lambrus et al.
demonstrated that depletion of polo-like kinase 4, a regulator of
centriole biogenesis, triggered a p53-dependent cell cycle arrest
independently of the presence of segregation errors [163]. In a
CRISPR/Cas9 knockout screen, the authors identified that the cell
cycle arrest caused by centrosome loss, or an extended
prometaphase was dependent on the USP28–53BP1–p53–p21
pathway (also called the mitotic stopwatch complex). This
complex consists of tumor protein p53 binding protein 1, which
recruits p53, and ubiquitin specific peptidase 28, which stabilizes
p53 via deubiquitination [164]. More recently, Meitinger et al.
further extrapolated on these results and demonstrated that the
length of mitosis is tracked by the mitotic kinase PLK1, which
regulates the assembly of stopwatch complexes that are
transmitted between daughter cells. The complex persists into
G1, leading to increased p21 transcription, cell cycle arrest, and
induction of senescence in response to a single significantly
extended mitosis or successive modestly extended mitoses [165].
Collectively, these data indicated that the mitotic stopwatch
complex –a biochemical memory signal - forms only when mitosis
is prolonged. The accumulation of this complex progressively rises
during prolonged mitosis in a PLK1-dependent manner, is passed
on to daughter cells, and remains stable enough to preserve the
memory of extended mitoses. Unsurprisingly, the genes encoding
the three stopwatch complex subunits are classified tumor
suppressors [166]. Compromised stopwatch function was asso-
ciated not only with p53 mutant cancers, but also a substantial
proportion of p53 wild-type human cancers. Stopwatch status also
influenced the efficacy of anti-mitotic drugs that functioned by
prolonging mitosis, with attenuated stopwatch function being

permissive to cell proliferation after treatment. The stopwatch
complex may thus function as an additional genome ‘fidelity filter’
that halts the proliferation of potentially deleterious cells that
would otherwise pass mitotic checkpoints such as the SAC.

CONCLUSION AND PERSPECTIVES
Over the last decade, our comprehension of how different errors
in mitosis arise, the mechanisms that surveil and correct them, and
the consequences to the genome should these mechanisms fail
has evolved rapidly. Although the classical mitotic surveillance
pathways, such as the SAC and the error correction pathway
remain the best understood, recent research has revealed how
lingering prometaphase errors are corrected in anaphase, how
prolonged mitosis triggers a biochemical alarm that halts
daughter cell proliferation, and how certain chromosome breaks
are repaired in mitosis. Alternative variants and isoforms of key
mitotic proteins are being identified in normal and cancer
genomes and the consequences of their expression to mitotic
fidelity will need to be systematically explored [167, 168]. We also
have a better understanding of how segregation errors induce
complex genome rearrangements that serve as continual sources
of CIN (Fig. 2A), and the development of new sequencing
approaches and analysis pipelines is likely to further revolutionize
our understanding of the nature of the complex genome
arrangements in cancer [169, 170]. Nevertheless, many questions
remain: Are there any additional mechanisms that protect against
chromosome mis-segregation in mitosis and its effects in the
following G1? Activation of the p53 pathways is certainly a major
mechanism although recent work suggested that arrest in G1 in
response to mitotic errors can occur independently of p53
[171, 172]. What are the major types of chromosomes mis-
segregation errors leading to micronuclei formation? Significant
efforts have highlighted the contribution of merotelic attachments
but the contribution of other attachments geometries remains to
be further explored. Are there any additional clinically relevant
consequences to chromosome segregation errors? Evolving
technological approaches and innovative analysis pipelines will
help answer these questions and will ultimately allow for
leveraging of this information to effectively target aneuploidy
and CIN in cancers.
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